Skip to main content

Prodrug approaches to ophthalmic drug delivery

  • Chapter
Book cover Prodrugs

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume V))

Abstract

Ophthalmic medications are administered either systematically or locally to the eye. In order to treat ocular disorders, the topical delivery of eye drops into the lower cul-de-sac of the eye is preferred since the drug effects are localized and less drug enters into the systemic circulation (i.e., systemic side effects are minimized). In addition, adequate ocular drug concentrations may be difficult to achieve with systemic administration, as the blood-ocular barrier effectively restricts the access of drugs from systemic circulation into intra-ocular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed I, Gokhale RD, Shah MV, and Patton TF. Physicochemical Determinants of Drug Diffusion across the Conjunctiva, Sclera, and Cornea. J Pharm Sci 1987; 76:583–586

    PubMed  CAS  Google Scholar 

  • Alexander J, Cargill R, Michelson SR, and Schwam H. (Acyloxy)alkyl Carbamates as Novel Bioreversible Prodrugs for Amines: Increased Penetration through Biological Membranes. J Med Chem 1988; 31:318–322

    PubMed  CAS  Google Scholar 

  • Anand BS, and Mitra AK. Mechanism of Corneal Permeation of L-Valyl Ester of Acyclovir: Targeting the Oligopeptide Transporter on the Rabbit Cornea. Pharm Res 2002; 19:1194–202

    PubMed  CAS  Google Scholar 

  • Anand B, Nashed Y, and Mitra A. Novel Dipeptide Prodrugs of Acyclovir for Ocular Herpes Infections: Bioreversion, Antiviral Activity and Transport across Rabbit Cornea. Curr Eye Res 2003a; 26:151–163

    PubMed  Google Scholar 

  • Anand BS, Patel J, and Mitra AK. Interactions of the Dipeptide Ester Prodrugs of Acyclovir with the Intestinal Oligopeptide Transporter: Competitive Inhibition of Glycylsarcosine Transport in Human Intestinal Cell Line-Caco-2. J Pharmacol Exp Ther 2003b; 304:781–91

    PubMed  CAS  Google Scholar 

  • Anand BS, Hill JM, Dey S, Maruyama K, Bhattacharjee PS, Myles ME, Nashed YE, and Mitra AK. In Vivo Antiviral Efficacy of a Dipeptide Acyclovir Prodrug, Val-Acyclovir, against HSV-1 Epithelial and Stromal Keratitis in the Rabbit Eye Model. Invest Ophthalmol Vis Sci 2003c; 44:2529–2534

    PubMed  Google Scholar 

  • Anderson JA. Systemic Absorption of Topical Ocularly Applied Epinephrine and Dipivefrin. Arch Ophthalmol 1980; 98:350–353

    PubMed  CAS  Google Scholar 

  • Anderson JA, Davis WL, and Wei C-P. Site of Ocular Hydrolysis of a Prodrug, Dipivefrin, and Comparison of Its Ocular Metabolism with that of the Parent Compound, Epinephrine. Invest Ophthalmol Vis Sci 1980;19:817–823

    PubMed  CAS  Google Scholar 

  • Bito LZ. Prostaglandins, Old Concepts and New Perspectives. Arch Ophthalmol 1987; 105:1036–1039

    PubMed  CAS  Google Scholar 

  • Bito LZ, and Baroody RA. The Ocular Pharmacokinetics of Eicosanoids and their Derivatives. 1. Comparison of Ocular Eicosanoid Penetration and Distribution Following the Topical Application of PGF, PGF-1-methyl ester, and PGF2α-1-isopropyl Ester. Exp Eye Res 1987; 44:217–226

    PubMed  CAS  Google Scholar 

  • Bito LZ, Draga A, Blanco J, and Camras CB. Long-term Maintenance of Reduced Intraocular Pressure By Daily Twice Daily Topical Application of Prostaglandins To Cat Or Rhesus Monkey Eyes. Invest Ophthalmol Vis Sci 1983; 24:312–319

    PubMed  CAS  Google Scholar 

  • Bodor NS. Selected Quaternary Ammonium Salts of Pilocarpine Useful in Reducing Intraocular Pressure in Warm-Blooded Animals. US Patent 4,061,722; 1977

    Google Scholar 

  • Bodor N, and Buchwald P. Soft Drug Design: General Principles and Recent Applications. Med Res Rev 2000; 20:58–101

    PubMed  CAS  Google Scholar 

  • Bourlais CL, Acar L, Zia H, Sado PA, Needham T, and Leverge R. Ophthalmic Drug Delivery Systems—Recent Advances. Prog Retin Eye Res 1998; 17:33–58

    PubMed  CAS  Google Scholar 

  • Brechue WF, and Maren TH. pH and Drug Ionization Affects Ocular Pressure Lowering of Topical Carbonic Anhydrase Inhibitors. Inves Ophthalmol Vis Sci 1993; 34:2581–2587

