Prodrugs pp 447-506 | Cite as

Targeting - Cancer — Small Molecules

  • Vincent (F.M.H.) de Groot
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume V)


Except for heart and coronary disease, cancer is now the principal cause of death in the Western world. Despite extensive cancer research to find improved drugs and treatments, the average chance of being cured of cancer is augmented every year by only 0.5 percent. Cancer comprises a broad group of diseases characterized by uncontrolled and independent proliferative growth of tumor cells (Alberts et al., 1994). In cancer, malignant tumors invade surrounding tissue and give rise to formation of secondary tumors (metastases). The ability to metastasize is largely responsible for the lethality of malignant tumors. Surgery and radiotherapy are mostly used for treatment when a tumor is localized to a certain tissue. When metastasis has occurred, chemotherapy becomes an important weapon against cancer.


Drug Release Parent Drug HPMA Copolymer Enzyme Prodrug Therapy Prodrug Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, and Watson J. Molecular Biology of the Cell. New York, Garland Science Publishing; 1994Google Scholar
  2. Amir R, Pessah N, Shamis M, and Shabat D. Self-Immolative Dendrimers. Angew Chem Int Ed. 2003; 42:4494–4498Google Scholar
  3. Amos L, and Löwe J. How Taxol (R) Stabilises Microtubule Structure. Chem Biol. 1999; 6:R65–R69PubMedGoogle Scholar
  4. Andreasen P, Egelund R, and Petersen H. The Plasminogen Activation System in Tumor Growth, Invasion, and Metastasis. Cell Mol Life Sci 2000; 57:25–40PubMedGoogle Scholar
  5. Arap W, Pasqualini R, and Ruoslahti E. Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model Science 1998; 279:377–380PubMedGoogle Scholar
  6. Arcamone F, Cassmelli G, and Fantini G. Adriamycin, 14-Hydroxydaunomycin, A New Antitumor Antibiotic from S-Peucetius Var Caesius. Biotechnol Bioeng 1969; 11:1101–1110PubMedGoogle Scholar
  7. Astedt B, and Holmberg L. Immunological Identity of Urokinase and Ovarian Carcinoma Plasminogen Activator Released in Tissue-Culture. Nature 1976; 261:595–597PubMedGoogle Scholar
  8. Bagshawe K. Antibody Directed Enzymes Revive Anticancer Prodrugs Concept. Brit J Cancer 1987; 56:531–532PubMedGoogle Scholar
  9. Bagshawe K. Antibody-Directed Enzyme Prodrug Therapy-A Review. Drug Dev Res 1995;34:220–230Google Scholar
  10. Bajou K, Noël A, Gerard R, Masson V, Brunner N, Holst-Hansen C, Skobe M, Fusenig N, Carmeliet P, Collen D, and Foidart J. Absence of Host Plasminogen Activator Inhibitor 1 Prevents Cancer Invasion and Vascularization. Nat Med 1998; 4:923–928PubMedGoogle Scholar
  11. Bajou K, Masson V, Gerard R, Schmitt P, Albert V, Praus M, Lund L, Frandsen T, Brunner N, Dano K, Fusenig N, Weidle U, Carmeliet G, Loskutoff D, Collen D, Carmeliet P, Foidart J, and Noël A. The Plasminogen Activator Inhibitor PAI-1 Controls In Vivo Tumor Vascularization by Interaction with Proteases, Not Vitronectin: Implications for Antiangiogenic Strategies. J Cell Biol 2001; 152:777–784PubMedGoogle Scholar
  12. Bajusz S, Janáky T, Csernus V, Bokser L, Fekete M, Srkalovic G, Redding T, and Schally A. Highly Potent Metallopeptide Analogs of Luteinizing-Hormone-Releasing Hormone. Proc Natl Acad Sci USA 1989; 86:6313–6317PubMedGoogle Scholar
  13. Bakina E, Wu Z, Rosenblum M, and Farquhar D. Intensely Cytotoxic Anthracycline Prodrugs: Glucuronides. J Med Chem 1997; 40:4013–4018PubMedGoogle Scholar
