Numerical Resolution and Modeling of the Global Atmospheric Circulation: A Review of Our Current Understanding and Outstanding Issues

  • Kevin Hamilton


This chapter presents a survey of published literature related to the issue of how the simulation of climate and atmospheric circulation by global models depend on numerical spatial resolution. To begin the basic question of how the zonalmean tropospheric circulation in atmospheric general circulation models (AGCMs) vary with changing horizontal and vertical grid spacing is considered. The appropriate modification of subgrid-scale parameterizations with model resolution is discussed. Advances in available computational power have recently spurred work with quite fine resolution global AGCMs, and the issue of how well such models simulate mesoscale aspects of the atmospheric circulation is considered. Experience has shown that the AGCM simulated circulation is particularly sensitive to resolution in the stratosphere and mesosphere, and so studies related to the middle atmospheric circulation are considered in some detail. Finally, the significance of atmospheric model resolution for coupled global ocean—atmosphere models and the simulated climate sensitivity to large-scale perturbations is discussed.


Tropical Cyclone Gravity Wave General Circulation Model Grid Spacing Horizontal Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, A. and W.H. Schubert, 1974: Interaction of cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 671-701.Google Scholar
  2. Baldwin, M., L. Gray, T. Dunkerton, K. Hamilton, P. Haynes, W. Randel, J. Holton, M. Alexander, I. Hirota, T. Horinouchi, D. Jones, J. Kinnersley, C. Marquardt, K. Sato and M. Takahashi, 2001: The Quasi-biennial Oscillation. Rev. Geophys., 39, 179-229.CrossRefGoogle Scholar
  3. Bengtsson, L., M. Botzet and M. Esh, 1995: Simulation of hurricane-type vortices in a general circulation model. Tellus, 47A, 175-196.Google Scholar
  4. Boer, G.J. and B. Denis, 1997: Numerical convergence of the dynamics of a GCM. Clim. Dyn., 13, 359-374.CrossRefGoogle Scholar
  5. Boer, G.J. and M. Lazare, 1988: Some results concerning the effect of horizontal resolution and gravity-wave drag on simulated climate. J. Clim., 1, 789-806.CrossRefGoogle Scholar
  6. Boer, G.J. and T.G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164-184.CrossRefGoogle Scholar
  7. Boville, B.A., 1991: Sensitivity of simulated climate to model resolution. J. Clim., 4, 469-485.CrossRefGoogle Scholar
  8. Boville, B.A. and W.J. Randel, 1991: Equatorial waves in a stratospheric GCM: Effects of vertical resolution. J. Atmos. Sci., 49, 785-801.CrossRefGoogle Scholar
  9. Boyle, J.S., 1993: Sensitivity of dynamical quantities to horizontal resolution for a climate simulation using the ECMWF (cycle 33) model. J. Clim., 6, 796-815.CrossRefGoogle Scholar
  10. Broccoli, A. and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate. Geophys. Res. Lett., 17, 1917-1920.CrossRefGoogle Scholar
  11. Cess, R.D. et al., 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models.J. Geophys. Res., 95, 16601-16615.CrossRefGoogle Scholar
  12. Conaty, A.L., J.C. Jusem, L. Takacs, D. Keyser and R. Atlas, 2001: The structure and evolution of extratropical cyclones, fronts, jet streams, and the tropopause in the GEOS General Circulation Model. Bull. Am. Meteor. Soc., 82, 1853-1867.CrossRefGoogle Scholar
  13. Dunnavan, G.M. and J.W. Dierks, 1980: An analysis of Supertyphoon Tip (October 1979). Mon. Weather Rev., 108, 1915-1923.CrossRefGoogle Scholar
  14. Emanuel, K., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans, J. Geophys. Res., 106, 14771-14782, doi:10.1029/2000JD900641.CrossRefGoogle Scholar
  15. Emanuel, K. and M. Zivkovic-Rothman, 1999: Development and evaluation of a convective scheme for use in climate models. J. Atmos. Sci., 56, 1766-1782.CrossRefGoogle Scholar
  16. Enomoto, T., A. Kuwano-Yoshida, N. Komori and W. Ohfuchi, 2007: Description of AFES 2: Improvements of high-resolution and coupled simulations. High Resolution Numerical Modelling of the Atmosphere and Ocean, (W. Ohfuchi and K. Hamilton, eds.), Springer Publications, Chapter 5.Google Scholar