    CAS  Google Scholar 

  • Bundgaard H, Falch E, Larsen C, Mosher GL, and Mikkelson TJ. Pilocarpic Acid Esters As Novel Sequentially Labile Pilocarpine Prodrugs for Improved Ocular Delivery. J Med Chem 1985; 28:979–981

    PubMed  CAS  Google Scholar 

  • Bundgaard H, Buur A, Chang S-C, and Lee VHL. Prodrugs of Timolol for Improved Ocular Delivery: Synthesis, Hydrolysis Kinetics and Lipophilicity of Various Timolol Esters. Int J Pharm 1986a; 33:15–26

    CAS  Google Scholar 

  • Bundgaard H, Falch E, Larsen C, and Mikkelson TJ. Pilocarpine Prodrugs I: Synthesis, Physicochemical Properties and Kinetics of Lactonization of Pilocarpic Acid Esters. J Pharm Sci 1986b; 75:36–43

    PubMed  CAS  Google Scholar 

  • Bundgaard H, Falch E, Larsen C, Mosher GL, and Mikkelson TJ. Pilocarpine Prodrugs II: Synthesis, Stability, Bioconversion, and Physicochemical Properties of Sequentially Labile Pilocarpine Acid Diesters. J Pharm Sci 1986c; 75:775–783

    PubMed  CAS  Google Scholar 

  • Bundgaard H, Buur A, Chang S-C, and Lee VHL. Timolol Prodrugs: Synthesis, Stability and Lipophilicity of Various Alkyl, Cycloalkyl and Aromatic Esters of Timolol. Int J Pharm 1988a; 46:77–88

    CAS  Google Scholar 

  • Bundgaard H, Buur A, and Lee VHL. Timolol Prodrugs: Preparation and Hydrolysis Kinetics of N-Benzoyl Carbamate Esters of Timolol and Related Compounds. Acta Pharm Suec 1988b; 25:293–306

    PubMed  CAS  Google Scholar 

  • Bundgaard, H, Jensen E, and Falch E. Water-Soluble, Solution-Stable, And Biolabile N-Substituted (Aminomethyl)Benzoate Ester Prodrugs Of Acyclovir. Pharm Res 1991; 8:1087–1093

    PubMed  CAS  Google Scholar 

  • Camber O, Edman P, and Olsson L-I. Permeability of Prostaglandin F2· and Prostaglandin F2· Esters across Cornea In Vitro. Int J Pharm 1986; 29:259–266

    CAS  Google Scholar 

  • Camras CB, Siebold EC, Lustgarten JS, Serle JB, Frisch SC, Podos SM, and Bito LZ. Maintained Reduction of Multiple Doses in Ocular Hypertensive and Glaucoma Patients. Ophthalmol 1989; 96:1329–1337

    CAS  Google Scholar 

  • Carney LG, and Hill RM. Human Tear Buffering Capacity. Arch Ophthalmol 1979; 97:951–952

    PubMed  CAS  Google Scholar 

  • Chang S-C, Bundgaard H, Buur A, and Lee VHL. Improved Corneal Penetration of Timolol By Prodrugs As A Means To Reduce Systemic Drug Load. Invest Ophthalmol Vis Sci 1987; 28:487–491

    PubMed  CAS  Google Scholar 

  • Chang S-C, Bundgaard H, Buur A, and Lee VHL. Low Dose O-butyryl Timolol Improves the Therapeutic Index of Timolol in the Pigmented Rabbit. Invest Ophthalmol Vis Sci 1988a; 29:626–629

    PubMed  CAS  Google Scholar 

  • Chang S-C, Chien D-S, Bundgaard H, and Lee VHL. Relative Effectiveness of Prodrug and Viscous Solution Approaches in Maximizing the Ratio of Ocular To Systemic Absorption of Topically Applied Timolol. Exp Eye Res 1988b; 46:59–69

    PubMed  CAS  Google Scholar 

  • Cheng-Bennett A, Chan MF, Chen G, Gac T, Garst ME, Gluchowski C, Kaplan LJ, Protzman CE, Roof MB, Sachs G, Wheeler LA, Williams LS, and Woodward DF. Studies on a Novel Series of Acyl Esters Prodrugs of Prostaglandin F2α·. Br J Ophthalmol 1994; 78:560–567

    PubMed  CAS  Google Scholar 

  • Chien DS, and Schoenwald RD. Improving the Ocular Absorption of Phenylephrine. Biopharm Drug Disp 1986; 7:453–462

    CAS  Google Scholar 

  • Chien D-S, and Schoenwald RD. Ocular Pharmacokinetics and Pharmacodynamics of Phenylephrine and Phenylephrine Oxazolidine in Rabbit Eyes. Pharm Res 1990; 7:476–483