  14. Balajthy Z, Aradi J, Kiss I, and Elödi P. Synthesis and Functional-Evaluation of a Peptide Derivative of 1-Beta-D-Arabinofuranosylcytosin. J Med Chem 1992; 35:3344–3349PubMedGoogle Scholar
  15. Barta T, Becker D, Bedell L, De Crescenzo G, McDonald J, Munie G, Rao S, Shieh H, Stegeman R, Stevens A, and Villamil C. Synthesis and Activity of Selective MMP Inhibitors with an Aryl Backbone. Bioorg Med Chem Lett 2000; 10:2815–2817PubMedGoogle Scholar
  16. Baurain R, Masquelier M, Deprez-De Campeneere D, and Trouet A. Amino-Acid and Dipeptide Derivatives of Daunorubicin.2. Cellular Pharmacology and Anti-Tumor Activity on L1210 Leukemic-Cells In Vitro and In Vivo. J Med Chem 1980; 23:1171–1174PubMedGoogle Scholar
  17. Begent R. Recent Advances in Tumor Imaging-Use of Radiolabeled Antitumour Antibodies. Biochim Biophys Acta 1984; 780:151–166Google Scholar
  18. Boger D, Goldberg J, Silletti S, Kessler T, and Cheresh D. Identification of a Novel Class of Small-Molecule Antiangiogenic Agents through the Screening of Combinatorial Libraries which Function by Inhibiting the Binding and Localization of Proteinase MMP2 to Integrinαvβ3. J Am Chem Soc. 2001; 123:1280–1288PubMedGoogle Scholar
  19. Bosslet K, Czech J, and Hoffmann D. Tumor-Selective Prodrug Activation by Fusion Protein-Mediated Catalysis. Cancer Res 1994; 54:2151–2159PubMedGoogle Scholar
  20. Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B, Kroemer H, Gesson J, Koch M, and Monneret C. Elucidation of the Mechanism Enabling Tumor Selective Prodrug Monotherapy. Cancer Res 1998; 58:1195–1201PubMedGoogle Scholar
  21. Boven E, Hendriks H, Erkelens C, and Pinedo H. The Antitumor Effects of the Prodrugs N-L-Leucyl-Doxorubicin and Vinblastine-Isoleucinate in Human Ovarian-Cancer Xenografts. Brit J Cancer 1992; 66:1044–1047PubMedGoogle Scholar
  22. Boyle F, and Costello G. Cancer Therapy: A Move to the Molecular Level. Chem Soc Rev. 1998; 27:251–261Google Scholar
  23. Breistol K, Hendriks H, Berger D, Langdon S, Fiebig H, and Fodstad O. The Antitumour Activity of the Prodrug N-L-Leucyl-Doxorubicin and Its Parent Compound Doxorubicin in Human Tumour Xenografts. Eur J Cancer 1998; 34:1602–1606PubMedGoogle Scholar
  24. Breistol K, Hendriks H, and Fodstad O. Superior Therapeutic Efficacy of N-LLeucyl-Doxorubicin Versus Doxorubicin in Human Melanoma Xenografts Correlates with Higher Tumour Concentrations of Free Drug. Eur J Cancer 1999; 35:1143–1149PubMedGoogle Scholar
  25. Brooks P, Clark R, and Cheresh D. Requirement of Vascular Integrin Alpha(V)Beta(3) for Angiogenesis. Science 1994; 264:569–571PubMedGoogle Scholar
  26. Brooks P, Strömblad S, Sanders L, Von Schalscha T, Aimes R, Stetler-Stevenson W, Quigley J, and Cheresh D. Localization of Matrix Metalloproteinase MMP-2 to the Surface of Invasive Cells by Interaction with Integrin Alpha V Beta 3. Cell 1996; 85:683–693PubMedGoogle Scholar
  27. Brooks T, Slomp J, Quax P, De Bart A, Spencer M, Verheijen J, and Charlton P. Antibodies to PAI-1 Alter the Invasive and Migratory Properties of Human Tumour Cells In Vitro. Clin Exp Metastasis 2001; 18:445–453Google Scholar
  28. Brown J. SR-4233 (Tirapazamin) — A New Anticancer Drug Exploiting Hypoxia in Solid Tumors. Brit J Cancer 1993; 67:1163–1170PubMedGoogle Scholar
