Skip to main content

Targeting - Cancer — Small Molecules

  • Chapter
Prodrugs

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume V))

Abstract

Except for heart and coronary disease, cancer is now the principal cause of death in the Western world. Despite extensive cancer research to find improved drugs and treatments, the average chance of being cured of cancer is augmented every year by only 0.5 percent. Cancer comprises a broad group of diseases characterized by uncontrolled and independent proliferative growth of tumor cells (Alberts et al., 1994). In cancer, malignant tumors invade surrounding tissue and give rise to formation of secondary tumors (metastases). The ability to metastasize is largely responsible for the lethality of malignant tumors. Surgery and radiotherapy are mostly used for treatment when a tumor is localized to a certain tissue. When metastasis has occurred, chemotherapy becomes an important weapon against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, and Watson J. Molecular Biology of the Cell. New York, Garland Science Publishing; 1994

    Google Scholar 

  • Amir R, Pessah N, Shamis M, and Shabat D. Self-Immolative Dendrimers. Angew Chem Int Ed. 2003; 42:4494–4498

    CAS  Google Scholar 

  • Amos L, and Löwe J. How Taxol (R) Stabilises Microtubule Structure. Chem Biol. 1999; 6:R65–R69

    PubMed  CAS  Google Scholar 

  • Andreasen P, Egelund R, and Petersen H. The Plasminogen Activation System in Tumor Growth, Invasion, and Metastasis. Cell Mol Life Sci 2000; 57:25–40

    PubMed  CAS  Google Scholar 

  • Arap W, Pasqualini R, and Ruoslahti E. Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model Science 1998; 279:377–380

    PubMed  CAS  Google Scholar 

  • Arcamone F, Cassmelli G, and Fantini G. Adriamycin, 14-Hydroxydaunomycin, A New Antitumor Antibiotic from S-Peucetius Var Caesius. Biotechnol Bioeng 1969; 11:1101–1110

    PubMed  CAS  Google Scholar 

  • Astedt B, and Holmberg L. Immunological Identity of Urokinase and Ovarian Carcinoma Plasminogen Activator Released in Tissue-Culture. Nature 1976; 261:595–597

    PubMed  CAS  Google Scholar 

  • Bagshawe K. Antibody Directed Enzymes Revive Anticancer Prodrugs Concept. Brit J Cancer 1987; 56:531–532

    PubMed  CAS  Google Scholar 

  • Bagshawe K. Antibody-Directed Enzyme Prodrug Therapy-A Review. Drug Dev Res 1995;34:220–230

    CAS  Google Scholar 

  • Bajou K, Noël A, Gerard R, Masson V, Brunner N, Holst-Hansen C, Skobe M, Fusenig N, Carmeliet P, Collen D, and Foidart J. Absence of Host Plasminogen Activator Inhibitor 1 Prevents Cancer Invasion and Vascularization. Nat Med 1998; 4:923–928

    PubMed  CAS  Google Scholar 

  • Bajou K, Masson V, Gerard R, Schmitt P, Albert V, Praus M, Lund L, Frandsen T, Brunner N, Dano K, Fusenig N, Weidle U, Carmeliet G, Loskutoff D, Collen D, Carmeliet P, Foidart J, and Noël A. The Plasminogen Activator Inhibitor PAI-1 Controls In Vivo Tumor Vascularization by Interaction with Proteases, Not Vitronectin: Implications for Antiangiogenic Strategies. J Cell Biol 2001; 152:777–784

    PubMed  CAS  Google Scholar 

  • Bajusz S, Janáky T, Csernus V, Bokser L, Fekete M, Srkalovic G, Redding T, and Schally A. Highly Potent Metallopeptide Analogs of Luteinizing-Hormone-Releasing Hormone. Proc Natl Acad Sci USA 1989; 86:6313–6317

    PubMed  CAS  Google Scholar 

  • Bakina E, Wu Z, Rosenblum M, and Farquhar D. Intensely Cytotoxic Anthracycline Prodrugs: Glucuronides. J Med Chem 1997; 40:4013–4018

    PubMed  CAS  Google Scholar 

  • Balajthy Z, Aradi J, Kiss I, and Elödi P. Synthesis and Functional-Evaluation of a Peptide Derivative of 1-Beta-D-Arabinofuranosylcytosin. J Med Chem 1992; 35:3344–3349

    PubMed  CAS  Google Scholar 

  • Barta T, Becker D, Bedell L, De Crescenzo G, McDonald J, Munie G, Rao S, Shieh H, Stegeman R, Stevens A, and Villamil C. Synthesis and Activity of Selective MMP Inhibitors with an Aryl Backbone. Bioorg Med Chem Lett 2000; 10:2815–2817

    PubMed  CAS  Google Scholar 

  • Baurain R, Masquelier M, Deprez-De Campeneere D, and Trouet A. Amino-Acid and Dipeptide Derivatives of Daunorubicin.2. Cellular Pharmacology and Anti-Tumor Activity on L1210 Leukemic-Cells In Vitro and In Vivo. J Med Chem 1980; 23:1171–1174

    PubMed  CAS  Google Scholar 

  • Begent R. Recent Advances in Tumor Imaging-Use of Radiolabeled Antitumour Antibodies. Biochim Biophys Acta 1984; 780:151–166

    CAS  Google Scholar 

  • Boger D, Goldberg J, Silletti S, Kessler T, and Cheresh D. Identification of a Novel Class of Small-Molecule Antiangiogenic Agents through the Screening of Combinatorial Libraries which Function by Inhibiting the Binding and Localization of Proteinase MMP2 to Integrinαvβ3. J Am Chem Soc. 2001; 123:1280–1288

    PubMed  CAS  Google Scholar 

  • Bosslet K, Czech J, and Hoffmann D. Tumor-Selective Prodrug Activation by Fusion Protein-Mediated Catalysis. Cancer Res 1994; 54:2151–2159

    PubMed  CAS  Google Scholar 

  • Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B, Kroemer H, Gesson J, Koch M, and Monneret C. Elucidation of the Mechanism Enabling Tumor Selective Prodrug Monotherapy. Cancer Res 1998; 58:1195–1201

    PubMed  CAS  Google Scholar 

  • Boven E, Hendriks H, Erkelens C, and Pinedo H. The Antitumor Effects of the Prodrugs N-L-Leucyl-Doxorubicin and Vinblastine-Isoleucinate in Human Ovarian-Cancer Xenografts. Brit J Cancer 1992; 66:1044–1047

    PubMed  CAS  Google Scholar 

  • Boyle F, and Costello G. Cancer Therapy: A Move to the Molecular Level. Chem Soc Rev. 1998; 27:251–261

    Google Scholar 

  • Breistol K, Hendriks H, Berger D, Langdon S, Fiebig H, and Fodstad O. The Antitumour Activity of the Prodrug N-L-Leucyl-Doxorubicin and Its Parent Compound Doxorubicin in Human Tumour Xenografts. Eur J Cancer 1998; 34:1602–1606

    PubMed  CAS  Google Scholar 

  • Breistol K, Hendriks H, and Fodstad O. Superior Therapeutic Efficacy of N-LLeucyl-Doxorubicin Versus Doxorubicin in Human Melanoma Xenografts Correlates with Higher Tumour Concentrations of Free Drug. Eur J Cancer 1999; 35:1143–1149

    PubMed  CAS  Google Scholar 

  • Brooks P, Clark R, and Cheresh D. Requirement of Vascular Integrin Alpha(V)Beta(3) for Angiogenesis. Science 1994; 264:569–571

    PubMed  CAS  Google Scholar 

  • Brooks P, Strömblad S, Sanders L, Von Schalscha T, Aimes R, Stetler-Stevenson W, Quigley J, and Cheresh D. Localization of Matrix Metalloproteinase MMP-2 to the Surface of Invasive Cells by Interaction with Integrin Alpha V Beta 3. Cell 1996; 85:683–693

    PubMed  CAS  Google Scholar 

  • Brooks T, Slomp J, Quax P, De Bart A, Spencer M, Verheijen J, and Charlton P. Antibodies to PAI-1 Alter the Invasive and Migratory Properties of Human Tumour Cells In Vitro. Clin Exp Metastasis 2001; 18:445–453

    Google Scholar 

  • Brown J. SR-4233 (Tirapazamin) — A New Anticancer Drug Exploiting Hypoxia in Solid Tumors. Brit J Cancer 1993; 67:1163–1170

    PubMed  CAS  Google Scholar 

  • Brown J. The Hypoxic Cell: A Target for Selective Cancer Therapy — Eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 1999; 59:5863–5870

    PubMed  CAS  Google Scholar 

  • Brown J. Hypoxic Cytotoxic Agents: A New Approach to Cancer Chemotherapy. Drug Res Updates. 2000a; 3:7–13

    CAS  Google Scholar 

  • Brown J. Exploiting the Hypoxic Cancer Cell: Mechanisms and Therapeutic Strategies. Mol Med Today 2000b; 6:157–162

    PubMed  CAS  Google Scholar 

  • Bundgaard H. Novel Chemical Approaches in Prodrug Design. Drugs of the Future 1991; 16:443–458

    Google Scholar 

  • Bürgle M, Koppitz M, Riemer C, Kessler H, König B, Weidle U, Kellermann J, Lottspeich F, Graeff H, Schmitt M, Goretzki L, Reuning U, Wilhelm O, and Magdolen V. Inhibition of the Interaction of Urokinase-Type Plasminogen Activator (Up With Its Receptor (uPAR) by Synthetic Peptides. Biol Chem 1997; 378:231–237

    Article  PubMed  Google Scholar 

  • Burrows F, and Thorpe P. Vascular Targeting-A New Approach to the Therapy of Solid Tumors. Pharmacol Ther 1994; 64:155–174

    PubMed  CAS  Google Scholar 

  • Campbell I, Jones T, Foulkes W, and Trowsdale J. Folate-Binding Protein is a Marker for Ovarian-Cancer. Cancer Res 1991; 51:5329–5338

    PubMed  CAS  Google Scholar 

  • Carl PL. Plasmin-Activated Prodrugs for Cancer Chemotherapy. In: Cheng Y-C, Goz, B, and Minkoff M, Eds. Development of Target-oriented Anticancer Drugs. Progress in Cancer Research and Therapy, Vol. 28. New York: Raven Press; 1983. 143–155

    Google Scholar 

  • Carl P, Chakravarty P, Katzenellenbogen J, and Weber M. Protease-Activated Prodrugs for Cancer Chemotherapy. Proc Natl Acad Sci USA 1980; 77:2224–2228

    PubMed  CAS  Google Scholar 

  • Carl P, Chakravarty P, and Katzenellenbogen J. A Novel Connector Linkage Applicable in Prodrug Design. J Med Chem 1981; 24:479–480

    PubMed  CAS  Google Scholar 

  • Carmeliet P, and Jain R. Angiogenesis in Cancer and Other Diseases. Nature 2000; 407:249–257

    PubMed  CAS  Google Scholar 

  • Chakravarty PK, Carl PL, Weber MJ, and Katzenellenbogen JA. Plasmin-Activated Prodrugs for Cancer Chemotherapy. 1. Synthesis and Biological Activity of Peptidylacivicin and Peptidylphenylenediamine Mustard. J Med Chem 1983a; 26:633–638