  17. Garcia, R.R. and B.A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 2238-2245.CrossRefGoogle Scholar
  18. Giorgetta M.A., E. Manzini and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245, doi:10.1029/2002GL014756.CrossRefGoogle Scholar
  19. Griffies, S.M. and R.W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Weather Rev., 128, 2935-2946.CrossRefGoogle Scholar
  20. Gualdi, S., A. Alessandri and A. Navarra, 2005: Impact of atmospheric horizontal resolution on El Nino/Southern Oscillation forecasts. Tellus, 57A, 357-374.Google Scholar
  21. Hamilton, K., 1989: Evaluation of the gravity wave field in the middle atmosphere of the GFDL “SKYHI” general circulation model. World Meteorological Organization Technical Document #273, pp. 264-271.Google Scholar
  22. Hamilton, K, 1993: What we can learn from general circulation models about the spectrum of middle atmospheric motions. Coupling Processes in the Lower and Middle Atmosphere (E. Thrane, T. Blix and D. Fritts, eds.), Kluwer Academic Publishers, pp. 161-174.Google Scholar
  23. Hamilton, K., 1996: Comprehensive meteorological modelling of the middle atmosphere: A tutorial review. J. Atmos. Terr. Phys., 58, 1591-1628.CrossRefGoogle Scholar
  24. Hamilton, K. and R.S. Hemler, 1997: Appearance of a super-typhoon in a global climate model simulation. Bull. Am. Meteor. Soc., 78, 2874-2876.Google Scholar
  25. Hamilton, K. and L. Yuan, 1992: Experiments on tropical stratospheric mean wind variations in a spectral general circulation model. J. Atmos. Sci, 49, 2464-2483.CrossRefGoogle Scholar
  26. Hamilton, K., R.J. Wilson, J.D. Mahlman and L.J. Umscheid, 1995: Climatology of the SKYHI troposphere-stratosphere-mesosphere General Circulation Model. J. Atmos. Sci., 52, 5-43.CrossRefGoogle Scholar
  27. Hamilton, K., R.J. Wilson and R.S. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvement in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56, 3829-3846.CrossRefGoogle Scholar
  28. Hamilton, K., R.J. Wilson and R.S. Hemler. 2001: Spontaneous stratospheric QBO-like oscillations simulated by the GFDL SKYHI General Circulation Model. J. Atmos. Sci., 58, 3271-3292.CrossRefGoogle Scholar
  29. Hayashi, Y., D. G. Golder, J. D. Mahlman and S. Miyahara, 1989: The effect of horizontal resolution on gravity waves simulated by the GFDL “SKYHI” general circulation model. Pure Appl. Geophys., 130, 421-443.Google Scholar
  30. Hayashi, Y., D.G. Golder and P.W. Jones, 1997: Tropical gravity waves and superclusters simulated by high-horizontal-resolution SKYHI general circulation models. J. Meteor. Soc. Jpn., 75, 1125-1139.Google Scholar
  31. Held, I.M. and M.J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric General Circulation Models. Bull. Am. Meter. Soc., 75, 1825-1830.CrossRefGoogle Scholar
  32. Horinouchi T. and S. Yoden, 1998: Wave-mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55, 502-526.CrossRefGoogle Scholar
  33. Ingram, W.J., 2002: On the robustness of the water vapor feedback: GCM vertical resolution and formulation. J. Clim., 15, 917-921.CrossRefGoogle Scholar
  34. Inness, P.M., J.M. Slingo, S.J. Woolnough, R.B. Neale and V.D. Pope, 2001: Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian Oscillation. Clim. Dyn., 17, 777-793.CrossRefGoogle Scholar
  35. Janjic, Z.I., J.P. Gerrity Jr., and S. Nickovic, 2001: An alternative approach to nonhydrostatic modeling. Mon. Weather Rev., 129, 1164-1178.CrossRefGoogle Scholar
  36. Jones, P.W., K. Hamilton and R.J. Wilson, 1997: A very high-resolution general circulation model simulation of the global circulation in austral winter. J. Atmos. Sci., 54, 1107-1116.CrossRefGoogle Scholar
  37. Kang, I.-S., K. Jin, B. Wang, K.-M. Lau, J. Shukla, V. Krishnamurthy, S. Schubert, D. Wailser, W. Stern, A. Kitoh, G. Meehl, M. Kanamitsu, V. Galin, V. Satyan, C.-K. Park, and Y. Liu., 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim. Dyn., 19, 383-395.CrossRefGoogle Scholar
  38. Kawatani, Y. and M. Takahashi, 2003: Simulation of the Baiu front in a high-resolution AGCM. J. Meteor. Soc. Jpn., 81, 113-126.CrossRefGoogle Scholar
  39. Kobayashi C. and M. Sugi, 2004: Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model. Clim. Dyn., 23, 165-176.CrossRefGoogle Scholar