  29. Brown J. The Hypoxic Cell: A Target for Selective Cancer Therapy — Eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 1999; 59:5863–5870PubMedGoogle Scholar
  30. Brown J. Hypoxic Cytotoxic Agents: A New Approach to Cancer Chemotherapy. Drug Res Updates. 2000a; 3:7–13Google Scholar
  31. Brown J. Exploiting the Hypoxic Cancer Cell: Mechanisms and Therapeutic Strategies. Mol Med Today 2000b; 6:157–162PubMedGoogle Scholar
  32. Bundgaard H. Novel Chemical Approaches in Prodrug Design. Drugs of the Future 1991; 16:443–458Google Scholar
  33. Bürgle M, Koppitz M, Riemer C, Kessler H, König B, Weidle U, Kellermann J, Lottspeich F, Graeff H, Schmitt M, Goretzki L, Reuning U, Wilhelm O, and Magdolen V. Inhibition of the Interaction of Urokinase-Type Plasminogen Activator (Up With Its Receptor (uPAR) by Synthetic Peptides. Biol Chem 1997; 378:231–237PubMedCrossRefGoogle Scholar
  34. Burrows F, and Thorpe P. Vascular Targeting-A New Approach to the Therapy of Solid Tumors. Pharmacol Ther 1994; 64:155–174PubMedGoogle Scholar
  35. Campbell I, Jones T, Foulkes W, and Trowsdale J. Folate-Binding Protein is a Marker for Ovarian-Cancer. Cancer Res 1991; 51:5329–5338PubMedGoogle Scholar
  36. Carl PL. Plasmin-Activated Prodrugs for Cancer Chemotherapy. In: Cheng Y-C, Goz, B, and Minkoff M, Eds. Development of Target-oriented Anticancer Drugs. Progress in Cancer Research and Therapy, Vol. 28. New York: Raven Press; 1983. 143–155Google Scholar
  37. Carl P, Chakravarty P, Katzenellenbogen J, and Weber M. Protease-Activated Prodrugs for Cancer Chemotherapy. Proc Natl Acad Sci USA 1980; 77:2224–2228PubMedGoogle Scholar
  38. Carl P, Chakravarty P, and Katzenellenbogen J. A Novel Connector Linkage Applicable in Prodrug Design. J Med Chem 1981; 24:479–480PubMedGoogle Scholar
  39. Carmeliet P, and Jain R. Angiogenesis in Cancer and Other Diseases. Nature 2000; 407:249–257PubMedGoogle Scholar
  40. Chakravarty PK, Carl PL, Weber MJ, and Katzenellenbogen JA. Plasmin-Activated Prodrugs for Cancer Chemotherapy. 1. Synthesis and Biological Activity of Peptidylacivicin and Peptidylphenylenediamine Mustard. J Med Chem 1983a; 26:633–638PubMedGoogle Scholar
  41. Chakravarty PK, Carl PL, Weber MJ, and Katzenellenbogen JA. Plasmin-Activated Prodrugs for Cancer Chemotherapy. 2. Synthesis and Biological Activity of Peptidyl Derivatives of Doxorubicin. J Med Chem 1983b; 26:638–644PubMedGoogle Scholar
  42. Chen B, Chan L, Wang S, Wu M, Chern J, and Roffler S. Cure of Malignant Ascites and Generation of Protective Immunity by Monoclonal Antibody-Targeted Activation of a Glucuronide Prodrug in Rats. Int J Cancer 1997; 73:392–402PubMedGoogle Scholar
  43. Cheng T, Chou W, Chen B, Chern J, and Roffler S. Characterization of an Antineoplastic Glucuronide Prodrug. Biochem Pharmacol 1999; 58:325–328PubMedGoogle Scholar
  44. Connors T, and Whisson M. Cure of Mice Bearing Advanced Plasma Cell Tumours with Aniline Mustard — Relationship between Glucuronidase Activity and Tumour Sensitivity. Nature 1966; 210:866–867PubMedGoogle Scholar
  45. Curley G, Blum H, and Humphries M. Integrin Antagonists. Cell Mol Life Sci. 1999; 56:427–441PubMedGoogle Scholar
  46. Curran S, and Murray G. Matrix Metalloproteinases: Molecular Aspects of Their Roles in Tumour Invasion and Metastasis. Eur J Cancer 2000; 36:1621–1630PubMedGoogle Scholar
  47. Damen E, de Groot F, and Scheeren H. Novel Anthracycline Prodrugs. Expert Opinion on Therapeutic Patents 2001; 11:651–666Google Scholar