    PubMed  CAS  Google Scholar 

  • Chien D-S, Sasaki H, Bundgaard H, Buur A, and Lee VHL. Role of Enzymatic Lability in the Corneal and Conjunctival Penetration of Timolol Ester Prodrugs in the Pigmented Rabbit. Pharm Res 1991; 8:728–733

    PubMed  CAS  Google Scholar 

  • Chien DS, Tang-Liu DD, and Woodward DF. Ocular Penetration and Bioconversion of Prostaglandin F2alpha Prodrugs in Rabbit Cornea and Conjunctiva. J Pharm Sci 1997; 86:1180–1186

    PubMed  CAS  Google Scholar 

  • Colla L, De Clercq E, Busson R, and Vanderhaeghe H. Synthesis and Antiviral Activity of Water-Soluble Esters of Acyclovir [9-[(2-Hydroxyethoxy)methyl]guanine]. J Med Chem 1983; 26:602–604

    PubMed  CAS  Google Scholar 

  • Cox WV, Kupferman A, and Leipowitz HM. Topically Applied Steroids in Corneal Disease. II. The Role of Drug Vehicle in Stromal Absorption of Dexamethasone. Arch Ophthalmol 1972; 88:549–552

    PubMed  CAS  Google Scholar 

  • Doane MG, Jensen AD, and Dohlman CH. Penetration Routes of Topically Applied Eye Medication. Am J Ophthalmol 1978; 85:383–386

    PubMed  CAS  Google Scholar 

  • Druzgala P, Winwood D, Drewniak-Deyrup M, Smith S, Bodor N, and Kaminski JJ. New Water-Soluble Pilocarpine Derivatives with Enhanced and Sustained Muscarinic Activity. Pharm Res 1992; 9:372–377

    PubMed  CAS  Google Scholar 

  • Duvvuri S, Majumdar S, and Mitra A. Drug Delivery To the Retina: Challenges and Opportunities. Expert Opin Biol Ther 2003; 3:45–56

    PubMed  CAS  Google Scholar 

  • Duzman E, Chen C-C, Anderson J, Blumenthal M, and Twizer H. Diacetyl Derivative of Nadolol: I. Ocular Pharmacology and Short-Term Ocular Hypotensive Effect in Glaucomatous Eyes. Arch Ophthalmol 1982; 100:1916–1919

    PubMed  CAS  Google Scholar 

  • Duzman E, Rosen N, and Lazar M. Diacetyl Nadolol: 3-Month Ocular Hypotensive Effect in Glaucomatous Eyes. Br J Ophthalmol 1983; 67:668–673

    PubMed  CAS  Google Scholar 

  • Epstein D, and Grant WM. Carbonic Anhydrase Inhibitor Side Effects. Arch Ophthalmol 1977; 95:1378–1382

    PubMed  CAS  Google Scholar 

  • Frijlink HW, Eissens AC, Schoonen AJM, and Lerk CF. The Effect of Cyclodextrins on Drugs Absorption II. In Vivo Observation. Int J Pharm 1990; 64:195–205

    CAS  Google Scholar 

  • Giuffre G. The eEfects of Prostaglandin F in the Human Eye. Graefes Arch Clin Exp Ophthalmol 1985; 222:139–141

    PubMed  CAS  Google Scholar 

  • Grove J, Gautheron P, Plazonnet B, and Sugrue MF. Ocular Distribution Studies of the Topical Carbonic Anhydrase Inhibitors L-643,799 and L-650,719 and Related Alkyl Prodrugs. J Ocul Pharmacol 1988; 4:279–290

    PubMed  CAS  Google Scholar 

  • Hellberg MR, Conrow RE, Sharif NA, McLaughlin MA, Bishop JE, Crider JY, Dean WD, DeWolf KA, Pierce DR, Sallee VL, Selliah RD, Severns BS, Sproull SJ, Williams GW, Zinke PW, and Klimko PG. 3-Oxa-15-cyclohexyl prostaglandin DP Receptor Agonists As Topical Antiglaucoma Agents. Bioorg Med Chem 2002; 10:2031–2049

    PubMed  CAS  Google Scholar 

  • Hellberg MR, Ke TL, Haggard K, Klimko PG, Dean TR, and Graff G. The Hydrolysis of the Prostaglandin Analog Prodrug Bimatoprost To 17-Phenyl-Trinor PGF2alpha By Human and Rabbit Ocular Tissue. J Ocul Pharmacol Ther 2003; 19:97–103

    PubMed  CAS  Google Scholar 

  • Huang H-S, Schoenwald RD, and Lach JL. Corneal Penetration Behavior of Beta-Blocking Agents II: Assessment of Barrier Contributions. J Pharm Sci 1983; 72:1272–1286