  40. Koshyk, J.N. and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratosphere-mesosphere GCM. J. Atmos. Sci., 58, 329-348.CrossRefGoogle Scholar
  41. Koshyk, J.N., B.A. Boville, K. Hamilton, E. Manzini and K. Shibata, 1999: The kinetic energy spectrum of horizontal motions in middle atmosphere models. J. Geophys. Res., 104, 27177-27190.CrossRefGoogle Scholar
  42. Lander, J. and B.J. Hoskins, 1997: Believable scales and parameterizations in a spectral model. Mon. Weather Rev., 125, 292-303.CrossRefGoogle Scholar
  43. Levy, H., J.D. Mahlman and W.J. Moxim, 1982: Tropospheric N2O variability. J. Geophys. Res., 87,3061-3080.CrossRefGoogle Scholar
  44. Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259-288.CrossRefGoogle Scholar
  45. Lindzen, R.S. and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Weather Rev., 117, 2575-2583.CrossRefGoogle Scholar
  46. Mahlman, J.D. and L.J. Umscheid, 1987: Comprehensive modeling of the middle atmosphere: The influence of horizontal resolution. Transport Processes in the Middle Atmosphere (G. Visconti and R. Garcia, eds.), Reidel Publishing, pp. 251-266.Google Scholar
  47. Manabe, S., J. Smagorinsky and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Weather Rev., 93, 769-798.CrossRefGoogle Scholar
  48. Manzini, E., N.A. McFarlane and C. McLandress, 1997: Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J. Geophys. Res., 102, 25751-25762.CrossRefGoogle Scholar
  49. Mizuta, R., T. Uchiyama, K. Kamiguchi, A. Kitoh and A. Noda, 2005: Changes in extremes indices over Japan due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 1,153-156.CrossRefGoogle Scholar
  50. Mullen, S.L. and R. Buizza, 2002: The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF Ensemble Prediction System. Weather Forecast., 17, 173-191.CrossRefGoogle Scholar
  51. Nastrom, G.D. and K.S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950-960.CrossRefGoogle Scholar
  52. Naujokat, B., 1986: An update of the observed Quasi-Biennial Oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 1873-1877.CrossRefGoogle Scholar
  53. Ohfuchi, W., H. Nakamura, M.K. Yoshioka, T. Enomoto, K. Takaya, X. Peng, S. Yamane, T. Nishimura, Y. Kurihara, and K. Ninomiya, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the earth simulator - preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simulator, 1, 8-34.Google Scholar
  54. Ohfuchi, W., H. Sasaki, Y. Masumoto and H. Nakamura, 2005: Mesoscale-resolving simulations of the global atmosphere and ocean on the Earth Simulator. Eos, 86, 45-46.CrossRefGoogle Scholar
  55. Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Jpn., 84, 259-276.CrossRefGoogle Scholar
  56. Orlanski, I. and C. Kerr, 2007: Project TERRA: A glimpse into the future of weather and climate. High Resolution Numerical Modelling of the Atmosphere and Ocean, (W. Ohfuchi and K. Hamilton, eds.), Springer Publications, Chapter 3.Google Scholar
  57. Palmer, T.N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Q. J. R. Meteor. Soc., 127, 279-304.Google Scholar
  58. Pope, V. and R. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Clim. Dyn., 19, 211-236.CrossRefGoogle Scholar
  59. Randall, D., S. Krueger, C. Bretherton, J. Curry, P. Duynkerke, M. Moncrieff, B. Ryan, D. Starr, M. Miller, W. Rossow, G. Tselioudis and B. Wielicki, 2003a: Confronting models with data: The GEWEX Cloud Systems Study. Bull. Am. Meter. Soc., 84, 455-469.CrossRefGoogle Scholar
  60. Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003b: Breaking the cloud parameterization deadlock. Bull Amer Met Soc., 84, 1547-1564.CrossRefGoogle Scholar
  61. Ricciardulli, L. and R.R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57, 3461-3487.CrossRefGoogle Scholar
  62. Ricciardulli, L. and P.D. Sardeshmukh, 2002: Local time- and space scales of organized tropical deep convection. J. Atmos. Sci., 59, 2775-2790.Google Scholar
  63. Roebber, P.J., D.M. Schultz, B.A. Colle and D.J. Stensrud, 2004: Towards improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936-949.CrossRefGoogle Scholar
  64. Roeckner, E., R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, L. Kornblueh, E. Manzini, U. Schlese and U. Schulzweida, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Clim., 19, 3771-3791.CrossRefGoogle Scholar