  48. De Bont D, Leenders R, Haisma H, van der Meulen-Muileman I, and Scheeren J. Synthesis and Biological Activity of Beta-Glucuronyl Carbamate-Based Prodrugs of Paclitaxel as Potential Candidates for ADEPT. Bioorg Med Chem 1997; 5:405–414PubMedGoogle Scholar
  49. Defeo-Jones D, Garsky V, Wong B, Feng D, Bolyar T, Haskell K, Kiefer D, Leander K, and McAvoy E. A Peptide-Doxorubicin ‘Prodrug’ Activated by Prostate-Specific Antigen Selectively Kills Prostate Tumor Cells Positive for Prostate-Specific Antigen In Vivo. Nat Med 2000; 6:1248–1252PubMedGoogle Scholar
  50. De Groot F, De Bart A, Verheijen J, and Scheeren H. Synthesis and Biological Evaluation of Novel Prodrugs of Anthracyclines for Selective Activation by the Tumor-Associated Protease Plasmin. J Med Chem 1999; 42:5277–5283PubMedGoogle Scholar
  51. De Groot F, van Berkom L, and Scheeren H. Synthesis and Biological Evaluation of 2′-Carbamate-Linked and 2′-Carbonate-Linked Prodrugs of Paclitaxel: Selective Activation by the Tumor-Associated Protease Plasmin. J Med Chem 2000; 43:3093–3102PubMedGoogle Scholar
  52. De Groot F, Damen E, and Scheeren H. Anticancer Prodrugs for Application in Monotherapy: Targeting Hypoxia, Tumor-Associated Enzymes, and Receptors. Curr Med Chem 2001a; 8:1093–1122PubMedGoogle Scholar
  53. De Groot F, Loos W, Koekkoek R, van Berkom L, Busscher G, Seelen A, Albrecht C, Bruijn de P, and Scheeren H. Elongated Multiple Electronic Cascade and Cyclization Spacer Systems in Activatible Anticancer Prodrugs for Enhanced Drug Release. J Org Chem 2001b; 66:8815–8830PubMedGoogle Scholar
  54. De Groot F, Broxterman H, Adams H, van Vliet A, Tesser G, Elderkamp Y, Schraa A, Kok R, Molema G, Pinedo H, and Scheeren H. Design, Synthesis, and Biological Evaluation of a Dual Tumor-Specific Motive Containing Integrin-Targeted Plasmin-Cleavable Doxorubicin Prodrug. Mol Cancer Ther 2002; 1:901–911PubMedGoogle Scholar
  55. De Groot F, Albrecht C, Koekkoek R, Beusker P, and Scheeren H. “Cascade-Release Dendrimers” Liberate All End Groups upon a Single Triggering Event in the Dendritic Core. Angew Chem Int Ed. 2003; 42:4490–4493Google Scholar
  56. De Jong J, Geijssen G, Munniksma C, Vermorken J, and van der Vijgh W. Plasma Pharmacokinetics and Pharmacodynamics of a New Prodrug N-LLeucyldoxorubicin and its Metabolites in a Phase-I Clinical-Trial. J Clin Oncol 1992; 10:1897–1906PubMedGoogle Scholar
  57. Denmeade S, Lou W, Malm J, Lövgren J, Lilja H, and Isaacs J. Specific and Efficient Peptide Substrates for Assaying the Proteolytic Activity of Prostate-Specific Antigen. Cancer Res 1997; 57:4924–4930PubMedGoogle Scholar
  58. Denmeade S, Nagy A, Gao J, Lilja H, Schally A, and Isaacs J. Enzymatic Activation of a Doxorubicin-Peptide Prodrug by Prostate-Specific Antigen. Cancer Res 1998; 58:2537–2540PubMedGoogle Scholar
  59. Denmeade S, Jakobsen C, Janssen S, Khan S, Garrett E, Lilja H, Christensen S, and Isaacs J. Prostate-Specific Antigen-Activated Thapsigargin Prodrug as Targeted Therapy for Prostate Cancer. J Natl Cancer Inst 2003; 95:990–1000PubMedGoogle Scholar
  60. Denny W, and Wilson W. Bioreducible Mustards — A Paradigm for Hypoxia-Selective Prodrugs of Diffusible Cytotoxins (Hpdcs). Cancer Metast Rev 1993; 12:135–151Google Scholar