    PubMed  CAS  Google Scholar 

  • Hughes PM, and Mitra AK. Effect of acylation on the ocular disposition of acyclovir II: Corneal Permeability and Anti-HSV 1 Activity of 2′-Esters in Rabbit Epithelial Keratitis. J Ocul Pharmacol 1993; 9:299–309

    PubMed  CAS  Google Scholar 

  • Hughes PM, Krishnamoorthy R, and Mitra AK. Effect of Acylation on the Ocular Disposition of Acyclovir I: Synthesis, Physicochemical Properties, and Antiviral Activity of 2′-Esters. J Ocul Pharmacol 1993; 9:287–297

    PubMed  CAS  Google Scholar 

  • Hussain A, and Truelove JE. Prodrug Approaches To Enhancement of Physicochemical Properties of Drugs IV: Novel Epinephrine Prodrug. J Pharm Sci 1976; 65:1510–1512

    PubMed  CAS  Google Scholar 

  • Jarho P, Järvinen K, Urtti, A, Stella VJ, and Järvinen T. Modified β-Cyclodextrin (SBE7-β-CD) with Viscous Vehicle Improves the Ocular Delivery and Tolerability of Pilocarpine Prodrug in Rabbits. J Pharm Pharmacol 1996; 48: 263–269

    PubMed  CAS  Google Scholar 

  • Järvinen T, and Järvinen K. Prodrugs for Improved Ocular Drug Delivery. Adv Drug Deliv Rev 1996; 19:203–224

    Google Scholar 

  • Järvinen T, Suhonen P, Auriola S, Vepsäläinen J, Urtti A, and Peura P. O,O‘-(1,4-Xylylene) Bispilocarpic Acid Esters As New Potential Double Prodrugs of Pilocarpine for Improved Ocular Delivery. I. Synthesis and Analysis. Int J Pharm 1991a; 75:249–258

    Google Scholar 

  • Järvinen T, Suhonen P, Urtti A, and Peura P. O,O’-(1.4-Xylylene) Bispilocarpic Acid Esters As New Potential Double Prodrugs of Pilocarpine for Improved Ocular Delivery. II. Physicochemical Properties, Stability, Solubility and Enzymatic Hydrolysis. Int J Pharm 1991b; 75:259–269

    Google Scholar 

  • Järvinen T, Suhonen P, Auriola S, Vepsäläinen J, Urtti A, and Peura P. Bispilocarpic Acid Monoesters As Prodrugs of Pilocarpine: I. Preparation and Identification. Int J Pharm 1992a; 79:233–242

    Google Scholar 

  • Järvinen T, Suhonen P, Auriola S, Vepsäläinen J, Urtti A, and Peura P. Synthesis and Analysis of O,O’-Dicarboxylate (Dibenzyl) Bispilocarpates As Possible Prodrugs of Pilocarpine. J Pharm Biomed Anal 1992b; 10:153–161

    PubMed  Google Scholar 

  • Järvinen T, Suhonen P, Launonen M, Peura P, and Urtti A. Lipophilicity, Aqueous Solubility, Stability and Enzymatic Hydrolysis of Various O,O’-Dicarboxylate (Dibenzyl) Bispilocarpates As Possible Prodrugs of Piloarpine for Ophthalmic Administration. STP Pharm Sci 1992c; 2:53–60

    Google Scholar 

  • Järvinen T, Järvinen K, Urtti A, Thompson D, and Stella VJ. Sulfobutyl Ether β-Cyclodextrin (SBE-β-CD) in Eyedrops Improves the Tolerability of a Topically Applied Pilocarpine Prodrug in Rabbits. J Ocul Pharmacol Ther 1995; 11:95–106

    PubMed  Google Scholar 

  • Javitt JC, Javitt NB, and McDonnell P. Topical Compositions for the Eye Comprising A Beta-Cyclodextrin Derivative and A Carbonic Anhydrase Inhibitor. PCT Patent Publication WO 94/15582; 1994

    Google Scholar 

  • Kaback MB, Podos SM, Harbin Jr. TS, Mandell A, and Becker B. The Effects of Dipivalyl Epinephrine on the Eye. Am J Ophthalmol 1976; 81:768–772

    PubMed  CAS  Google Scholar 

  • Kaufman PL. The Prostaglandin Wars. Am J Ophthalmol 2003; 136:727–728

    PubMed  Google Scholar 

  • Kawakami S, Nishida K, Mukai T, Yamamura K, Kobayashi K, Sakaeda T, Nakamura J, Nakashima M, and Sasaki H. Ocular Absorption Behavior of Palmitoyl Tilisolol, An Amphiphilic Prodrug of Tilisolol, for Ocular Drug Delivery. J Pharm Sci 2001a; 90:2113–2120

    PubMed  CAS  Google Scholar 

  • Kawakami S, Nishida K, Mukai T, Yamamura K, Nakamura J, Sakaeda T, Nakashima M, and Sasaki H. Controlled Release and Ocular Absorption of Tilisolol Utilizing Ophthalmic Insert-Incorporated Lipophilic Prodrugs. J Control Rel 2001b; 76:255–263

