Advertisement

High-Resolution Simulation of the Global Coupled Atmosphere-Ocean System: Description and Preliminary Outcomes of CFES (CGCM for the Earth Simulator)

  • Nobumasa Komori
  • Akira Kuwano-Yoshida
  • Takeshi Enomoto
  • Hideharu Sasaki
  • Wataru Ohfuchi

Summary

We have been developing a global, high-resolution, coupled atmosphereocean general circulation model, named CFES, which was designed to achieve efficient computational performance on the Earth Simulator. A brief description of CFES and some preliminary results obtained from 66-month integration are presented. Although some deficiencies are apparent in the results, realistically simulated smallscale structures such as extratropical cyclones and sea surface temperature fronts in the mid-latitudes, and seasonal variation of tropical sea surface temperature and polar sea-ice extent encourage us to study mechanism and predictability of high-impact phenomena and their relation to the global-scale circulations using CFES.

Keywords

Couple Atmosphere Western Boundary Current Geophysical Fluid Dynamics Laboratory Earth Simulator Extratropical Cyclone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov, J. I., S. Levitus, T. P. Boyer, M. E. Conkright, T. O’Brien, and C. Stephens, 1998a: World Ocean Atlas 1998, Vol. 1: Temperature of the Atlantic Ocean. NOAA Atlas NESDIS 27, U.S. Government Printing Office, Washington, D.C.Google Scholar
  2. — 1998b: World Ocean Atlas 1998, Vol. 2: Temperature of the Pacific Ocean. NOAA Atlas NESDIS 28, U.S. Government Printing Office, Washington, D.C.Google Scholar
  3. Antonov, J. I., S. Levitus, T. P. Boyer, M. E. Conkright, T. O’Brien, C. Stephens, and B. Trotsenko, 1998c: World Ocean Atlas 1998, Vol. 3: Temperature of the Indian Ocean. NOAA Atlas NESDIS 29, U.S. Government Printing Office, Washington, D.C.Google Scholar
  4. Boyer, T. P., S. Levitus, J. I. Antonov, M. E. Conkright, T. O’Brien, and C. Stephens, 1998a: World Ocean Atlas 1998, Vol. 4: Salinity of the Atlantic Ocean. NOAA Atlas NESDIS 30, U.S. Government Printing Office, Washington, D.C.Google Scholar
  5. — 1998b: World Ocean Atlas 1998, Vol. 5: Salinity of the Pacific Ocean. NOAA Atlas NESDIS 31, U.S. Government Printing Office, Washington, D.C.Google Scholar
  6. Boyer, T. P., S. Levitus, J. I. Antonov, M. E. Conkright, T. O’Brien, C. Stephens, and B. Trotsenko, 1998c: World Ocean Atlas 1998, Vol. 6: Salinity of the Indian Ocean. NOAA Atlas NESDIS 32, U.S. Government Printing Office, Washington, D.C.Google Scholar
  7. Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the Coupled Model Intercomparison Project. Global Planet. Change, 37, 103-133.Google Scholar
  8. Enomoto, T., A. Kuwano-Yoshida, N. Komori, and W. Ohfuchi, 2007: Description of AFES 2: Improvements for high-resolution and coupled simulations. High Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, eds., Springer, New York, this volume, Chapter 5.Google Scholar
  9. Gent, P. R. and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150-155.CrossRefGoogle Scholar
  10. Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815-846.CrossRefGoogle Scholar
  11. Hunke, E. C. and J. K. Dukowicz, 2002: The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere—incorporation of metric terms. Mon. Wea. Rev., 130, 1848-1865.CrossRefGoogle Scholar
  12. Komori, N., K. Takahashi, K. Komine, T. Motoi, X. Zhang, and G. Sagawa, 2005: Description of sea-ice component of Coupled Ocean-Sea-Ice Model for the Earth Simulator (OIFES). J. Earth Simulator, 4, 31-45.Google Scholar
  13. Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363-404.CrossRefGoogle Scholar
  14. Masumoto, Y., H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, H. Sakuma, and T. Yamagata, 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator, 1, 35-56.Google Scholar
  15. Myneni, R. B., R. R. Nemani, and S. W. Running, 1997: Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35, 1380-1393.CrossRefGoogle Scholar
  16. Nakajima, T. and M. Tanaka, 1986: Matrix formulations for the transfer of solar radiation in a planeparallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 35, 13-21.CrossRefGoogle Scholar
  17. Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869-4878.CrossRefGoogle Scholar
  18. Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean-Atmosphere Interaction, C. Wang, S.-P. Xie, and J. A. Carton, eds., American Geophysical Union, Washington, D.C., U.S.A., Geophys. Monogr. 147, 329-346.Google Scholar