  61. Deryugina E, Ratnikov B, Monosov E, Postnova T, DiScipio R, Smith J, and Strongin A. MT1-MMP Initiates Activation of Pro-MMP-2 and Integrin Alpha V Beta 3 Promotes Maturation of MMP-2 in Breast Carcinoma Cells. Exp Cell Res 2001; 263:209–223PubMedGoogle Scholar
  62. Desbène S, Dufat-Trinh Van H, Michel S, Koch M, Tillequin F, Fournier G, Farjaudon N, and Monneret C. Doxorubicin Prodrugs with Reduced Cytotoxicity suited for Tumour-Specific Activation. Anticancer Drug Des 1998; 13:955–968PubMedGoogle Scholar
  63. DeVita V, Hellman S, and Rosenberg S. Cancer Principles and Practice of Oncology. Lippincott-Raven; 1997.Google Scholar
  64. Devy L, de Groot F, Blacher S, Hajitou A, Beusker P, Scheeren H, Foidart J, and Noël A. Plasmin-Activated Doxorubicin Prodrugs Containing a Spacer Reduce Tumor Growth and Angiogenesis without Systemic Toxicity. FASEB J 2004; 18:565–567PubMedGoogle Scholar
  65. Di Marco A, Gaetani M, and Orezzi P. ‘Daunomycin,’ A New Antibiotic of the Rhodomycin Group. Nature 1964; 201:706–707Google Scholar
  66. Dirix L, Tonnesen F, Cassidy J, Epelbaum R, Ten Bokkel Huinink W, Pavlidis N, Sorio R, Gamucci T, and Wolff I. EO9 Phase II Study in Advanced Breast, Gastric, Pancreatic and Colorectal Carcinoma by the EORTC Early Clinical Studies Group. Eur J Cancer 1996; 32A:2019–2022PubMedGoogle Scholar
  67. Doronina S, Toki B, Torgov M, Mendelsohn B, Cerveny C, Chace D, DeBlanc R, Gearing R, Bovee T, Siegall C, Francisco J, Wahl A, Meyer D, and Senter P. Development of Potent Monoclonal Antibody Auristatin Conjugates for Cancer Therapy. Nat Biotechnol 2003; 21:778–784PubMedGoogle Scholar
  68. Dubowchik G and Radia S. Monomethoxytrityl (MMT) as a Versatile Amino Protecting Group for Complex Prodrugs of Anticancer Compounds Sensitive to Strong Acids, Bases and Nucleophiles. Tetrahedron Lett 1997; 38:5257–5260Google Scholar
  69. Dubowchik G and Firestone R. Cathepsin B-sensitive Dipeptide Prodrugs. 1. A Model Study of Structural Requirements for Efficient Release of Doxorubicin. Bioorg Med Chem Lett 1998; 8:3341–3346PubMedGoogle Scholar
  70. Dubowchik G and Walker M. Receptor-Mediated and Enzyme-Dependent Targeting of Cytotoxic Anticancer Drugs. Pharmacol Ther 1999; 83:67–123PubMedGoogle Scholar
  71. Dubowchik G, Mosure K, Knipe J, and Firestone R. Cathepsin B-Sensitive Dipeptide Prodrugs. 2. Models of Anticancer Drugs Paclitaxel (Ttaxol (R)), Mitomycin C and Doxorubicin. Bioorg Med Chem Lett 1998; 8:3347–3352PubMedGoogle Scholar
  72. Dubowchik G, Firestone R, Padilla L, Willner D, Hofstead S, Mosure K, Knipe J, Lasch S, and Trail P. Cathepsin B-Labile Dipeptide Linkers for Lysosomal Release of Doxorubicin from Internalizing Immunoconjugates: Model Studies of Enzymatic Drug Release and Antigen-Specific In Vitro Anticancer Activity. Bioconjugate Chem 2002; 13:588–869Google Scholar
  73. Dunbar S, Ornstein D, and Zacharski L. Cancer Treatment with Inhibitors of Urokinase-Type Plasminogen Activator and Plasmin. Exp Opin Invest Drugs 2000; 9:2085–2092Google Scholar
  74. Duncan R. The Dawning Era of Polymer Therapeutics. Nat Rev Drug Discov 2003; 2:347–362PubMedGoogle Scholar
  75. Duncan R, Gac-Breton S, Keane R, Musila R, Sat Y, Satchi R, and Searle F. Polymer-Drug Conjugates, PDEPT and PELT: Basic Principles for Design and Transfer from the Laboratory to Clinic. J Control Release 2001; 74:135–146PubMedGoogle Scholar
  76. Dunkern T, and Mueller-Klieser W. Quantification of Apoptosis Induction by Doxorubicin In Three Types of Human Mammary Carcinoma Spheroids. Anticancer Res 1999; 19:3141–3146PubMedGoogle Scholar