    PubMed  CAS  Google Scholar 

  • Chakravarty PK, Carl PL, Weber MJ, and Katzenellenbogen JA. Plasmin-Activated Prodrugs for Cancer Chemotherapy. 2. Synthesis and Biological Activity of Peptidyl Derivatives of Doxorubicin. J Med Chem 1983b; 26:638–644

    PubMed  CAS  Google Scholar 

  • Chen B, Chan L, Wang S, Wu M, Chern J, and Roffler S. Cure of Malignant Ascites and Generation of Protective Immunity by Monoclonal Antibody-Targeted Activation of a Glucuronide Prodrug in Rats. Int J Cancer 1997; 73:392–402

    PubMed  CAS  Google Scholar 

  • Cheng T, Chou W, Chen B, Chern J, and Roffler S. Characterization of an Antineoplastic Glucuronide Prodrug. Biochem Pharmacol 1999; 58:325–328

    PubMed  CAS  Google Scholar 

  • Connors T, and Whisson M. Cure of Mice Bearing Advanced Plasma Cell Tumours with Aniline Mustard — Relationship between Glucuronidase Activity and Tumour Sensitivity. Nature 1966; 210:866–867

    PubMed  CAS  Google Scholar 

  • Curley G, Blum H, and Humphries M. Integrin Antagonists. Cell Mol Life Sci. 1999; 56:427–441

    PubMed  CAS  Google Scholar 

  • Curran S, and Murray G. Matrix Metalloproteinases: Molecular Aspects of Their Roles in Tumour Invasion and Metastasis. Eur J Cancer 2000; 36:1621–1630

    PubMed  CAS  Google Scholar 

  • Damen E, de Groot F, and Scheeren H. Novel Anthracycline Prodrugs. Expert Opinion on Therapeutic Patents 2001; 11:651–666

    CAS  Google Scholar 

  • De Bont D, Leenders R, Haisma H, van der Meulen-Muileman I, and Scheeren J. Synthesis and Biological Activity of Beta-Glucuronyl Carbamate-Based Prodrugs of Paclitaxel as Potential Candidates for ADEPT. Bioorg Med Chem 1997; 5:405–414

    PubMed  Google Scholar 

  • Defeo-Jones D, Garsky V, Wong B, Feng D, Bolyar T, Haskell K, Kiefer D, Leander K, and McAvoy E. A Peptide-Doxorubicin ‘Prodrug’ Activated by Prostate-Specific Antigen Selectively Kills Prostate Tumor Cells Positive for Prostate-Specific Antigen In Vivo. Nat Med 2000; 6:1248–1252

    PubMed  CAS  Google Scholar 

  • De Groot F, De Bart A, Verheijen J, and Scheeren H. Synthesis and Biological Evaluation of Novel Prodrugs of Anthracyclines for Selective Activation by the Tumor-Associated Protease Plasmin. J Med Chem 1999; 42:5277–5283

    PubMed  Google Scholar 

  • De Groot F, van Berkom L, and Scheeren H. Synthesis and Biological Evaluation of 2′-Carbamate-Linked and 2′-Carbonate-Linked Prodrugs of Paclitaxel: Selective Activation by the Tumor-Associated Protease Plasmin. J Med Chem 2000; 43:3093–3102

    PubMed  Google Scholar 

  • De Groot F, Damen E, and Scheeren H. Anticancer Prodrugs for Application in Monotherapy: Targeting Hypoxia, Tumor-Associated Enzymes, and Receptors. Curr Med Chem 2001a; 8:1093–1122

    PubMed  Google Scholar 

  • De Groot F, Loos W, Koekkoek R, van Berkom L, Busscher G, Seelen A, Albrecht C, Bruijn de P, and Scheeren H. Elongated Multiple Electronic Cascade and Cyclization Spacer Systems in Activatible Anticancer Prodrugs for Enhanced Drug Release. J Org Chem 2001b; 66:8815–8830

    PubMed  Google Scholar 

  • De Groot F, Broxterman H, Adams H, van Vliet A, Tesser G, Elderkamp Y, Schraa A, Kok R, Molema G, Pinedo H, and Scheeren H. Design, Synthesis, and Biological Evaluation of a Dual Tumor-Specific Motive Containing Integrin-Targeted Plasmin-Cleavable Doxorubicin Prodrug. Mol Cancer Ther 2002; 1:901–911

    PubMed  Google Scholar 

  • De Groot F, Albrecht C, Koekkoek R, Beusker P, and Scheeren H. “Cascade-Release Dendrimers” Liberate All End Groups upon a Single Triggering Event in the Dendritic Core. Angew Chem Int Ed. 2003; 42:4490–4493

    Google Scholar 

  • De Jong J, Geijssen G, Munniksma C, Vermorken J, and van der Vijgh W. Plasma Pharmacokinetics and Pharmacodynamics of a New Prodrug N-LLeucyldoxorubicin and its Metabolites in a Phase-I Clinical-Trial. J Clin Oncol 1992; 10:1897–1906

    PubMed  Google Scholar 

  • Denmeade S, Lou W, Malm J, Lövgren J, Lilja H, and Isaacs J. Specific and Efficient Peptide Substrates for Assaying the Proteolytic Activity of Prostate-Specific Antigen. Cancer Res 1997; 57:4924–4930

    PubMed  CAS  Google Scholar 

  • Denmeade S, Nagy A, Gao J, Lilja H, Schally A, and Isaacs J. Enzymatic Activation of a Doxorubicin-Peptide Prodrug by Prostate-Specific Antigen. Cancer Res 1998; 58:2537–2540

    PubMed  CAS  Google Scholar 

  • Denmeade S, Jakobsen C, Janssen S, Khan S, Garrett E, Lilja H, Christensen S, and Isaacs J. Prostate-Specific Antigen-Activated Thapsigargin Prodrug as Targeted Therapy for Prostate Cancer. J Natl Cancer Inst 2003; 95:990–1000

    PubMed  CAS  Google Scholar 

  • Denny W, and Wilson W. Bioreducible Mustards — A Paradigm for Hypoxia-Selective Prodrugs of Diffusible Cytotoxins (Hpdcs). Cancer Metast Rev 1993; 12:135–151

    CAS  Google Scholar 

  • Deryugina E, Ratnikov B, Monosov E, Postnova T, DiScipio R, Smith J, and Strongin A. MT1-MMP Initiates Activation of Pro-MMP-2 and Integrin Alpha V Beta 3 Promotes Maturation of MMP-2 in Breast Carcinoma Cells. Exp Cell Res 2001; 263:209–223

    PubMed  CAS  Google Scholar 

  • Desbène S, Dufat-Trinh Van H, Michel S, Koch M, Tillequin F, Fournier G, Farjaudon N, and Monneret C. Doxorubicin Prodrugs with Reduced Cytotoxicity suited for Tumour-Specific Activation. Anticancer Drug Des 1998; 13:955–968

    PubMed  Google Scholar 

  • DeVita V, Hellman S, and Rosenberg S. Cancer Principles and Practice of Oncology. Lippincott-Raven; 1997.

    Google Scholar 

  • Devy L, de Groot F, Blacher S, Hajitou A, Beusker P, Scheeren H, Foidart J, and Noël A. Plasmin-Activated Doxorubicin Prodrugs Containing a Spacer Reduce Tumor Growth and Angiogenesis without Systemic Toxicity. FASEB J 2004; 18:565–567

    PubMed  CAS  Google Scholar 

  • Di Marco A, Gaetani M, and Orezzi P. ‘Daunomycin,’ A New Antibiotic of the Rhodomycin Group. Nature 1964; 201:706–707

    Google Scholar 

  • Dirix L, Tonnesen F, Cassidy J, Epelbaum R, Ten Bokkel Huinink W, Pavlidis N, Sorio R, Gamucci T, and Wolff I. EO9 Phase II Study in Advanced Breast, Gastric, Pancreatic and Colorectal Carcinoma by the EORTC Early Clinical Studies Group. Eur J Cancer 1996; 32A:2019–2022

    PubMed  Google Scholar 

  • Doronina S, Toki B, Torgov M, Mendelsohn B, Cerveny C, Chace D, DeBlanc R, Gearing R, Bovee T, Siegall C, Francisco J, Wahl A, Meyer D, and Senter P. Development of Potent Monoclonal Antibody Auristatin Conjugates for Cancer Therapy. Nat Biotechnol 2003; 21:778–784

    PubMed  CAS  Google Scholar 

  • Dubowchik G and Radia S. Monomethoxytrityl (MMT) as a Versatile Amino Protecting Group for Complex Prodrugs of Anticancer Compounds Sensitive to Strong Acids, Bases and Nucleophiles. Tetrahedron Lett 1997; 38:5257–5260

    CAS  Google Scholar 

  • Dubowchik G and Firestone R. Cathepsin B-sensitive Dipeptide Prodrugs. 1. A Model Study of Structural Requirements for Efficient Release of Doxorubicin. Bioorg Med Chem Lett 1998; 8:3341–3346

    PubMed  CAS  Google Scholar 

  • Dubowchik G and Walker M. Receptor-Mediated and Enzyme-Dependent Targeting of Cytotoxic Anticancer Drugs. Pharmacol Ther 1999; 83:67–123

    PubMed  CAS  Google Scholar 

  • Dubowchik G, Mosure K, Knipe J, and Firestone R. Cathepsin B-Sensitive Dipeptide Prodrugs. 2. Models of Anticancer Drugs Paclitaxel (Ttaxol (R)), Mitomycin C and Doxorubicin. Bioorg Med Chem Lett 1998; 8:3347–3352

    PubMed  CAS  Google Scholar 

  • Dubowchik G, Firestone R, Padilla L, Willner D, Hofstead S, Mosure K, Knipe J, Lasch S, and Trail P. Cathepsin B-Labile Dipeptide Linkers for Lysosomal Release of Doxorubicin from Internalizing Immunoconjugates: Model Studies of Enzymatic Drug Release and Antigen-Specific In Vitro Anticancer Activity. Bioconjugate Chem 2002; 13:588–869

    Google Scholar 

  • Dunbar S, Ornstein D, and Zacharski L. Cancer Treatment with Inhibitors of Urokinase-Type Plasminogen Activator and Plasmin. Exp Opin Invest Drugs 2000; 9:2085–2092

    CAS  Google Scholar 

  • Duncan R. The Dawning Era of Polymer Therapeutics. Nat Rev Drug Discov 2003; 2:347–362

    PubMed  CAS  Google Scholar 

  • Duncan R, Gac-Breton S, Keane R, Musila R, Sat Y, Satchi R, and Searle F. Polymer-Drug Conjugates, PDEPT and PELT: Basic Principles for Design and Transfer from the Laboratory to Clinic. J Control Release 2001; 74:135–146

    PubMed  CAS  Google Scholar 

  • Dunkern T, and Mueller-Klieser W. Quantification of Apoptosis Induction by Doxorubicin In Three Types of Human Mammary Carcinoma Spheroids. Anticancer Res 1999; 19:3141–3146

    PubMed  CAS  Google Scholar 

  • Eatock M, Schätzlein A, and Kaye S. Tumour Vasculature as a Target for Anticancer Therapy. Cancer Treatment Rev 2000; 26:191–204

    CAS  Google Scholar 

  • Eisenbrand G, Lauck-Birkel S, and Tang, W. An Approach towards More Selective Anticancer Agents. Synthesis 1996; 1246–1258