    CAS  Google Scholar 

  • Kohn AN, Moss AP, Hargett NA, Ritch R, Smith H, and Podos SM. Clinical Comparison of Dipivalyl Epinephrine and Epinephrine in the Treatment of Glaucoma. Am J Ophthalmol 1979; 87:196–201

    PubMed  CAS  Google Scholar 

  • Konschin H, and Ekholm M. Molecular Modeling of Pilocarpine Prodrugs: A Theoretical Investigation of Pilocarpic Acid Esters. Int J Quantum Chem: Quantum Biol Symp 1991; 18:247–267

    CAS  Google Scholar 

  • Kupferman A, Pract MV, Suckewer K, and Leibowitz HM. Topically Applied Steroids in Corneal Disease. III. The Role of Drug Derivatives in Stromal Absorption of Dexamethasone. Arch Ophthalmol 1974; 91:373–376

    PubMed  CAS  Google Scholar 

  • Kupferman A, Berrospi AR, and Leipowitz HM. Fluorometholone Acetate. A New Ophthalmic Derivative of Fluorometholone. Arch Ophthalmol 1982; 100:640–641

    PubMed  CAS  Google Scholar 

  • Lee VHL, and Robinson JR. Mechanistic and Quantitative Evaluation of Precorneal Pilocarpine Disposition in Albino Rabbits. J Pharm Sci 1979; 68:673–684

    PubMed  CAS  Google Scholar 

  • Lee P, Podos SM, and Severin C. Effect of Prostaglandin F on Aqueous Humor Dynamics of Rabbit, Cat, and Monkey. Invest Ophthalmol Vis Sci 1984; 25:1087–1093

    PubMed  CAS  Google Scholar 

  • Lee P-Y, Shao H, Xu L, and Qu C-K. The Effect of Prostaglandin F on Intraocular Pressure in Normotensive Human Subjects. Invest Ophthalmol Vis Sci 1988; 29:1474–1477

    PubMed  CAS  Google Scholar 

  • Leibowitz HM, Berrospi AR, Kupferman A, Restropo GV, Galvis V, and Alvarez JA. Penetration of Topically Administered Prednisolone Acetate Into the Human Aqueous Humor. Am J Ophthalmol 1977; 83:402–406

    PubMed  CAS  Google Scholar 

  • Liaw J, and Robinson JR. The Effect of Polyethylene Glycol Molecular Weight on Corneal Transport and the Related Influence of Penetration Enhancers. Int J Pharm 1992; 88:125–140

    CAS  Google Scholar 

  • Liaw J, Rojanasakul Y, and Robinson JR. The Effect of Drug Charge Type and Charge Density on Corneal Transport. Int J Pharm 1992; 88:111–124

    CAS  Google Scholar 

  • Lichter PR, Lawrence P, Newman P, Wheeler NC, and Beall OV. Patient Tolerance To Carbonic Anhydrase Inhibitors. Am J Ophthalmol 1978; 85:495–502

    PubMed  CAS  Google Scholar 

  • Liljebris C, Selén G, Resul B, Stjernschantz J, and Hacksell U. Derivatives of 17-Phenyl-18,19,20-Trinorprostaglandin F Isopropyl Ester: Potential Antiglaucoma Agents. J Med Chem 1995; 38:289–304

    PubMed  CAS  Google Scholar 

  • Loftsson T, and Järvinen T. Cyclodextrins in Ophthalmic Drug Delivery. Adv Drug Deliv Rev 1999; 36:59–79

    Google Scholar 

  • Loftsson T, Fridriksdóttir H, Thórisdóttir S, Stefánsson E, Sigurdardóttir AN, Gudmundsson Ö, and Sigthórsson T. 2-Hydroxypropyl-β-cyclodextrin in Topical Carbonic Anhydrase Inhibitor Formulations. Eur J Pharm Sci 1994; 1:175–180

    CAS  Google Scholar 

  • Lojda Z, Cejkova J, Bolkova A, and Havrankova E. Uneven Distribution of Alkaline Phosphatase in Individual Layers of Rabbit and of Cornea. Histochemistry 1976; 49:237–243

    PubMed  CAS  Google Scholar 

  • Mandell AI, and Stentz F. Dipivalyl Epinephrine: A New Pro-Drug in the Treatment of Glaucoma. Ophthalmol 1978; 85:268–275

    CAS  Google Scholar 

  • Maren TH, and Jankowska L. Ocular Pharmacology of Sulfonamides: The Cornea As Barrier and Depot. Curr Eye Res 1985; 4:399–408