  19. Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSR/NIES atmospheric general circulation model. Study on the Climate System and Mass Transport by a Climate Model, A. Numaguti, S. Sugata, M. Takahashi, T. Nakajima, and A. Sumi, eds., Center for Global Environmental Research, National Institute for Environmental Studies, CGER’s Supercomputer Monograph Report 3, 1-48.Google Scholar
  20. Oberhuber, J. M., D. M. Holland, and L. A. Mysak, 1993: A thermodynamic-dynamic snow sea-ice model. Ice in the Climate System, W. R. Peltier, ed., Springer-Verlag, NATO ASI Series, Series I: Global Environmental Change, 653-673.Google Scholar
  21. Ohfuchi, W., H. Nakamura, M.K. Yoshioka, T. Enomoto, K. Takaya, X. Peng, S. Yamane, T. Nishimura, Y. Kurihara, and K. Ninomiya, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator: Preliminary outcomes of AFES. (AGCM for the Earth Simulator) J. Earth Simulator, 1, 8-34.Google Scholar
  22. Oki, T. and Y. C. Sud, 1998: Design of Total Runoff Integrating Pathways (TRIP)—a global river channel network. Earth Interactions, 2, paper No. 1.Google Scholar
  23. Pacanowski, R. C., 1995: MOM2 documentation, user’s guide and reference manual. GFDL Ocean Group Technical Report 3, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, U.S.A.Google Scholar
  24. Pacanowski, R. C. and S. M. Griffies, 1999: The MOM 3.0 manual. GFDL Ocean Group Technical Report 4, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, U.S.A.Google Scholar
  25. Parker, E., M. Jackson, and E. B. Horton, 1995: The 1961-1990 GISST2.2 sea surface temperature and sea ice climatology. Climate Research Technical Note 63, Hadley Centre, U.K. Met Office, Bracknell, U.K.Google Scholar
  26. Parkinson, C. L. and W. M. Washington, 1979: A large scale numerical model of sea ice. J. Geophys. Res., 84, 311-337.CrossRefGoogle Scholar
  27. Sekiguchi, M., 2004: A study on evaluation of the radiative flux and its computational optimization in the gaseous absorbing atmosphere. Science doctoral dissertation, University of Tokyo, 121 pp., in Japanese.Google Scholar
  28. Shingu, S., H. Takahara, H. Fuchigami, M. Yamada, Y. Tsuda, W. Ohfuchi, Y. Sasaki, K. Kobayashi, T. Hagiwara, S. Habata, M. Yokokawa, H. Itoh, and K. Otsuka, 2002: A 26.58 Tflops global atmospheric simulation with the spectral transform method on the Earth Simulator. Proc. ACM/IEEE SC2002 Conference, Baltimore, Maryland.Google Scholar
  29. Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99-164.CrossRefGoogle Scholar
  30. Takahashi, K., S. Shingu, A. Azami, T. Abe, M. Yamada, H. Fuchigami, M. Yoshioka, Y. Sasaki, H. Sakuma, and T. Sato, 2003a: Coupling strategy of atmospheric-oceanic general circulation model with ultra high resolution and its performance on the Earth Simulator. Parallel Com- putational Fluid Dynamics—New Frontiers and Multi-Disciplinary Applications, K. Matsuno, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, eds., Elsevier Science, 93-100.Google Scholar
  31. Takahashi, K., Y. Tsuda, M. Kanazawa, S. Kitawaki, H. Sasaki, and T. Sato, 2003b: Parallel architecture and its performance of oceanic global circulation model based on MOM3 to be run on the Earth Simulator. Parallel Computational Fluid Dynamics—New Frontiers and Multi- Disciplinary Applications, K. Matsuno, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, eds., Elsevier Science, 101-108.Google Scholar
  32. Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209-222.Google Scholar
  33. Uppala, S. M., P. W. K ållberg, A. J. Simmons, U. Andrae, V. da Costa Bechtold, M. Fiorino, J. K. Gibson, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. H ólm, B. J. Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. McNally, J.-F. Mahfouf, J.-J. Morcrette, N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, and J. Woollen, 2005: The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131, 2961-3012.CrossRefGoogle Scholar
  34. Xie, P. and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840-858.CrossRefGoogle Scholar
  35. Xie, S.-P., 2004: Satellite observations of cool ocean-atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195-208.CrossRefGoogle Scholar
  36. Zhang, X. and J. Zhang, 2001: Heat and freshwater budgets and pathway in the Arctic Mediterranean in a coupled ocean/sea-ice model. J. Oceanogr., 57, 207-234.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nobumasa Komori
  • Akira Kuwano-Yoshida
  • Takeshi Enomoto
  • Hideharu Sasaki
  • Wataru Ohfuchi

There are no affiliations available

Personalised recommendations