    Google Scholar 

  • Eliel E In: Stereochemistry of Carbon Compounds. New York: McGraw Hill; 1962: pp. 197–202

    Google Scholar 

  • Ellerby H, Arap W, Ellerby L, Kain R, Andrusiak R, Del Rio G, Krajewski S, Lombardo C, Rao R, Ruoslahti E, Bredesen D, and Pasqualini R. Anti-Cancer Activity of Targeted Pro-Apoptotic Peptides. Nat Med. 1999; 5:1032–1038

    PubMed  CAS  Google Scholar 

  • Elliott E, and Sloane B. The Cysteine Protease Cathepsin B in Cancer. Persp Drug Disc Design 1996; 6:12–32

    CAS  Google Scholar 

  • Emeis J, Verheijen J, Ronday H, de Maat M, and Brakman P. Progress in Clinical Fibrinolysis. Fibrin Proteol 1997; 11:67–84

    CAS  Google Scholar 

  • Everett S, Naylor M, Patel K, Stratford M, and Wardman P. Bioreductively-Activated Prodrugs for Targeting Hypoxic Tissues: Elimination of Aspirin from 2-Nitroimidazole Derivatives. Bioorg Med Chem Lett. 1999; 9:1267–1272

    PubMed  CAS  Google Scholar 

  • Fang J, Shing Y, Wiedershain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, and Moses M. Matrix Metalloproteinase-2 Is Required for the Switch to the Angiogenic Phenotype in a Tumor Model. Proc Natl Acad Sci USA 2000; 97:3884–3889

    PubMed  CAS  Google Scholar 

  • Farina V. The Chemistry and Pharmacology of Taxol® and Its Derivatives. Pharmacochemistry library 22. Amsterdam, The Netherlands: Elsevier; 1995.

    Google Scholar 

  • Fernandez A, Van derpoorten K, Dasnois L, Lebtahi K, Dubois V, Lobl T, Gangwar S, Oliyai C, Lewis E, Shochat D, and Trouet A. N-Succinyl-(Beta-Alanyl-L-Leucyl-L-Alanyl-L-Leucyl)Doxorubicin: An Extracellularly Tumor-Activated Prodrug Devoid of Intravenous Acute Toxicity. J Med Chem 2001; 44:3750–3753

    PubMed  CAS  Google Scholar 

  • Firestone R. Low-Density-Lipoprotein as a Vehicle for Targeting Antitumor Compounds to Cancer-Cells. Bioconjug Chem 1994; 5:105–113

    PubMed  CAS  Google Scholar 

  • Fitzpatrick T, and Graham C. Stimulation of Plasminogen Activator Inhibitor-1 Expression in Immortalized Human Trophoblast Cells Cultured under Low Levels of Oxygen. Exp Cell Res 1998; 245:155–162

    PubMed  CAS  Google Scholar 

  • Florent J, Dong X, Gaudel G, Mitaku S, Monneret C, Gesson J, Jacquesy J, Mondon M, Renoux B, Andrianomenjanahary S, Michel S, Koch M, Tillequin F, Gerken M, Czech J, Straub R, and Bosslet K. Prodrugs of Anthracyclines for Use in Antibody-Directed Enzyme Prodrug Therapy. J Med Chem 1998; 41:3572–3581

    PubMed  CAS  Google Scholar 

  • Foekens J, Peters H, Look M, Portengen H, Schmitt M, Kramer M, Brunner N, Jänicke F, Meijer-van Gelder M, Henzen-Logmans S, van Putten W, and Klijn J. The Urokinase System of Plasminogen Activation and Prognosis in 2780 Breast Cancer Patients. Cancer Res. 2000; 60:636–643

    PubMed  CAS  Google Scholar 

  • Folkes A, Roe M, Sohal S, Golec J, Faint R, Brooks T, and Charlton P. Synthesis and In Vitro Evaluation of a Series of Diketopiperazine Inhibitors of Plasminogen Activator Inhibitor-1. Bioorg Med Chem Lett 2001; 11:2589–2592

    PubMed  CAS  Google Scholar 

  • Folkman J. Tumor Angiogenesis: Therapeutic Implications. N Engl J Med 1971; 285:1182–1186

    PubMed  CAS  Google Scholar 

  • Folkman J. Tumor Angiogenesis. In: Bast RC Jr, Kufe DW, Pollock, RE, Weichselbaum RR, Holland JF, Frei E III, Gansler RS, Eds.Cancer Medicine 5e. Hamilton, Ontario, Canada: BC Decker; 2000. 132–152

    Google Scholar 

  • Ganesh S, Sier C, Griffioen G, Vloedgraven H, De Boer A, Welvaart K, Vandevelde C, and Verspaget H. Prognostic Relevance of Plasminogen Activators and their Inhibitors in Colorectal-Cancer. Cancer Res 1994; 54:4065–4071

    PubMed  CAS  Google Scholar 

  • Ganesh S, Sier C, Heerding M, Vankrieken J, Griffioen G, Welvaart K, Vandevelde C, Verheijen J, Lamers C, and Verspaget H. Prognostic Value of the Plasminogen Activation System in Patients with Gastric Carcinoma. Cancer 1996; 77:1035–1043

    PubMed  CAS  Google Scholar 

  • Garsky V, Lumma P, Feng D, Wai J, Ramjit H, Sardana M, Oliff A, Jones R, DeFeo-Jones D, and Freidinger R. The Synthesis of a Prodrug of Doxorubicin Designed to Provide Reduced Systemic Toxicity and Greater Target Efficacy. J Med Chem 2001; 44:4216–4224

    PubMed  CAS  Google Scholar 

  • Gerlach J, Endicott J, Juranka P, Henderson G, Sarangi F, Deuchars, K, and Ling V. Homology between P-Glycoprotein and Bacterial Hemolysin Transport Protein Suggests a Model for Multidrug Resistance. Nature 1986; 324:485–489

    PubMed  CAS  Google Scholar 

  • Gharat L, Visser P, Brummelhuis M, Guiles R, and Chikhale P. Reductive Activation of Conformationally Constrained, Anticancer Drug Delivery Systems. Med Chem Res 1998; 8:444–456

    CAS  Google Scholar 

  • Ghosh S, Ellerbroek S, Wu Y, and Stack M. Fibrin Proteol 2000; 14:87–97

    CAS  Google Scholar 

  • Giancotti F, and Ruoslahti E. Integrin Signaling. Science 1999; 285:1028–1032

    PubMed  CAS  Google Scholar 

  • Giovanella B, Hinz H, Kozielski A, Stehlin J, Silber R, and Potmesil M. Complete Growth-Inhibition of Human Cancer Xenografts in Nude-Mice by Treatment with 20-(S)-Camptothecin. Cancer Res 1991; 51:3052–3055

    PubMed  CAS  Google Scholar 

  • Graham C, Fitzpatrick T, and McCrae K. Hypoxia Stimulates Urokinase Receptor Expression through a Heme Protein-Dependent Pathway. Blood 1998; 91:3300–3307

    PubMed  CAS  Google Scholar 

  • Graham C, Forsdike J, Fitzgerald C, and Macdonald-Goodfellow S. Hypoxia-Mediated Stimulation of Carcinoma Cell Invasiveness via Upregulation of Urokinase Receptor Expression. Int J Cancer 1999; 80:617–623

    PubMed  CAS  Google Scholar 

  • Greenwald R. PEG Drugs: An Overview. J Control Release 2001; 74:159–171

    PubMed  CAS  Google Scholar 

  • Greenwald R, Conover C, and Choe Y. Poly(Ethylene Glycol) Conjugated Drugs and Prodrugs: A Comprehensive Review. Crit Rev Ther Drug Carrier Systems 2000; 17:101–161

    CAS  Google Scholar 

  • Haisma H, van Muijen M, Pinedo H, and Boven E. Comparison of Two Anthracycline-based Prodrugs for Activation by a Monoclonal Antibody-β-Glucuronidase Conjugate in the Specific Treatment of Cancer. Cell Biophys 1994;24/25:185–192

    CAS  Google Scholar 

  • Hanemaaijer R, Verheijen J, Maguire T, Visser H, Toet K, McDermott E, O’Higgins N, and Duffy M. Increased Gelatinase-A and Gelatinase-B Activities in Malignant vs. Benign Breast Tumors. Int J Cancer 2000; 86:204–207

    PubMed  CAS  Google Scholar 

  • Hapke S, Kessler H, Arroyo de Prada N, Benge A, Schmitt M, Lengyel E, and Reuning U. Integrin Alpha(V)Beta(3)/Vitronectin Interaction Affects Expression of the Urokinase System in Human Ovarian Cancer Cells. J Biol Chem 2001; 276:26340–26348

    PubMed  CAS  Google Scholar 

  • Haq M, Shafii A, Zervos E, and Rosemurgy A. Addition of Matrix Metalloproteinase Inhibition to Conventional Cytotoxic Therapy Reduces Tumor Implantation and Prolongs Survival in a Murine Model of Human Pancreatic Cancer. Cancer Res. 2000; 60:3207–3211

    PubMed  CAS  Google Scholar 

  • Hay M, Sykes B, Denny W, and Wilson W. A 2-Nitroimidazole Carbamate Prodrug of 5-Amino-1-(chloromethyl)-3-[(5,6,7-trimethoxyindol-2-Yl)carbonyl]-1,2-dihydro-3H-benz[E]indole (Amino-seco-CBI-TMI) for Use with ADEPT and GDEPT. Bioorg Med Chem Lett 1999; 9:2237–2242

    PubMed  CAS  Google Scholar 

  • Hay M, Wilson W, and Denny W. Design, Synthesis and Evaluation of Imidazolylmethyl Carbamate Prodrugs of Alkylating Agents. Tetrahedron 2000; 56:645–657

    CAS  Google Scholar 

  • Henderson N, Plumb J, Robins D, and Workman P. Synthesis and Anti-Cancer Activity of 2,6-Disubstituted N-Methylpiperidine Derivatives and their N-Oxides. Anticancer Drug Des. 1996; 11:421–438

    PubMed  CAS  Google Scholar 

  • Hertzberg R, Caranfa M, and Hecht S. On The Mechanism of Topoisomerase-I Inhibition by Camptothecin — Evidence for Binding to An Enzyme DNA Complex. Biochemistry 1989; 28:4629–4638

    PubMed  CAS  Google Scholar 

  • Hewitt R, and Dano K. Stromal Cell Expression of Components of Matrix-Degrading Protease Systems in Human Cancer. Enzyme Protein 1996; 49:163–173

    PubMed  CAS  Google Scholar 

  • Hicklin D, Witte L, Zhu Z, Liao F, Wu Y, Li Y, and Bohlen P. Monoclonal Antibody Strategies to Block Angiogenesis. Drug Disc Today 2001; 6:517–528

    CAS  Google Scholar 

  • Hidalgo M, and Eckhardt S. Development of Matrix Metalloproteinase Inhibitors in Cancer Therapy. J Natl Cancer Inst 2001; 93:178–193

    PubMed  CAS  Google Scholar 

  • Highfield J, Mehta L, Parrick J, Candeias L, and Wardman P. Synthesis and Properties of Prodrugs Activated in Hypoxia to Give Bleomycin Analogues. Bioorg Med Chem Lett 1998; 8:2609–2614