    PubMed  CAS  Google Scholar 

  • Maudgal P, De Clercq K, Descamps J, and Missotten L. Topical Treatment of Experimental Herpes Simplex Keratouveits with 2’-O-Glycylacyclovir. Arch Ophthalmol 1984; 102:140–142

    PubMed  CAS  Google Scholar 

  • Maxey KM, Johnson JL, and LaBrecque J. The Hydrolysis of Bimatoprost in Corneal Tissue Generates A Potent Prostanoid FP Receptor Agonist. Surv Ophthalmol 2002; 47:S34–40

    PubMed  Google Scholar 

  • Miller-Meeks MJ, Farrell TA, Munden PM, Folk JC, Rao C, and Schoenwald RD. Phenylephrine Prodrug, Report of Clinical Trials. Ophthalmol 1991; 98:222–226

    CAS  Google Scholar 

  • Mindel JS, Shaikewitz ST, and Podos SM. Is Phenylephrine Pivalate A Prodrug? Arch Ophthalmol 1980; 98:2220–2223

    PubMed  CAS  Google Scholar 

  • Mosher GL. Theoretical and Experimental Evaluation of Pilocarpine Prodrugs for Ocular Delivery. Ph.D. Thesis, The University of Kansas, Kansas, USA; 1986

    Google Scholar 

  • Mosher GL, Bundgaard H, Falch E, Larsen C, and Mikkelson TJ. Ocular Bioavailability of Pilocarpic Acid Mono-and Diester Prodrugs As Assessed By Miotic Activity in the Rabbit. Int J Pharm 1987; 39:113–120

    CAS  Google Scholar 

  • Musson D, Bidgood A, and Olejnik O. In Vitro Penetration and Metabolism Studies of Prednisolone Phosphate, Disodium and Prednisolone Acetate across the Cornea of Rabbits. Pharm Res 1989; 6:S–175

    Google Scholar 

  • Musson D, Bidgood A, and Olejnik O. Comparative Corneal Penetration of Prednisolone Sodium Phosphate and Prednisolone Acetate in NZW Rabbits. J Ocul Pharmacol 1991; 7:175–182

    PubMed  CAS  Google Scholar 

  • Nakanishi K, Masada M, Nadai T, and Miyajima K. Effect of the Interaction of Drug-β-Cyclodextrin Complex with Bile Salts on the Drug Absorption From Rat Small Intestinal Lumen. Chem Pharm Bull 1989; 37:211–214

    PubMed  CAS  Google Scholar 

  • Nelson WL, Fraunfelder FT, Sills JM, Arrowsmith JB, and Kuritsky JN. Adverse Respiratory and Cardiovascular Events Attributed To Timolol Ophthalmic Solution 1978–1985. Am J Ophthalmol 1986; 102:606–611

    PubMed  CAS  Google Scholar 

  • Parrish RK, Palmberg P, and Sheu W-P. A Comparison of Latanoprost, Bimatoprost, and Travoprost in Patients with Elevated Intraocular Pressure: A 12-Week, Randomized, Masked-Evaluator Multicenter Study. Am J Ophthalmol 2003; 135:688–703

    PubMed  CAS  Google Scholar 

  • Pech B, Chetoni P, Saettone MF, Duval O, and Benoit J-P. Preliminary Evaluation of a Series of Amphiphilic Timolol Prodrugs: Possible Evidence for Transscleral Absorption. J Ocul Pharmacol 1993; 9:141–150

    PubMed  CAS  Google Scholar 

  • Potter DE, Shumate DJ, Bundgaard H, and Lee VHL. Ocular and Cardiac β-Antagonism By Timolol Prodrugs, Timolol and Levobunolol. Curr Eye Res 1988; 7:755–759

    PubMed  CAS  Google Scholar 

  • Redell MA, Yang DC, and Lee VHL. The Role of Esterase Activity in the Ocular Disposition of Dipivalyl Epinephine in Rabbits. Int J Pharm 1983; 17:299–312

    CAS  Google Scholar 

  • Resul B, Stjernschantz J, No K, Liljebris C, Selén G, Astin M, Karlsson M, and Bito LZ. Phenyl-substituted Prostaglandins: Potent and Selective Antiglaucoma Agents. J Med Chem 1993; 36:243–248

    PubMed  CAS  Google Scholar 

  • Richards DM, Carmine AA, Brogden RN, Heel RC, Speight TM, and Avery GS. Acyclovir. A Review of Its Pharmacodynamic Properties and Therapeutic Efficacy. Drugs 1983; 26:378–438

    PubMed  CAS  Google Scholar 

  • Rojanasakul Y, Wang L-Y, Bhat M, Glover DD, Malanga CJ, and Ma JKH. The Transport Barrier of Epithelia: A Comparative Study on Membrane Permeability and Charge Selectivity in the Rabbit. Pharm Res 1992; 9:1029–1034