  65. Sato, K., T. Kumakura and M. Takahashi. 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci., 56, 1005-1018.CrossRefGoogle Scholar
  66. Senior, C.A., 1995: The dependence of climate sensitivity on the horizontal resolution of a GCM. J. Clim., 8, 2860-2880.CrossRefGoogle Scholar
  67. Shen, B.-W., R. Atlas, J.-D. Chern, O. Reale, S.-J. Lin, T. Lee and J. Chang, 2006: The 0.125 degree finite-volume general circulation model on the NASA Columbia supercomputer: Preliminary simulations of mesoscale vortices. Geophys. Res. Lett., 33, doi:10.1029/2005GL024594.Google Scholar
  68. Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev., 91, 99-164.CrossRefGoogle Scholar
  69. Sperber, K.R., S. Hameed, G.L. Potter and J.S. Boyle, 1994: Simulation of the northern summer monsoon in the ECMWF model: sensitivity of horizontal resolution. Mon. Weather Rev., 122, 2461-2481.CrossRefGoogle Scholar
  70. Stevenson, D.B., F. Chauvin and J.-F. Royer, 1998: Simulation of the Asian summer monsoon and its dependence on model horizontal resolution. J. Meteor. Soc. Jpn., 76, 237-265.Google Scholar
  71. Stowasser, M. and K. Hamilton, 2006: Relationships between cloud radiative forcing and local meteorological variables compared in observations and several global climate models. J. Clim., 19, 4344-4359.CrossRefGoogle Scholar
  72. Stowasser, M., K. Hamilton and G.J. Boer, 2006: Local and global climate feedbacks in models with differing climate sensitivities. J. Clim., 19, 193-209.CrossRefGoogle Scholar
  73. Sugi, M., A. Noda and N. Sato, 2002: Influence of global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249-272.CrossRefGoogle Scholar
  74. Takahashi, M., 1996: Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophys. Res. Lett., 23, 661-664.CrossRefGoogle Scholar
  75. Takahashi, Y.O., K. Hamilton and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429.CrossRefGoogle Scholar
  76. Tokioka, T. and I. Yagai, 1987: Atmospheric tides appearing in a global atmospheric general circulation model. J. Meteor. Soc. Japan, 65, 423-438.Google Scholar
  77. Tomita, H., H. Miura, S. Iga, T. Nasuno and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua-planet experiment, Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.CrossRefGoogle Scholar
  78. Tompkins, A.M and K.A. Emanuel, 2000: The vertical resolution sensitivity of simulated equilibrium tropical temperature and water vapour profiles. Q. J. R. Meteor. Soc., 126, 1219-1238.CrossRefGoogle Scholar
  79. Tsutsui, J., 2002: Implications of anthropogenic climate change for tropcial cyclone activity. A case study with the NCAR CCM2. J. Meteor. Soc. Japan, 80, 45-65.CrossRefGoogle Scholar
  80. Williamson, D.L., 1999: Convergence of atmospheric simulations with increasing horizontal resolution and fixed forcing scales. Tellus, 51A, 663-673.Google Scholar
  81. Yamada, Y., T. Sampe, Y.O. Takahashi, M.K. Yoshioka, W. Ohfuchi, M. Ishiwatari, K. Nakajima and Y.-Y. HayashiI, 2005: A resolution dependence of equatorial precipitation activities represented in a general circulation model. Theor. Appl. Mech. Jpn., 54, 289-297.Google Scholar
  82. Yoshioka, M.K., Y. Kurihara and W. Ohfuchi, 2005: Effect of the thermal tidal oscillation of the atmosphere on tropical cyclones. Geophys. Res. Lett., 32, L16802, doi:10.1029/2005GL022716.CrossRefGoogle Scholar
  83. Yu, R.C., W. Li, X. Zhang, Y.M. Liu, Y.Q. Yu, H.L. Liu and T.J. Zhou., 2000: Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci., 17, 503-518.CrossRefGoogle Scholar
  84. Yuan, L. and K. Hamilton, 1994: Equilibrium dynamics in a forced-dissipative f-plane shallow water model. J. Fluid Mech., 280, 369-394.CrossRefGoogle Scholar
  85. Zhou, T.J. and Z.X. Li, 2002: Simulation of the east Asian summer monsoon by using a variable resolution atmospheric GCM. Clim. Dyn., 19, 167-180.CrossRefGoogle Scholar
  86. Zwiers, F. and K. Hamilton, 1986: The Simulation of atmospheric tides in the Canadian Climate Centre general circulation model. J. Geophys. Res., 91, 11877-11898.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kevin Hamilton

There are no affiliations available

Personalised recommendations