    PubMed  CAS  Google Scholar 

  • Highfield J, Mehta L, Parrick J, Candeias L, and Wardman P. Preparative, Physico-Chemical and Cytotoxicity Studies of Prodrugs Activated in Hypoxia to Give Metal-Binding Analogues of Bleomycin. J Chem Soc Perkin Trans I 1999; 16:2343–2351

    Google Scholar 

  • Hofmann U, Westphal J, Van Kraats A, Ruiter D, Van Muijen G. Expression of Integrin Alpha(Nu)Beta(3) Correlates with Activation of Membrane-Type Matrix Metalloproteinase-1 (MTI-MMP) and Matrix Metalloproteinase-2 (MMP-2) in Human Melanoma Cells In Vitro and In Vivo. Int J Cancer 2000a; 87:12–19

    PubMed  CAS  Google Scholar 

  • Hofmann U, Westphal J, Waas E, Becker J, Ruiter D, and Van Muijen G. Coexpression of Integrin Alpha(V)Beta(3) and Matrix Metalloproteinase-2 (MMP-2) Coincides with MMP-2 Activation: Correlation with Melanoma Progression. J Invest Dermatol 2000b; 115:625–632

    PubMed  CAS  Google Scholar 

  • Holmes W, Nelles L, Lijnen H, and Collen D. Primary Structure of Human Alpha-2-Antiplasmin, a Serine Protease Inhibitor (Serpin). J Biol Chem 1987; 262:1659–1664

    PubMed  CAS  Google Scholar 

  • Houba P, Leenders R, Boven E, Scheeren J, Pinedo H, and Haisma H. Characterization of Novel Anthracycline Prodrugs Activated by Human Beta-Glucuronidase for Use in Antibody-Directed Enzyme Prodrug Therapy. Biochem Pharmacol 1996; 52:455–463

    PubMed  CAS  Google Scholar 

  • Houba P, Boven E, Erkelens C, Leenders R, Scheeren J, Pinedo H, and Haisma H. The Efficacy of the Anthracycline Prodrug Daunorubicin-GA3 in Human Ovarian Cancer Xenografts. Brit J Cancer 1998; 78:1600–1606

    PubMed  CAS  Google Scholar 

  • Houba P, Boven E, van der Meulen-Muileman I, Leenders R, Scheeren J, Pinedo H, and Haisma H.J. Distribution and Pharmacokinetics of the Prodrug Daunorubicin-GA3 in Nude Mice Bearing Human Ovarian Cancer Xenografts. Biochem Pharmacol 1999; 57:673–680

    PubMed  CAS  Google Scholar 

  • Houba P, Boven E, van der Meulen-Muileman I, Leenders R, Scheeren J, Pinedo H, and Haisma H. Pronounced Antitumor Efficacy of Doxorubicin when Given as the Prodrug Dox-Ga3 in Combination with a Monoclonal Antibody Beta-Glucuronidase Conjugate. Int J Cancer 2001; 91:550–554

    PubMed  CAS  Google Scholar 

  • Huang S, Arsdall van M, Tedjarati S, McCarty M, Wu W, Langley R, and Fidler I. Contributions of Stromal Metalloproteinase-9 to Angiogenesis and Growth of Human Ovarian Carcinoma in Mice. J Natl Cancer Inst 2002; 94:1134–1142

    PubMed  CAS  Google Scholar 

  • Huang P, and Oliff A. Drug-Targeting Strategies in Cancer Therapy. Curr Opin Genet Dev 2001; 11:104–110

    PubMed  CAS  Google Scholar 

  • Huber B, Richards C, and Krentisky T. Retroviral-Mediated Gene-Therapy for the Treatment of Hepatocellular-Carcinoma — An Innovative Approach for Cancer-Therapy. Proc Natl Acad Sci USA 1991; 88:8039–8043

    PubMed  CAS  Google Scholar 

  • Inuzuka K, Ogata Y, Nagase H, and Shirouzu K. Significance of Coexpression of Urokinase-Type Plasminogen Activator and Matrix Metalloproteinase 3 (Stromelysin) and 9 (Gelatinase in Colorectal Carcinoma. J Surg Res 2000; 93:211–218

    PubMed  CAS  Google Scholar 

  • Irigoyen J, Muñoz-Cánoves P, Montero L, Koziczak M, and Nagamine Y. The Plasminogen Activator System: Biology and Regulation. Cell Mol Life Sci 1999; 56:104–132

    PubMed  CAS  Google Scholar 

  • Ivaska J, and Heino J. Adhesion Receptors and Cell Invasion: Mechanisms of Integrin-Guided Degradation of Extracellular Matrix. Cell Mol Life Sci. 2000; 57:16–24

    PubMed  CAS  Google Scholar 

  • Jaffar M, Naylor M, Robertson N, and Stratford I. Targeting Hypoxia with a New Generation of Indolequinones. Anticancer Drug Des 1998; 13:593–609

    PubMed  CAS  Google Scholar 

  • Janáky T, Juhász A, Bajusz S, Csernus V, Srkalovic G, Bokser L, Milovanovic S, Redding, T, Rékási Z, Nagy A, and Schally A. Analogs of Luteinizing-Hormone-Releasing Hormone Containing Cytotoxic Groups. Proc Natl Acad Sci USA 1992; 89:972–976

    PubMed  Google Scholar 

  • Jenkins T, Naylor M, O’Neill P, Threadgill M, Cole S, Stratford I, Adams G, Fielden E, Suto M, and Stier M. Synthesis and Evaluation of Alpha-[[(2-Haloethyl)Amino]Methyl]-2-Nitro-1h-Imidazole-1-Ethanols As Prodrugs of Alpha-[(1-Aziridinyl)Methyl]-2-Nitro-1h-Imidazole-1-Ethanol (Rsu-1069) and its Analogs which are Radiosensitizers and Bioreductively Activated Cytotoxins. J Med Chem 1990; 33:2603–2610

    PubMed  CAS  Google Scholar 

  • Johnston D, Schmitt S, Boufford F, and Christensen B. Total Synthesis of (+/−)-Thienamycin. J Am Chem Soc 1978; 100:313–315

    CAS  Google Scholar 

  • Julyan P, Seymour L, Ferry D, Daryani S, Boivin C, Doran J, David M, anderson D, Christodoulou C, Young A, Hesslewood S, and Kerr D. Preliminary Clinical Study of the Distribution of HPMA Copolymers Bearing Doxorubicin and Galactosamine. J Control Release 1999; 57:281–290

    PubMed  CAS  Google Scholar 

  • Jungwirth A, Schally A, Nagy A, Pinski J, Groot K, Galvan G, Szepeshazi K, and Halmos G. Regression of Rat Dunning R-3327-H Prostate Carcinoma by Treatment with Targeted Cytotoxic Analog of Luteinizing Hormone-Releasing Hormone AN-207 Containing 2-Pyrrolinodoxorubicin. Int J Oncol 1997; 10:877–884

    CAS  Google Scholar 

  • Kahán Z, Nagy A, Schally A, Halmos G, Arencibia J, and Groot K. Administration of a Targeted Cytotoxic Analog of Luteinizing Hormone-Releasing Hormone Inhibits Growth of Estrogen-Independent MDA-MB-231 Human Breast Cancers in Nude Mice. Breast Cancer Res Treatment 2000; 59:255–262

    Google Scholar 

  • Kehrer D, Soepenberg O, Loos W, Verweij J, and Sparreboom A. Modulation of Camptothecin Analogs in the Treatment of Cancer: A Review. Anticancer Drug 2001; 12:89–105

    CAS  Google Scholar 

  • Kerrigan J, and Pilch D. A Structural Model for the Ternary Cleavable Complex Formed between Human Topoisomerase I, DNA, and Camptothecin. Biochem 2001; 40:9792–9798

    CAS  Google Scholar 

  • Khan S, and Denmeade S. In Vivo Activity of a PSA-Activated Doxorubicin Prodrug against PSA-Producing Human Prostate Cancer Xenografts. Prostate 2000; 45:80–83

    PubMed  CAS  Google Scholar 

  • Kiaris H, Schally A, Nagy A, Sun B, Armatis P, and Szepeshazi K. Targeted Cytotoxic Analogue of Bombesin/Gastrin Releasing Peptide Inhibits the Growth of H-69 Human Small-Cell Lung Carcinoma in Nude Mice. Brit J Cancer 1999; 81:966–971

    PubMed  CAS  Google Scholar 

  • King F. (Ed.) Medicinal Chemistry: Principles and Practice. The Royal Society of Chemistry, Cambridge 1994; 172–178.

    Google Scholar 

  • Kingston D. Taxol, A Molecule for All Seasons. Chem Comm 2001; 10:867–880

    Google Scholar 

  • Kleiner D, and Stetler-Stevenson W. Matrix Metalloproteinases and Metastasis. Cancer Chemother Pharmacol 1999; 43:S42–S51

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Schmitt M, Goretzki L, Chucholowski N, Calvete J, Kramer M, Günzler W, Jänicke F, and Graeff H. Cathepsin-B Efficiently Activates the Soluble and the Tumor-Cell Receptor-Bound Form of the Proenzyme Urokinase-Type Plasminogen-Activator (Pro-Up). J Biol Chem 1991; 266:5147–5152

    PubMed  CAS  Google Scholar 

  • Koblinski J, Ahram M, and Sloane B. Unraveling The Role of Proteases In Cancer. Clin Chim Acta 2000; 291:113–135

    PubMed  CAS  Google Scholar 

  • Konyves I, Muntzing J, and Rozencweig M. Chemotherapy Principles in the Treatment of Prostatic-Cancer. Prostate 1984; 5:55–62

    PubMed  CAS  Google Scholar 

  • Kratz F, Beyer U, and Schütte M. Drug-Polymer Conjugates Containing Acid-Cleavable Bonds. Crit Rev Ther Drug Carrier Systems 1999; 16:245–288

    CAS  Google Scholar 

  • Kratz F, Drevs J, Bing G, Stockmar C, Scheuermann K, Lazar P, and Unger C. Development and In Vitro Efficacy of Novel MMP2 and MMP9 Specific Doxorubicin Albumin Conjugates. Bioorg Med Chem Lett 2001; 11:2001–2006

    PubMed  CAS  Google Scholar 

  • Krishna A, Kumar D, Kahn B, Rawal S, and Ganesh K. Taxol-DNA Interactions: Fluorescence and CD Studies of DNA Groove Binding Properties of Taxol. Biochem Biophys Acta 1998; 1381:104–112

    PubMed  CAS  Google Scholar 

  • Kroon M, Koolwijk P, Van der Vecht B, and Van Hinsbergh V. Urokinase Receptor Expression on Human Microvascular Endothelial Cells Is Increased by Hypoxia: Implications for Capillary-Like Tube Formation in a Fibrin Matrix. Blood 2000; 96:2775–2783

    PubMed  CAS  Google Scholar 

  • Krüger A, Soeltl R, Sopov I, Kopitz C, Arlt M, Magdolen V, Harbeck N, Gänsbacher B, and Schmitt M. Hydroxamate-Type Matrix Metalloproteinase Inhibitor Batimastat Promotes Liver Metastasis. Cancer Res 2001; 61:1272–1275