    PubMed  CAS  Google Scholar 

  • Sanitato JJ, Asbell PA, Varnell ED, Kissling GE, and Kaufman HE. Acyclovir in the Treatment of Herpetic Stromal Disease. Am J Ophthalmol 1984; 98:537–547

    PubMed  CAS  Google Scholar 

  • Sasaki H, Igarashi Y, Nishida K, and Nakamura J. Ocular Delivery of the β-Blocker, Tilisolol, through the Prodrug Approach. Int J Pharm 1993; 93:49–60

    CAS  Google Scholar 

  • Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, and Ichikawa M. Enhancement of Ocular Drug Penetration. Crit Rev Ther Drug Carrier Syst 1999; 16:85–146

    PubMed  CAS  Google Scholar 

  • Schaeffer HJ, Beauchamp L, de Miranda P, Elion GB, Bauer DJ, and Collins P. 9-(2-Hydroxyethoxymethyl)guanine Activity Against Viruses of the Herpes Group. Nature 1978; 272:583–585

    PubMed  CAS  Google Scholar 

  • Schive K, and Volden G. Characterization and Quantification of Acid Phosphatase and Glycoside Hydrolases in Rabbit Cornea. Acta Ophthalmol 1982; 60:590–598

    CAS  Google Scholar 

  • Schoenwald RD, and Barfknecht CF. Prodrugs of Carbonic Anhydrase Inhibitors. Eur. Patent Appl. 0 419 311 A2; 1991

    Google Scholar 

  • Schoenwald RD, and Chien DS. Ocular Absorption and Disposition of Phenylephrine and Phenylephrine Oxazolidine. Biopharm Drug Disp 1987; 9:527–538

    Google Scholar 

  • Schoenwald RD, and Huang H-S. Corneal Penetration Behavior of Beta-blocking Agents I: Physicochemical Factors. J Pharm Sci 1983; 72:1266–1272

    PubMed  CAS  Google Scholar 

  • Schoenwald RD, and Ward RL. Relationship between Steroid Permeability across Excised Rabbit Cornea and Octanol-Water Partition Coefficients. J Pharm Sci 1978; 67:787–789

    Google Scholar 

  • Schoenwald RD, Folk JC, Kumar V, and Piper JG. In Vivo Comparison of Phenylephrine and Phenylephrine Oxazolidine Instilled in the Monkey Eye. J Ocul Pharmacol 1987; 3:333–340

    Article  PubMed  CAS  Google Scholar 

  • Sharif NA, Kelly CR, Crider JY, Williams GW, and Xu SX. Ocular Hypotensive FP Prostaglandin (PG) Analogs: PG Receptor Subtype Binding Affinities and Selectivities, and Agonist Potencies At FP and Other PG Receptors in Cultured Cells. J Ocul Pharmacol Ther 2003; 19:501–515

    PubMed  CAS  Google Scholar 

  • Sugrue MF. The Pharmacology of Antiglaucoma Drugs. Pharmac Ther 1989; 43:91–138

    CAS  Google Scholar 

  • Sugrue M. Pharmacological and Ocular Hypotensive Properties of Topical Carbonic Anhydrase Inhibitors. Prog Retin Eye Res 2000; 19:87–112

    PubMed  CAS  Google Scholar 

  • Sugrue MF, Gautheron P, Schmitt C, Viader MP, Conquet P, Smith RL, Share NN, and Stone CA. on the Pharmacology of L-645, 151: A Topically Effective Ocular Hypotensive Carbonic Anhydrase Inhibitor. Pharmacol Exp Ther 1985; 232:534–540

    CAS  Google Scholar 

  • Suhonen P, Järvinen T, Rytkönen P, Peura P, and Urtti A. Improved Corneal Pilocarpine Permeability with O,O’-(1,4-xylylene) Bispilocarpic Acid Ester Double Prodrugs. Pharm Res 1991b; 8:1539–1542

    PubMed  CAS  Google Scholar 

  • Suhonen P, Järvinen T, Lehmussaari K, Reunamäki T, and Urtti A. Ocular Absorption and Irritation of Pilocarpine Prodrug Is Modified with Buffer, Polymer, and Cyclodextrin in Eyedrop. Pharm Res 1995; 12:529–533

    PubMed  CAS  Google Scholar 

  • Suhonen P, Järvinen T, Lehmussaari K, Reunamäki T, and Urtti A. Rate Control of Ocular Pilocarpine Delivery with Bispilocarpic Acid Diesters. Int J Pharm 1996; 127:85–94

    CAS  Google Scholar 

  • Urtti A, Pipkin JD, Rork G, Sendo T, Finne U, and Repta AJ. Controlled Drug Delivery Devices for Experimental Ocular Studies with Timolol. 2. Ocular and Systemic Absorption in Rabbits. Int J Pharm 1990; 61:241–249

