Skip to main content

Case Study: Clindamycin 2-Phosphate, A Prodrug of Clindamycin

  • Chapter
Prodrugs

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume V))

Abstract

The prodrug clindamycin 2-phosphate is rapidly converted in vivo to the parent drug, clindamycin, by phosphatase ester hydrolysis. Clindamycin is an antibacterial agent used orally in treating gram-positive infections, anaerobic infections, and methicillin-resistant staphlococcal and streptococcal infections. Clindamycin 2-phosphate, unlike clindamycin, is highly water soluble and does not produce pain upon injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amr S, Brown MB, Martin GP, and Forbes B. Activation of Clindamycin Phosphate by Human Skin. J Appl Microbiol 2001; 90:550–554

    Article  PubMed  CAS  Google Scholar 

  • Barza M, Goldstein JA, Kane A, Feingold DS, and Pochi PE. Systemic Absorption of Clindamycin Hydrochloride after Topical Application. J Acad Dermatol 1982; 7:208–214

    Article  CAS  Google Scholar 

  • Borglund E; Hagermark O, and Nord CE. Impact of Topical Clindamycin and Systemic Tetracycline on the Skin and Colon Microflora in Patients with Acne Vulgaris. Scand J Inf Dis Suppl 1984; 43:76–81

    CAS  Google Scholar 

  • Borin MT, Powley GW, Tackwell KR, and Batts DH. Absorption of Clindamycin after Intravaginal Application of Clindamycin Phosphate 2% Cream. J Antimicrob Chemother 1995; 35:833–841

    Article  PubMed  CAS  Google Scholar 

  • Borin MT, Ryan KK, and Hopkins NK. Systemic Absorption of Clindamycin after Intravaginal Administration of Clindamycin Phosphate Ovule or Cream. J Clin Pharmacol 1999; 39:805–810

    Article  PubMed  CAS  Google Scholar 

  • Brodasky TF, and Lewis C. In Vivo-In Vitro Comparison of the 2-and 3-Phosphate Esters of Clindamycin. J Antibiotics 1972; 25:230–238

    CAS  Google Scholar 

  • Chen S. Synthesis of Clindamycin Phosphate. Shanxi Yike Daxue Xuebao 2002; 33:116–117

    CAS  Google Scholar 

  • Eller MG, Smith RB, and Phillips JP. Absorption Kinetics of Topical Clindamycin Preparations. Biopharm Drug Dispos 1989; 10:505–512

    Article  PubMed  CAS  Google Scholar 

  • Gray JE, Weaver RN, Moran J, and Feenstra ES. Parenteral Toxicity of Clindamycin 2-Phosphate in Laboratory Animals. Tox Appl Pharmacol 1974; 27:308–321

    Article  CAS  Google Scholar 

  • Guin JD, and Lummis WL. Comedonal Levels of Free Clindamycin Following Topical Treatment with a 1% Solution of Clindamycin Phosphate. J Am Acad Dermatol 1982; 7:265–268

    PubMed  CAS  Google Scholar 

  • Karnes HA. Large Scale Synthesis of Phosphate Esters and Phosphonates. Oral Presentation, Newman Symposium, Ohio State University, April 6, 1978

    Google Scholar 

  • Kipp JE, and Hlavaty, JJ. Nonisothermal Stability Assessment of Stable Pharmaceuticals: Testing of A Clindamycin Phosphate Formulation. Pharm Res 1991; 8:570–575

    Article  PubMed  CAS  Google Scholar 

  • Liu Hong-Min, Zhu Wei-Guo, Liu Zhen-Zhong, Li Xiao-Qiang, and Kang Jian-Xun. Study On The Synthetic Process of Clindamycin Phosphate Monitored by 31P NMR. Bopuxue Zazhi 2002; 19:181–186

    Google Scholar 

  • Matier WL, Woo C, and Lee YC. Preparation of Clindamycin 2-Phosphate Benzyl Ester. US Patent 4,849,515, 1989

    Google Scholar 

  • Meadowcroft AM, Diaz PR, and Latham GS. Clostridium Difficile Toxin-Induced Colitis after Use of Clindamycin Phosphate Vaginal Cream. Ann Pharmacother 1998; 32:309–311