    PubMed  Google Scholar 

  • Kurtzhals P, Larsen C, Hansen S, Aasmul-Olsen S, and Widmer F. On the Design of Urokinase-Labile Prodrugs.2. Structure-Activity-Relationships in the Urokinase Catalyzed-Hydrolysis of H-GluGlyArg-Anilides and H-GluGlyArg-Benzylamide. Acta Pharm Nord 1989; 1:269–278

    PubMed  CAS  Google Scholar 

  • Ladino C, Chari R, Bourret L, Kedersha N, and Goldmacher V. Folate-Maytansinoids: Target-Selective Drugs of Low Molecular Weight. Int J Cancer 1997; 73:859–864

    PubMed  CAS  Google Scholar 

  • Lam L, Lam C, Li W, and Cao Y. Recent Advances in Drug-Antibody Immunoconjugates for the Treatment of Cancer. Drugs of the Future 2003; 28:905–910

    CAS  Google Scholar 

  • Lauck-Birkel S, Tang W, Wagner B, Fiebig H, Kohlmüller D, and Eisenbrand G. In: Zeller W, Eisenbrand G, and Hellmann K. (Eds), Reduction of Anticancer Drug Toxicity. Pharmacologic, Biologic, Immunologic and Gene Therapeutic Approaches. Contrib Oncol Basel, Karger 1995; 48:189–194

    Google Scholar 

  • Leamon C and Low P. Cytotoxicity of Momordin-Folate Conjugates in Cultured Human Cells. J Biol Chem 1992; 267:24966–24971

    PubMed  CAS  Google Scholar 

  • Leamon CP and Low PS. Folate-mediated Targeting: From Diagnostics to Drug and Gene Delivery. Drug Discov Today, 2001; 6:44–51.

    PubMed  CAS  Google Scholar 

  • Leamon C, Pastan I, and Low P. Cytotoxicity of Folate-Pseudomonas Exotoxin Conjugates toward Tumor-Cells-Contribution of Translocation Domain. J Biol Chem 1993; 268:24847–24854

    PubMed  CAS  Google Scholar 

  • Leamon C, DePrince R, and Hendren R. Folate-Mediated Drug Delivery: Effect of Alternative Conjugation Chemistry. J Drug Targeting 1999; 7:157–169

    Article  CAS  Google Scholar 

  • Lee A, and Wilson W. Hypoxia-Dependent Retinal Toxicity of Bioreductive Anticancer Prodrugs in Mice. Tox Appl Pharmacol 2000; 163:50–59

    CAS  Google Scholar 

  • Leenders R, Gerrits K, Ruijtenbeek R, Scheeren H, Haisma H, and Boven E. Beta-Glucuronyl Carbamate Based Pro-Moieties Designed for Prodrugs in ADEPT. Tetrahedron Lett 1995a; 26:1701–1704

    Google Scholar 

  • Leenders R, Scheeren H, Houba P, Boven E, and Haisma H. Synthesis and Evaluation of Novel Daunomycin-Phosphate-Sulfate-Beta-Glucuronide and-Beta-Glucoside Prodrugs for Application in ADEPT. Bioorg Med Chem Lett 1995b; 5:2975–2980

    CAS  Google Scholar 

  • Leenders R, Damen E, Bijsterveld E, Scheeren J, Houba P, van der Meulen-Muileman I, Boven E, and Haisma H. Novel Anthracycline-Spacer-Beta-Glucuronide,-Beta-Glucoside, and-Beta-Galactoside Prodrugs for Application in Selective Chemotherapy. Bioorg Med Chem 1999; 7:1597–1610

    PubMed  CAS  Google Scholar 

  • Lemmon M, Van Zijl P, Fox M, Mauchline M, Giaccia A, Minton N, and Brown J. Anaerobic Bacteria as a Gene Delivery System that is Controlled by the Tumor Microenvironment. Gene Ther 1997; 4:791–796

    PubMed  CAS  Google Scholar 

  • Letsch M, Schally A, Szepeshazi K, Halmos G, and Nagy A. Preclinical Evaluation of Targeted Cytotoxic Luteinizing Hormone-Releasing Hormone Analogue AN-152 in Androgen-Sensitive and Insensitive Prostate Cancers. Clin Cancer Res 2003; 9:4505–4513

    PubMed  CAS  Google Scholar 

  • Leu Y, Roffler S, and Chern J. Design and Synthesis of Water-Soluble Glucuronide Derivatives of Camptothecin for Cancer Prodrug Monotherapy and Antibody-Directed Enzyme Prodrug Therapy (ADEPT). J Med Chem 1999; 42:3623–3628

    PubMed  CAS  Google Scholar 

  • Li S, Deshmukh H, and Huang L. Folate-Mediated Targeting of Antisense Oligodeoxynucleotides to Ovarian Cancer Cells. Pharm Res 1998; 15:1540–1545

    PubMed  CAS  Google Scholar 

  • Li S, Szalai M, Kevwitch R, and McGrath D. Li S, Szalai M, Kevwitch R, and McGrath D. Dendrimer Disassembly by Benzyl Ether Depolymerization J Am Chem Soc 2003; 125:10516–10517

    PubMed  CAS  Google Scholar 

  • Lijnen H. Molecular Interactions between the Plasminogen/Plasmin and Matrix Metalloproteinase Systems. Fibrin Proteol 2000; 14:175–181

    CAS  Google Scholar 

  • Liotta L, and Kohn E. The Microenvironment of the Tumour-Host Interface. Nature 2001; 411:375–379

    PubMed  CAS  Google Scholar 

  • Liu S, Bugge T, and Leppla S. Targeting of Tumor Cells by Cell Surface Urokinase Plasminogen Activator-Dependent Anthrax Toxin. J Biol Chem 2001a; 276:17976–17984

    PubMed  CAS  Google Scholar 

  • Liu J, Kolar C, Lawson T, and Gmeiner G. Targeted Drug Delivery to Chemoresistant Cells: Folic Acid Derivatization of FdUMP[10] Enhances Cytotoxicity toward 5-FU-Resistant Human Colorectal Tumor Cells. J Org Chem 2001b; 66:5655–5663

    PubMed  CAS  Google Scholar 

  • Liu S, Aaronson H, Mitola D, Leppla S, and Bugge T. Potent Antitumor Activity of a Urokinase-Activated Engineered Anthrax Toxin. Proc Nat Acad Sci USA 2003; 100:657–662

    PubMed  CAS  Google Scholar 

  • Lougerstay-Madec R, Florent J, Monneret C, Nemati F, and Poupon M. Synthesis of Self-Immolative Glucuronide-Based Prodrugs of a Phenol Mustard. Anticancer Drug Des 1998; 13:995–1007

    PubMed  CAS  Google Scholar 

  • Lu Y, Sega E, Leamon C, and Low P. Folate Receptor-Targeted Immunotherapy of Cancer: Mechanism and Therapeutic Potential. Adv Drug Del Rev 2004; 56:1161–1176

    CAS  Google Scholar 

  • Lund L, Romer J, Bugge T, Nielsen B, Frandsen T, Degen J, Stephens R, and Dano K. Functional Overlap between Two Classes of Matrix-Degrading Proteases in Wound Healing. Embo J 1999; 18:4645–4656

    PubMed  CAS  Google Scholar 

  • Luo Y, and Prestwich G. Synthesis and Selective Cytotoxicity of a Hyaluronic Acid-Antitumor Bioconjugate. Bioconjug Chem 1999; 10:755–763

    PubMed  CAS  Google Scholar 

  • MacDougall J, and Matrisian L. Contributions of Tumor and Stromal Matrix Metalloproteinases to Tumor Progression, Invasion and Metastasis. Cancer Metastasis Rev 1995; 14:351–362

    PubMed  CAS  Google Scholar 

  • Madec-Lougerstay R, Florent J, and Monneret C. Synthesis of Self-Immolative Glucuronide Spacers Based on Aminomethylcarbamate. Application to 5-Fluorouracil Prodrugs for Antibody-Directed Enzyme Prodrug Therapy. J Chem Soc Perkin Trans 1 1999; 10:1369–1375

    Google Scholar 

  • Maeda H, and Matsumura Y. Tumoritropic and Lymphotropic Principles of Macromolecular Drugs. Crit Rev Ther Drug Carrier Systems 1989; 6:193–210

    CAS  Google Scholar 

  • Maekawa R, Maki H, Wada T, Yoshida H, Nishida-Nishimoto K, Okamoto H, Matsumoto Y, Tsuzuki H, and Yoshioka T. Anti-Metastatic Efficacy and Safety of MMI-166, a Selective Matrix Metalloproteinase Inhibitor. Clin Exp Metastasis 2000; 18:61–66

    PubMed  CAS  Google Scholar 

  • Maity A, and Solomon D. Both Increased Stability and Transcription Contribute to the Induction of the Urokinase Plasminogen Activator Receptor (uPAR) Message By Hypoxia. Exp Cell Res. 2000; 255:250–257

    PubMed  CAS  Google Scholar 

  • Mann J, and Shervington L. Synthesis of Novel N-Mustards and S-Mustards as Potential Prodrugs Activated by Bioreductive Processes. J Chem Soc Perkin Trans I. 1991; 12:2961–2964

    Google Scholar 

  • Mao W, Luis E, Ross S, Silva J, Tan C, Crowley C, Chui C, Franz G, Senter P, Koeppen H, and Polakis P. EphB2 as a Therapeutic Antibody Drug Target for the Treatment of Colorectal Cancer. Cancer Res 2004; 64:781–788

    PubMed  CAS  Google Scholar 

  • Maquoi E, Munaut C, Colige A, Lambert C, Frankenne F, Noël A, Grams F, Krell H, and Foidart J. Stimulation of Matrix Metalloproteinase-9 Expression in Human Fibrosarcoma Cells by Synthetic Matrix Metalloproteinase Inhibitors. Exp Cell Res 2002; 275:110–121

    PubMed  CAS  Google Scholar 

  • Marcucci F, and Lefoulon F. Active Targeting With Particulate Drug Carriers in Tumor Therapy: Fundamentals and Recent Progress. Drug Disc Today 2004; 9:219–228

    CAS  Google Scholar 

  • Marquisee M, and Kauer J. Collagenase-Sensitive Peptidyl-Nitrogen Mustards as Potential Anti-Tumor Agents. J Med Chem 1978; 21:1188–1194

    PubMed  CAS  Google Scholar 

  • Masquelier M, Baurain R, and Trouet A. Amino-Acid and Dipeptide Derivatives of Daunorubicin. 1. Synthesis, Physicochemical Properties, and Lysosomal Digestion. J Med Chem. 1980;23:1166–1170

    PubMed  CAS  Google Scholar 

  • May A, Kanse S, Chavakis T, and Preissner K. Molecular Interactions between the Urokinase Receptor and Integrins in the Vasculature. Fibrin Proteol 1998; 12:205–210

    CAS  Google Scholar 

  • McKerrow J, Bhargava V, Hansell E, Huling S, Kuwahara T, Matley M, Coussens L, and Warren R. A Functional Proteomics Screen of Proteases in Colorectal Carcinoma. Mol Med 2000; 6:450–460