    CAS  Google Scholar 

  • Villumsen J, Alm A, and Söderström M. Prostaglandin F-Isopropylester Eye Drops: Effect On Intraocular Pressure in Open-Angle Glaucoma. Br J Ophthalmol 1989; 73:975–979

    PubMed  CAS  Google Scholar 

  • Wang W, Sasaki H, Chien D-S., and Lee VHL. Lipophilicity Influence on Conjunctival Drug Penetration in the Pigmented Rabbit: A Comparison with Corneal Penetration. Curr Eye Res 1991; 10:571–579

    PubMed  CAS  Google Scholar 

  • Wei C, Anderson JA, and Leopold I. Ocular Absorption and Metabolism of Topically Applied Epinephrine and A Dipivalyl Ester of Epinephrine. Invest Ophthalmol Vis Sci 1978; 17:315–321

    PubMed  CAS  Google Scholar 

  • Weinkam RJ, WaldeMussie E, Ruiz G, Feldmann B, Dino J, Ismail I, and Bundgaard H. Pilocarpine Prodrugs: O-Benzoyl Pilocarpic Acid Methyl Ester Ocular Metabolism and Effects on Miosis and Intraocular Pressure. Pharm Res 1990; S7:64

    Google Scholar 

  • Woltersdorf OW, Schwam H, Bicking JB, Brown SL, de Solms SJ, Fishman DR, Graham SL, Gautheron PD, Hoffman JM, Larson RD, Lee WS, Michelson SR, Robb CM, Share NN, Shepard KL, Smith AM, Smith RL, Sondey JM, Strohmaier KM, Sugrue MF, and Viader MP. Topically Active Carbonic Anhydrase Inhibitors. 1. O-Acyl Derivatives of 6-Hydroxybenzothiazole-2-Sulfonamide. J Med Chem 1989; 32:2486–2492

    PubMed  CAS  Google Scholar 

  • Woodward DF, and Chan MF. Recent Developments in Glaucoma Therapy. Curr Opin Ther Pat 1992; 2/3:287–304

    Google Scholar 

  • Woodward DF, Chan MF, Burke JA, Cheng-Bennett A, Chen G, Fairbairn CE, Gac T, Garst ME, Gluchowski C, Kaplan LJ, Lawrence RA, Roof M, Sachs G, Shan T, Wheeler LA, and Williams LS. Studies on the Ocular Hypotensive Effects of Prostagandisn F Ester Prodrugs and Receptor Selective Prostaglandin Analogs. J Ocul Pharmacol 1994; 10:177–193

    Article  PubMed  CAS  Google Scholar 

  • Woodward D, Krauss AHP, Chen J, Gil DW, Kedzie KM, Protzman CE, Shi L, Chen R, Krauss HA, Bogardus A, Dinh HTT, Wheeler LA, Andrews SW, Burk RM, Gac T, Roof MB, Garst ME, Kaplan LJ, Sachs G, Pierce KL, Regan JW, Ross RA, and Chan MF. Replacement of the Carboxylic Acid Group of Prostaglandin F with A Hydroxyl or Methoxy Substituent Provides Biologically Unique Compounds. Br J Pharmacol 2000; 130:1933–1943

    PubMed  CAS  Google Scholar 

  • Woodward DF, Krauss AH, Chen J, Lai RK, Spada CS, Burk RM, Andrews SW, Shi L, Liang Y, Kedzie KM, Chen R, Gil DW, Kharlamb A, Archeampong A, Ling J, Madhu C, Ni J, Rix P, Usansky J, Usansky H, Weber A, Welty D, Yang W, Tang-Liu DD, Garst ME, Brar B, Wheeler LA, and Kaplan LJ. The Pharmacology of Bimatoprost (Lumigan?). Surv Ophthalmol 2001; 45:S337–345

    PubMed  Google Scholar 

  • Woodward DF, Krauss AH, Chen J, Liang Y, Li C, Protzman CE, Bogardus A, Chen R, Kedzie KM, Krauss HA, Gil DW, Kharlamb A, Wheeler LA, Babusis D, Welty D, Tang-Liu DD, Cherukury M, Andrews SW, Burk RM, and Garst ME. Pharmacological Characterization of a Novel Antiglaucoma Agent, Bimatoprost (AGN 192024). J Pharmacol Exp Ther 2003; 305:772–785

    PubMed  CAS  Google Scholar 

  • Yuan S-S, and Bodor N. Synthesis and Activity of (R)-(−)-M-Trimethylacetoxy-α-[(Methylamino)Methyl]Benzyl Alcohol Hydrochloride: A Prodrug Form of (R)-(−)-Phenylephrine. J Pharm Sci 1976; 65:929–931

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Järvinen, T., Niemi, R. (2007). Prodrug approaches to ophthalmic drug delivery. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W. (eds) Prodrugs. Biotechnology: Pharmaceutical Aspects, vol V. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49785-3_4

Download citation

Publish with us

Policies and ethics