    Article  PubMed  CAS  Google Scholar 

  • Morozowich W, and Lamb DJ. Lincomycin 2-Phosphates, 7-Substituted Compounds and Salts Thereof. US Patent 3,487,068, Dec. 30, 1969

    Google Scholar 

  • Morozowich W, and Lamb DJ. Lincomycin 2-Phosphate Antibiotic Compositions and Process of Treatment. US Patent 3,509.256, April 28, 1970

    Google Scholar 

  • Morozowich W, Lamb DJ, DeHaan RM, and Gray JF. Clindamycin 2-Phosphate, an Injectable Derivative of Clindamycin with Improved Muscle Tolerance. J Pharm Sci 1970; p.63, Abstracts, APHA Acad. Pharm. Sci., 117 th Meeting Amer. Pharm. Assoc., April 12–17, Washington, D.C..

    Google Scholar 

  • Morozowich W, Lamb DJ, Karnes HA, Mackellar FA, Lewis C, Stern KF, and Rowe EL. Synthesis and Bioactivity of Lincomycin-2-Phosphate. J Pharm Sci 1969; 58:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Munson JW, and Kubiak EJ. A High Performance Liquid Chromatographic Assay for Clindamycin Phosphate and its Principal Degradant Product In Bulk Drug Formulations. J Pharm Biomed Anal 1985; 3:523–533

    Article  PubMed  CAS  Google Scholar 

  • Oesterling TO, and Rowe EL. Hydrolysis of Lincomycin-2-Phosphate and Clindamycin-2-Phosphate. J Pharm Sci 1970; 59:175–179

    Article  PubMed  CAS  Google Scholar 

  • Nahata MC, Morosco RS, and Hipple TF. Stability of Cimetidine Hydrochloride and of Clindamycin Phosphate in Water for Injection Stored in Glass Vials at Two Temperatures. Am J Hosp Pharm. 1993; 50:2559–2561

    PubMed  CAS  Google Scholar 

  • Pena LE. Topical Pharmaceutical Compositions. WO Patent, WO9407478, The Upjohn Co., Apr. 14, 1994

    Google Scholar 

  • Pena LE, Bowman PB, Chao RS, Shih-Liang R, Pesheck CV. U.S. Patent 6,495,157 B1, Intravaginal Clindamycin Ovule Composition, Pharmacia and Upjohn Co., Dec. 17, 2002

    Google Scholar 

  • PDR, Physicians Desk Reference, 59th Edition, 2005, Clindamycin 2-Phosphate, Montvale NJ: Thomson PDR; 2005:123–124

    Google Scholar 

  • Resman A, Jelen-Zmitek A, Jereb M, Kotnik S, Kovacic M, Lazarevski K, and Zmitek J. Solubility Dependence of Selected Active Substances. Acta Pharm 1996; 46:137–145

    CAS  Google Scholar 

  • Riebe KW, and Oesterling TO. Parenteral Development of Clindamycin-2-Phosphate. Bull Parent Drug Assoc 1972; 26:139–146

    CAS  Google Scholar 

  • Smith RB, and Phillips JP. Evaluation of Cleocin HCl and Cleocin Phosphate in an Aged Population. Upjohn TR 8147-82-9122-021, December 1982. This reference is provided in the PDR entry for Cleocin® Phosphate Injection, USP

    Google Scholar 

  • Tan JK. Clindoxyl Gel for the Treatment of Acne Vulgaris. Skin Therapy Lett 2002; 7:1–2

    PubMed  CAS  Google Scholar 

  • Tobkes M, Diaz S, and Krishnan L. Preparation of Clindamycin Phosphate. US Patent 5,182,374, Jan. 26, 1993

    Google Scholar 

  • Ye, YR, Bektic E, Buchta R, Houlden R, and Hunt B. Simultaneous Determination of Tretinoin and Clindamycin Phosphate and their Degradation Products in Topical Formulations by Reverse Phase HPLC. J Separation Sci 2004; 27:71–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Morozowich, W., Karnes, H.A. (2007). Case Study: Clindamycin 2-Phosphate, A Prodrug of Clindamycin. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W. (eds) Prodrugs. Biotechnology: Pharmaceutical Aspects, vol V. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49785-3_38

Download citation

Publish with us

Policies and ethics