    PubMed  CAS  Google Scholar 

  • McMahon G, Petitclerc E, Stefansson S, Smith E, Wong M, Westrick R, Ginsburg D, Brooks P, and Lawrence D. Plasminogen Activator Inhibitor-1 Regulates Tumor Growth and Angiogenesis. J Biol Chem 2001; 276:33964–33968

    PubMed  CAS  Google Scholar 

  • Melton R, Connors T, and Knox R. The Use of Prodrugs in Targeted Anticancer Therapies. STP Pharma Sciences 1999; 9:13–33

    CAS  Google Scholar 

  • Meijer E, and van Genderen M. Dendrimers Set to Self-Destruct. Nature 2003; 426:128–129

    PubMed  CAS  Google Scholar 

  • Menrad A, Speicher D, Wacker J, and Herlyn M. Biochemical and Functional-Characterization of Aminopeptidase-N Expressed by Human-Melanoma Cells. Cancer Res 1993; 53:1450–1455

    PubMed  CAS  Google Scholar 

  • Meyer T, and Hart I. Mechanisms of Tumour Metastasis. Eur J Cancer 1998; 34:214–221

    PubMed  CAS  Google Scholar 

  • Miyashita H, Karaki Y, Kikuchi M, and Fujii I. Prodrug Activation via Catalytic Antibodies. Proc Natl Acad Sci USA 1993; 90:5337–5340

    PubMed  CAS  Google Scholar 

  • Miyazaki M, Schally A, Nagy A, Lamharzi N, Halmos G, Szepeshazi K, and Armatis P. Targeted Cytotoxic Analog of Luteinizing Hormone-Releasing Hormone AN-207 Inhibits Growth of OV-1063 Human Epithelial Ovarian Cancers in Nude Mice. Am J Obstet Gynecol 1999; 180:1095–1103

    PubMed  CAS  Google Scholar 

  • Mizejewski G. Role of Integrins in Cancer: Survey of Expression Patterns. Proc Soc Exp Biol Med 1999; 222:124–138

    PubMed  CAS  Google Scholar 

  • Muehlenweg B, Sperl S, Magdolen V, Schmitt M, and Harbeck N. Interference with the Urokinase Plasminogen Activator System: A Promising Therapy Concept for Solid Tumours. Exp Opin Biol Ther 2001; 1:683–691

    CAS  Google Scholar 

  • Mürdter T, Sperker B, Kivistö K, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K, Toomes H, Dierkesmann R, and Kroemer H. Enhanced Uptake of Doxorubicin into Bronchial Carcinoma: Beta-Glucuronidase Mediates Release of Doxorubicin from a Glucuronide Prodrug (HMR 1826) at the Tumor Site. Cancer Res 1997; 57:2440–2445

    PubMed  Google Scholar 

  • Nagy A, Schally, A, Armatis P, Szepeshazi K, Halmos G, Kovacs M, Zarandi M, Groot K, Miyazaki M, Jungwirth A, and Horvath J. Cytotoxic Analogs of Luteinizing Hormone-Releasing Hormone Containing Doxorubicin or 2-Pyrrolinodoxorubicin, a Derivative 500–1000 Times More Potent. Proc Natl Acad Sci USA 1996; 93:7269–7273

    PubMed  CAS  Google Scholar 

  • Nagy A, Armatis P, Cai R, Szepeshazi K, Halmos G, and Schally A. Design, Synthesis, and In Vitro Evaluation of Cytotoxic Analogs of Bombesin-Like Peptides Containing Doxorubicin or its Intensely Potent Derivative, 2-Pyrrolinodoxorubicin. Proc Natl Acad Sci USA 1997; 94:652–656

    PubMed  CAS  Google Scholar 

  • Nagy A, Schally A, Halmos G, Armatis P, Cai R, Csernus V, Kovács M, Koppán M, Szepeshazi K, and Kahán Z. Synthesis and Biological Evaluation of Cytotoxic Analogs of Somatostatin Containing Doxorubicin or its Intensely Potent Derivative, 2-Pyrrolinodoxorubicin. Proc Natl Acad Sci USA 1998; 95:1794–1799

    PubMed  CAS  Google Scholar 

  • Nagy A, Plonowski A, and Schally A. Stability of Cytotoxic Luteinizing Hormone-Releasing Hormone Conjugate (AN-152) Containing Doxorubicin-14-OHemiglutarate in Mouse and Human Serum In Vitro: Implications for the Design of Preclinical Studies. Proc Natl Acad Sci USA 2000; 97:829–834

    PubMed  CAS  Google Scholar 

  • Nelson A, Fingleton B, Rothenberg M, and Matrisian L. Matrix Metalloproteinases: Biologic Activity and Clinical Implications. J Clin Oncol 2000; 18:1135–1149

    PubMed  CAS  Google Scholar 

  • Nicolaou K, Dai W, and Guy R. Chemistry and Biology of Taxol. Angew Chem Int Ed Engl 1994; 33:15–44

    Google Scholar 

  • Nicolaou M, Yuan C, and Borchardt R. Phosphate Prodrugs for Amines Utilizing a Fast Intramolecular Hydroxy Amide Lactonization. J Org Chem 1996; 61:8636–8641

    CAS  Google Scholar 

  • Niculescu-Duvaz I, Scanlon I, Niculescu-Duvaz D, Friedlos F, Martin J, Marais R, and Springer C. Significant Differences in Biological Parameters between Prodrugs Cleavable by Carboxypeptidase G2 that Generate 3,5-Difluoro-Phenol and-Aniline Nitrogen Mustards in Gene-Directed Enzyme Prodrug Therapy Systems. J Med Chem 2004; 47:2651–2658

    PubMed  CAS  Google Scholar 

  • Okada Y, Matsumoto Y, Tsuda Y, Tada M, Wanaka K, Hijikata-Okunomiya A, and Okamoto S. Development of Plasmin-Selective Inhibitors and Studies of their Structure-Activity Relationship. Chem Pharm Bull 2000a; 48:184–193

    PubMed  CAS  Google Scholar 

  • Okada Y, Tsuda Y, Tada M, Wanaka K, Okamoto U, Hijikata-Okunomiya A, and Okamoto S. Development of Potent and Selective Plasmin and Plasma Kallikrein Inhibitors and Studies on the Structure-Activity Relationship. Chem Pharm Bull 2000b; 48:1964–1972

    PubMed  CAS  Google Scholar 

  • Omelyanenko V, Kopeãková P, Prakash R, Ebert C, and Kopecek J. Biorecognition of HPMA Copolymer-Adriamycin Conjugates by Lymphocytes Mediated By Synthetic Receptor Binding Epitopes. Pharm Res 1999; 16:1010–1019

    PubMed  CAS  Google Scholar 

  • Overall C, and López-Otín C. Strategies for MMP Inhibition in Cancer: Innovations for the Post-Trial Era. Nat Rev Cancer 2002; 2:657–672

    PubMed  CAS  Google Scholar 

  • Pan C, Cardarelli P, Nieder M, Pickford L, Gangwar S, King D, Yarranton G, Buckman D, Roscoe W, Zhou F, Salles A, Chen T, Horgan K, Wang Y, Nguyen T, Bebbington C. CD10 is a Key Enzyme Involved in the Activation of Tumor-Activated Peptide Prodrug CPI-0004Na and Novel Analogues: Implications for the Design of Novel Peptide Prodrugs for the Therapy of CD10(+) Tumors. Cancer Res 2003; 63:5526–5531

    PubMed  CAS  Google Scholar 

  • Panchagnula R. Pharmaceutical Aspects of Paclitaxel. Int J Pharmaceutics 1998; 172:1–15

    CAS  Google Scholar 

  • Panchal R. Novel Therapeutic Strategies to Selectively Kill Cancer Cells. Biochem Pharmacol 1998; 55:247–252

    PubMed  CAS  Google Scholar 

  • Papot S, Combaud D, and Gesson J. A New Spacer Group Derived from Arylmalonaldehydes for Glucuronylated Prodrugs. Bioorg Med Chem Lett 1998; 8:2545–2548

    PubMed  CAS  Google Scholar 

  • Parveen I, Naughton D, Whish W, and Threadgill M. 2-Nitroimidazol-5-Ylmethyl as a Potential Bioreductively Activated Prodrug System: Reductively Triggered Release of the PARP Inhibitor 5-Bromoisoquinolinone. Bioorg Med Chem Lett 1999 9:2031–2036

    PubMed  CAS  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun R, Shapiro L, Arap W, and Ruoslahti E. Aminopeptidase N is a Receptor for Tumor-Homing Peptides and a Target for Inhibiting Angiogenesis. Cancer Res 2000; 60:722–727

    PubMed  CAS  Google Scholar 

  • Pepper M. Role of The Matrix Metalloproteinase and Plasminogen Activator-Plasmin Systems in Angiogenesis. Arterioscler Thromb Vasc Biol 2001; 21:1104–1117

    PubMed  CAS  Google Scholar 

  • Pinski J, Schally A, Yano T, Szepeshazi K, Halmos G, Groot K, Comaru-Schally A, Radulovic S, and Nagy A. Inhibition of Growth of Experimental Prostate-Cancer in Rats by Lh-Rh Analogs Linked to Cytotoxic Radicals. Prostate 1993; 23:165–178

    PubMed  CAS  Google Scholar 

  • Platel D, Bonoron-Adèle S, Dix R, and Robert J. Preclinical Evaluation of The Cardiac Toxicity of HMR-1826, A Novel Prodrug of Doxorubicin. Br J Cancer 1999; 81:24–27

    PubMed  CAS  Google Scholar 

  • Plow E, and Miles L. Plasminogen Receptors in the Mediation of Pericellular Proteolysis. Cell Differ Dev 1990; 32:293–298

    PubMed  CAS  Google Scholar 

  • Polette M, Nawrocki-Raby B, Gilles C, Clavel C, and Birembaut P. Tumour Invasion and Matrix Metalloproteinases. Crit Rev Oncol Hematol 2004; 49:179–186

    PubMed  Google Scholar 

  • Pommier Y. DNA Topoisomerase-I and Topoisomerase-II in Cancer-Chemotherapy — Update and Perspectives. Cancer Chemother Pharmacol 1993; 32:103–108

    PubMed  CAS  Google Scholar 

  • Potmesil M. Camptothecins — From Bench Research to Hospital Wards. Cancer Res 1994; 54:1431–1439

    PubMed  CAS  Google Scholar 

  • Preissner K, Kanse S, and May A. Urokinase Receptor: A Molecular Organizer in Cellular Communication. Curr Opin Cell Biol 2000; 12:621–628

    PubMed  CAS  Google Scholar 

  • Priebe W. Anthracycline Antibiotics. American Chemical Society. ACS Symposium Series 574. Washington DC; 1995.

    Google Scholar 

  • Quax P, van Leeuwen R, Verspaget H, and Verheijen J. Protein and Messenger-RNA Levels of Plasminogen Activators and Inhibitors Analyzed in 22 Human Tumor-Cell Lines. Cancer Res 1990; 50:1488–1494

    PubMed  CAS  Google Scholar 

  • Quax P, Lamfers M, Lardenoye J, Grimbergen J, De Vries M, Slomp J, De Ruiter M, Kockx M, Verheijen J, and Van Hinsbergh V. Adenovirus Mediated Local Overexpression of ATF.BPTI, A Cell Surface Directed Plasmin Inhibitor, Reduces Neointima Formation in Balloon Injured Rat Carotid Arteries In Vivo. Circulation 2000; 103:562–569

    Google Scholar 

  • Radulovic S, Nagy A, Szoke B, and Schally A. Cytotoxic Analog of Somatostatin Containing Methotrexate Inhibits Growth of Mia Paca-2 Human Pancreatic-Cancer Xenografts in Nude Mice. Cancer Lett 1992; 62:263–271

    PubMed  CAS  Google Scholar 

  • Raleigh S, Wanogho E, Burke M, McKeown S, and Patterson L. Involvement of Human Cytochromes P450 (CYP) in the Reductive Metabolism of AQ4N, a Hypoxia Activated Anthraquinone Di-N-Oxide Prodrug. Int J Rad Oncol Biol Phys 1998; 42:763–767

    CAS  Google Scholar 

  • Raleigh S, Wanogho E, Burke M, and Patterson L. Rat Cytochromes P450 (CYP) Specifically Contribute to the Reductive Bioactivation of AQ4N, an Alkylaminoanthraquinone-Di-N-Oxide Anticancer Prodrug. Xenobiotica 1999; 29:1115–1122

    PubMed  CAS  Google Scholar 

  • Rauth A, Melo T, and Misra V. Bioreductive Therapies: An Overview of Drugs and their Mechanisms of Action. Int J Rad Oncol Biol Phys 1998; 42:755–762

    CAS  Google Scholar 

  • Reddy J, and Low P. Folate-Mediated Targeting of Therapeutic and Imaging Agents to Cancers. Crit Rev Ther Drug Carrier Systems 1998; 15:587–627

    CAS  Google Scholar 

  • Redinbo M, Stewart L, Kuhn P, Champoux J, and Hol W. Crystal Structures of Human Topoisomerase I in Covalent and Noncovalent Complexes with DNA. Science 1998; 279:1504–1513

    PubMed  CAS  Google Scholar 

  • Reijerkerk A, Voest E, and Gebbink M. No Grip, No Growth: the Conceptual Basis of Excessive Proteolysis in the Treatment of Cancer. Eur J Cancer 2000; 36:1695–1705

    PubMed  CAS  Google Scholar 

  • Reynolds T, Rockwell S, and Glazer P. Genetic Instability Induced by the Tumor Microenvironment. Cancer Res 1996; 56:5754–5757

    PubMed  CAS  Google Scholar 

  • Reynolds R, Tiwari A, Harwell J, Gordon D, Garrett B, Gilbert K, Schmid S, Waud W, and Struck R. Synthesis and Evaluation of Several New (2-Chloroethyl)Nitrosocarbamates as Potential Anticancer Agents. J Med Chem 2000; 43:1484–1488

    PubMed  CAS  Google Scholar 

  • Rihová B, Etrych T, Pechar M, JelÍnková M, Stastny M, Hovorka O, Kovár M, and Ulbrich K. Doxorubicin Bound to a HPMA Copolymer Carrier through Hydrazone Bond Is Effective also in a Cancer Cell Line with a Limited Content of Lysosomes. J Control Release 2001; 74:225–232

    PubMed  Google Scholar 

  • Ringsdorf H. Structure and Properties of Pharmacologically Active Polymers. J Pol Sci Pol Symp 1975; 51:135–153

    Article  CAS  Google Scholar 

  • Rivault F, Tranoy-Opalinski I, and Gesson J. A New Linker for Glucuronylated Anticancer Prodrugs. Bioorg Med Chem 2004; 12:675–682

    PubMed  CAS  Google Scholar 

  • Rodi D, Janes R, Sanganee H, Holton R, Wallace B, and Makowski L. Screening of A Library of Phage-Displayed Peptides Identifies Human Bcl-2 as a Taxol Binding Protein. J Mol Biol 1999; 285:197–203

    PubMed  CAS  Google Scholar 

  • Roffler S, Wang S, Chern J, Yeh M, and Tung E. Antineoplastic Glucuronide Prodrug Treatment of Human Tumor-Cells Targeted with a Monoclonal-Antibody Enzyme Conjugate. Biochem Pharmacol 1991; 42:2062–2065.

    PubMed  CAS  Google Scholar 

  • Rosenberg S. Modulators of the Urokinase-Type Plasminogen Activation System for Cancer. Exp Opin Ther Pat 2000; 10:1843–1852

    CAS  Google Scholar 

  • Ross D, Siegel D, Beall H, Prakash A, Mulcahy R, and Gibson N. DT-diaphorase in Activation and Detoxification of Quinones-Bioreductive Activation of Mitomycin-C. Cancer Metast Rev 1993; 12:83–102

    CAS  Google Scholar 

  • Reuning U, Magdolen V, Wilhelm O, Fischer K, Lutz V, Graeff H, and Schmitt M. Multifunctional Potential of the Plasminogen Activation System in Tumor Invasion and Metastasis (Review). Int J Oncol 1998; 13:893–906

    PubMed  CAS  Google Scholar 

  • Ruoslahti E. RGD and Other Recognition Sequences for Integrins. Annu Rev Cell Dev Biol 1996; 12:697–716

    PubMed  CAS  Google Scholar 

  • Saari W, Schwering J, Lyle P, Smith S, and Engelhardt E. Cyclization-Activated Prodrugs — Basic Carbamates of 4-Hydroxyanisole. J Med Chem 1990;33: 97–101

    PubMed  CAS  Google Scholar 

  • Safavy A, Raisch K, Khazaeli M, Buchsbaum D, and Bonner J. Paclitaxel Derivatives for Targeted Therapy of Cancer: Toward the Development of Smart Taxanes. J Med Chem 1999; 42:4919–4924

    PubMed  CAS  Google Scholar 

  • Sahin U, Hartmann F, Senter P, Pohl C, Engert A, Diehl V, and Pfreundschuh M. Specific Activation of the Prodrug Mitomycin Phosphate by a Bispecific Anti-Cd30 Antialkaline Phosphatase Monoclonal-Antibody. Cancer Res 1990; 50:6944–6948

    PubMed  CAS  Google Scholar 

  • Saiki I, Fujii H, Yoneda J, Abe F, Nakajima M, Tsuruo T, and Azuma I. Role of Aminopeptidase-N (CD13) in Tumor-Cell Invasion and Extracellular-Matrix Degradation. Int J Cancer 1993; 54:137–143

    PubMed  CAS  Google Scholar 

  • Sanders T, and Seto C. 4-Heterocyclohexanone-based Inhibitors of the Serine Protease Plasmin. J Med Chem 1999; 42:2969–2976

    PubMed  CAS  Google Scholar 

  • Satchi R, Connors T, and Duncan R. PDEPT: Polymer-Directed Enzyme Prodrug Therapy I. HPMA Copolymer-Cathepsin B and PK1 as a Model Combination. Br J Cancer 2001; 85:1070–1076

    PubMed  CAS  Google Scholar 

  • Satchi-Fainaro R, Hailu H, Davies J, Summerford C, and Duncan R. PDEPT: Polymer-Directed Enzyme Prodrug Therapy. 2. HPMA Copolymer-Beta-Lactamase and HPMA Copolymer-C-Dox as a Model Combination. Bioconjug Chem 2003; 14:797–804

    PubMed  CAS  Google Scholar 

  • Schally A, and Nagy N. Cancer Chemotherapy Based On Targeting of Cytotoxic Peptide Conjugates to Their Receptors on Tumors. Eur J Endocrin 1999; 141:1–14

    CAS  Google Scholar 

  • Schiff P, Fant J, and Horwitz S. Promotion of Microtubule Assembly In Vitro by Taxol. Nature 1979; 277:665–667

    PubMed  CAS  Google Scholar 

  • Schmidt F, Florent J, Monneret C, Straub R, Czech J, Gerken M, and Bosslet K. Glucuronide Prodrugs of Hydroxy Compounds for Antibody Directed Enzyme Prodrug Therapy (ADEPT): A Phenol Nitrogen Mustard Carbamate. Bioorg Med Chem Lett 1997; 7:1071–1076

    CAS  Google Scholar 

  • Schmidt F, and Monneret C. Prodrug Mono Therapy: Synthesis and Biological Evaluation of an Etoposide Glucuronide-Prodrug. Bioorg Med Chem 2003; 11:2277–2283

    PubMed  CAS  Google Scholar 

  • Schmitt M, Harbeck N, Thomssen C, Wilhelm O, Magdolen V, Reuning U, Ulm K, Hofler H, Jänicke F, and Graeff H. Clinical Impact of the Plasminogen Activation System in Tumor Invasion and Metastasis: Prognostic Relevance and Target for Therapy. Thromb Haemost. 1997; 78:285–296

    PubMed  CAS  Google Scholar 

  • Schmitt M, Wilhelm O, Reuning U, Krüger A, Harbeck N, Lengyel E, Graeff H, Gänsbacher B, Kessler H, Bürgle M, Stürzebecher J, Sperl S, and Magdolen V. The Urokinase Plasminogen Activator System as a Novel Target for Tumour Therapy. Fibrin Proteol 2000; 14:114–132

    CAS  Google Scholar 

  • Schweiki D, Itin A, Soffer D, and Keshet E. Vascular Endothelial Growth-Factor Induced by Hypoxia May Mediate Hypoxia-Initiated Angiogenesis. Nature 1992; 359:843–845

    Google Scholar 

  • Senter P, Saulnier M, Schreiber G, Hirschberg D, Brown J, Hellström I, and Hellström K. Anti-Tumor Effects of Antibody Alkaline-Phosphatase Conjugates in Combination with Etoposide Phosphate. Proc Natl Acad Sci USA 1988; 85:4842–4846

    PubMed  CAS  Google Scholar 

  • Shyam K, Penketh P, Shapiro M, Belcourt M, Loomis R, Rockwell S, and Sartorelli A. Hypoxia-Selective Nitrobenzyloxycarbonyl Derivatives of 1,2-Bis(Methylsulfonyl)-1-(2-Chloroethyl)Hydrazines. J Med Chem 1999; 42:941–946

    PubMed  CAS  Google Scholar 

  • Siim B, Denny W, and Wilson W. Oncol Res 1997; 9:357–369

    PubMed  CAS  Google Scholar 

  • Silletti S, Kessler T, Goldberg J, Boger D, and Cheresh D. Disruption of Matrix Metalloproteinase 2 Binding to Integrin Alpha(v)Beta(3) by an Organic Molecule Inhibits Angiogenesis and Tumor Growth In Vivo. Proc Natl Acad Sci USA 2001; 98:119–124

    PubMed  CAS  Google Scholar 

  • Simon D, Wei Y, Zhang L, Rao N, Xu H, Chen Z, Liu Q, Rosenberg S, and Chapman H. Identification of a Urokinase Receptor-Integrin Interaction Site — Promiscuous Regulator of Integrin Function. J Biol Chem 2000; 275:10228–10234

    PubMed  CAS  Google Scholar 

  • Skarsgard L, Acheson D, Vinczan A, Wouters B, Heinrichs B, Loblaw D, Minchinton A, and Chaplin D. Cytotoxic Effect of Rb-6145 In Human Tumor-Cell Lines-Dependence on Hypoxia, Extracellular and Intracellular pH and Drug Uptake. Brit J Cancer 1995; 72:1479–1486

    PubMed  CAS  Google Scholar 

  • Smal M, Dong Z, Cheung H, Asano Y, Escoffier L, Costello M, and Tattersall M. Activation and Cytotoxicity of 2-Alpha-Aminoacyl Prodrugs of Methotrexate. Biochem Pharmacol 1995; 49:567–574

    PubMed  CAS  Google Scholar 

  • Soyez H, Schacht E, De Marre A, and Seymour L. Polymeric Prodrugs of Mitomycin C. Macromol Symp 1996; 103:163–176

    CAS  Google Scholar 

  • Soyez H, Schacht E, and Vanderkerken S. The Crucial Role of Spacer Groups in Macromolecular Prodrug Design. Adv Drug Del Rev 1996; 21:81–106

    CAS  Google Scholar 

  • Sperker B, Backman J, and Kroemer H. The Role of Beta-Glucuronidase in Drug Disposition and Drug Targeting in Humans. Clin Pharmacokinet 1997; 33:18–31

    PubMed  CAS  Google Scholar 

  • Sperl S, Jacob U, de Prada N, Sturzebecher J, Wilhelm O, Bode W, Magdolen V, Huber R, and Moroder L. (4-Aminomethyl)Phenylguanidine Derivatives as Nonpeptidic Highly Selective Inhibitors of Human Urokinase. Proc Natl Acad Sci USA 2000; 97:5113–5118

    PubMed  CAS  Google Scholar 

  • Steinberg G, and Borch R. Synthesis and Evaluation of Pteroic Acid-Conjugated Nitroheterocyclic Phosphoramidates as Folate Receptor-Targeted Alkylating Agents. J Med Chem 2001; 44:69–73

    PubMed  CAS  Google Scholar 

  • Sudimack J, and Lee R. Targeted Drug Delivery via the Folate Receptor. Adv Drug Del Rev 2000; 41:147–162

    CAS  Google Scholar 

  • Sundfor K, Lyng H, and Rofstad E. Tumour Hypoxia and Vascular Density as Predictors of Metastasis in Squamous Cell Carcinoma of the Uterine Cervix. Brit J Cancer 1998; 78:822–827

    PubMed  CAS  Google Scholar 

  • Sykes B, Atwell G, Hogg A, Wilson W, O’Connor C, and Denny W. N-Substituted 2-(2,6-Dinitrophenylamino)Propanamides: Novel Prodrugs that Release a Primary Amine via Nitroreduction and Intramolecular Cyclization. J Med Chem 1999; 42:346–355

    PubMed  CAS  Google Scholar 

  • Szebeni J, Muggia F, and Alving C. Complement Activation By Cremophor EL as a Possible Contributor to Hypersensitivity to Paclitaxel: An In Vitro Study. J Natl Cancer Inst 1998; 90:300–306

    PubMed  CAS  Google Scholar 

  • Szpaderska A, and Frankfater A. An Intracellular Form of Cathepsin B Contributes to Invasiveness in Cancer. Cancer Res 2001; 61:3493–3500

    PubMed  CAS  Google Scholar 

  • Tannock I, and Hill R. The Basic Science of Oncology. New York: McGraw-Hill; 1998

    Google Scholar 

  • Tarui T, Mazar A, Cines D, and Takada Y. Urokinase-Type Plasminogen Activator Receptor (CD87) Is a Ligand for Integrins and Mediates Cell-Cell Interaction. J Biol Chem 2001; 276:3983–3990

    PubMed  CAS  Google Scholar 

  • Thorpe P. Vascular Targeting Agents as Cancer Therapeutics. Clin Cancer Res 2004; 10:415–427

    PubMed  Google Scholar 

  • Timár F, Botyánszki J. Süli-Vargha H, Babó I, Oláh J, Pogány G, and Jeney A. The Antiproliferative Action of a Melphalan Hexapeptide with Collagenase-Cleavable Site. Cancer Chemother Pharmacol 1998; 41:292–298

    PubMed  Google Scholar 

  • Toki B, Cerveny C, Wahl A, and Senter P. Protease-Mediated Fragmentation of p-Amidobenzyl Ethers: A New Strategy for the Activation of Anticancer Prodrugs. J Org Chem. 2002; 67:1866–1872

    PubMed  CAS  Google Scholar 

  • Tomlinson R, Heller J, Brocchini S, and Duncan R. Polyacetal-Doxorubicin Conjugates Designed for pH-Dependent Degradation. Bioconjugate Chem 2003; 14:1096–1106

    CAS  Google Scholar 

  • Trouet A, Baurain R, Deprez-De Campeneere D, Masquelier M, Pirson P. Targeting of Antitumour and Antiprotozoal Drugs by Covalent Linking to Protein Carriers, In: Gregoriadis G, Senior J, and Trouet A, Eds. Targeting of Drugs, New York: Plenum Press; 1982; 19–30

    Google Scholar 

  • Trouet A, Passioukov A, Van derpoorten K, Fernandez A, Abarca-Quinones J, Baurain R, Lobl T, Oliyai C, Shochat D, and Dubois V. Extracellularly Tumor-Activated Prodrugs for the Selective Chemotherapy of Cancer: Application to Doxorubicin and Preliminary In Vitro and In Vivo Studies. Cancer Res 2001; 61:2843–2846

    PubMed  CAS  Google Scholar 

  • Van der Pluijm G, Sijmons B, Vloedgraven H, Van der Bent C, Drijfhout J, Verheijen J, Quax P, Karperien M, Papapoulos S, and Löwik C. Urokinase-Receptor/Integrin Complexes Are Functionally Involved in Adhesion and Progression of Human Breast Cancer In Vivo. Am J Pathol 2001; 159:971–982

    PubMed  Google Scholar 

  • Van Noorden C, Jonges T, Meade-Tollin L, Smith R, and Koehler A. In Vivo Inhibition of Cysteine Proteinases Delays the Onset of Growth of Human Pancreatic Cancer Explants. Brit J Cancer 2000; 82:931–936

    PubMed  Google Scholar 

  • Varga J. Hormone Drug Conjugates. Meth Enzymol 1985; 112:259–269

    PubMed  CAS  Google Scholar 

  • Vasey P, Kaye S, Morrison R, Twelves C, Wilson P, Duncan R, Thomson A, Murray L, Hilditch T, Murray T, Burtles S, Fraier D, Frigerio E, and Cassidy J. Phase I Clinical and Pharmacokinetic Study of PK1 [N-(2-Hydroxypropyl)Methacrylamide Copolymer Doxorubicin]: First Member of A New Class of Chemotherapeutic Agents — Drug-Polymer Conjugates. Clin Cancer Res 1999;. 5:83–94

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, and Okunieff P. Blood-Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human-Tumors — A Review. Cancer Res 1989; 49:6449–6465

    PubMed  CAS  Google Scholar 

  • Verner E, Katz B, Spencer J, Allen D, Hataye J, Hruzewicz W, Hui H, Kolesnikov A, Li Y, Luong C, Martelli A, Radika K, Rai R, She M, Shrader W, Sprengeler P, Trapp S, Wang J, Young W, and Mackman R. Development of Serine Protease Inhibitors Displaying a Multicentered Short (< 2.3 Angstrom) Hydrogen Bond Binding Mode: Inhibitors of Urokinase-Type Plasminogen Activator and Factor Xa. J Med Chem 2001; 44:2753–2771

    PubMed  CAS  Google Scholar 

  • Volm M. Multidrug Resistance and Its Reversal. Anticancer Res 1998; 18:2905–2917

    PubMed  CAS  Google Scholar 

  • Vu T. Don’t Mess with the Matrix. Nat Genet 2001; 28:202–203

    PubMed  CAS  Google Scholar 

  • Wall M, Wani M, Cook C, Palmer K, McPhail A, and Sim G. Plant Antitumor Agents. I. Isolation and Structure of Camptothecin A Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca Acuminata. J Am Chem Soc 1966; 88:3889–3890

    Google Scholar 

  • Wang B, Gangwar S, Pauletti G, Siahaan T, and Borchardt R. Synthesis of a Novel Esterase-Sensitive Cyclic Prodrug System for Peptides that Utilizes a “Trimethyl Lock”-Facilatated Lactonization Reaction. J Org Chem 1997; 62:1363–1367

    CAS  Google Scholar 

  • Wang J. DNA Topoisomerases. Annu Rev Biochem 1985; 54:665–697

    PubMed  CAS  Google Scholar 

  • Wang J, Biedermann K, and Brown J. Repair of DNA and Chromosome Breaks in Cells Exposed to Sr-4233 under Hypoxia or to Ionizing-Radiation. Cancer Res 1992; 52:4473–4477

    PubMed  CAS  Google Scholar 

  • Wang T, Wang H, and Soong, Y. Paclitaxel-Induced Cell Death — Where the Cell Cycle and Apoptosis Come Together. Cancer 2000; 88:2619–2628

    PubMed  CAS  Google Scholar 

  • Weiss R. Weiss R. The Anthracyclines-Will We Ever Find A Better Doxorubicin? Sem Oncol 1992; 19:670–686

    CAS  Google Scholar 

  • White I, Suzanger M, Mattocks A, Bailey E, Farmer P, and Connors T. Reduction of Nitromin to Nitrogen-Mustard-Unscheduled DNA-Synthesis in Aerobic or Anaerobic Rat Hepatocytes, JB1, BL8 and Walker Carcinoma Cell-Lines. Carcinogenesis 1989; 10:2113–2118

    PubMed  CAS  Google Scholar 

  • Wilson W, Denny W, Pullen S, Thompson K, Li A, Patterson L, and Lee H. Tertiary Amine N-Oxides as Bioreductive Drugs: DACA N-Oxide, Nitracrine N-Oxide and AQ4N. Brit J Cancer 1996; 74(suppl. XXVII): S 43–S47

    Google Scholar 

  • Wilson K, Illig C, Subasinghe N, Hoffman J, Rudolph M, Soll R, Molloy C, Bone R, Green D, Randall T, Zhang M, Lewandowski F, Zhou Z, Sharp C, Maguire D, Grasberger B, DesJarlais R, and Spurlino J. Synthesis of Thiophene-2-Carboxamidines Containing 2-Amino-Thiazoles and their Biological Evaluation as Urokinase Inhibitors. Bioorg Med Chem Lett 2001; 11:915–918

    PubMed  CAS  Google Scholar 

  • Wiman B, Lijnen H, and Collen D. Specific Interaction between the Lysine-Binding Sites in Plasmin and Complementary Sites in Alpha-2-Antiplasmin and in Fibrinogen. Biochim Biophys Acta 1979; 579:142–154

    PubMed  CAS  Google Scholar 

  • Wong B, Defeo-Jones D, Jones R, Garsky V, Feng D, Oliff A, Chiba M, Ellis J, and Lin J. PSA-Specific and Non-PSA-Specific Conversion of a PSA-Targeted Peptide Conjugate of Doxorubicin to Its Active Metabolites. Drug Met Disp 2001; 29:313–318

    CAS  Google Scholar 

  • Yamashita J, and Ogawa M. Cell Biologic Factors and Cancer Spread. Int J Oncol 1997; 10:807–813

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

de Groot, V.(. (2007). Targeting - Cancer — Small Molecules. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W. (eds) Prodrugs. Biotechnology: Pharmaceutical Aspects, vol V. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49785-3_13

Download citation

Publish with us

Policies and ethics