  77. Eatock M, Schätzlein A, and Kaye S. Tumour Vasculature as a Target for Anticancer Therapy. Cancer Treatment Rev 2000; 26:191–204Google Scholar
  78. Eisenbrand G, Lauck-Birkel S, and Tang, W. An Approach towards More Selective Anticancer Agents. Synthesis 1996; 1246–1258Google Scholar
  79. Eliel E In: Stereochemistry of Carbon Compounds. New York: McGraw Hill; 1962: pp. 197–202Google Scholar
  80. Ellerby H, Arap W, Ellerby L, Kain R, Andrusiak R, Del Rio G, Krajewski S, Lombardo C, Rao R, Ruoslahti E, Bredesen D, and Pasqualini R. Anti-Cancer Activity of Targeted Pro-Apoptotic Peptides. Nat Med. 1999; 5:1032–1038PubMedGoogle Scholar
  81. Elliott E, and Sloane B. The Cysteine Protease Cathepsin B in Cancer. Persp Drug Disc Design 1996; 6:12–32Google Scholar
  82. Emeis J, Verheijen J, Ronday H, de Maat M, and Brakman P. Progress in Clinical Fibrinolysis. Fibrin Proteol 1997; 11:67–84Google Scholar
  83. Everett S, Naylor M, Patel K, Stratford M, and Wardman P. Bioreductively-Activated Prodrugs for Targeting Hypoxic Tissues: Elimination of Aspirin from 2-Nitroimidazole Derivatives. Bioorg Med Chem Lett. 1999; 9:1267–1272PubMedGoogle Scholar
  84. Fang J, Shing Y, Wiedershain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, and Moses M. Matrix Metalloproteinase-2 Is Required for the Switch to the Angiogenic Phenotype in a Tumor Model. Proc Natl Acad Sci USA 2000; 97:3884–3889PubMedGoogle Scholar
  85. Farina V. The Chemistry and Pharmacology of Taxol® and Its Derivatives. Pharmacochemistry library 22. Amsterdam, The Netherlands: Elsevier; 1995.Google Scholar
  86. Fernandez A, Van derpoorten K, Dasnois L, Lebtahi K, Dubois V, Lobl T, Gangwar S, Oliyai C, Lewis E, Shochat D, and Trouet A. N-Succinyl-(Beta-Alanyl-L-Leucyl-L-Alanyl-L-Leucyl)Doxorubicin: An Extracellularly Tumor-Activated Prodrug Devoid of Intravenous Acute Toxicity. J Med Chem 2001; 44:3750–3753PubMedGoogle Scholar
  87. Firestone R. Low-Density-Lipoprotein as a Vehicle for Targeting Antitumor Compounds to Cancer-Cells. Bioconjug Chem 1994; 5:105–113PubMedGoogle Scholar
  88. Fitzpatrick T, and Graham C. Stimulation of Plasminogen Activator Inhibitor-1 Expression in Immortalized Human Trophoblast Cells Cultured under Low Levels of Oxygen. Exp Cell Res 1998; 245:155–162PubMedGoogle Scholar
  89. Florent J, Dong X, Gaudel G, Mitaku S, Monneret C, Gesson J, Jacquesy J, Mondon M, Renoux B, Andrianomenjanahary S, Michel S, Koch M, Tillequin F, Gerken M, Czech J, Straub R, and Bosslet K. Prodrugs of Anthracyclines for Use in Antibody-Directed Enzyme Prodrug Therapy. J Med Chem 1998; 41:3572–3581PubMedGoogle Scholar
  90. Foekens J, Peters H, Look M, Portengen H, Schmitt M, Kramer M, Brunner N, Jänicke F, Meijer-van Gelder M, Henzen-Logmans S, van Putten W, and Klijn J. The Urokinase System of Plasminogen Activation and Prognosis in 2780 Breast Cancer Patients. Cancer Res. 2000; 60:636–643PubMedGoogle Scholar
  91. Folkes A, Roe M, Sohal S, Golec J, Faint R, Brooks T, and Charlton P. Synthesis and In Vitro Evaluation of a Series of Diketopiperazine Inhibitors of Plasminogen Activator Inhibitor-1. Bioorg Med Chem Lett 2001; 11:2589–2592PubMedGoogle Scholar
  92. Folkman J. Tumor Angiogenesis: Therapeutic Implications. N Engl J Med 1971; 285:1182–1186PubMedGoogle Scholar
  93. Folkman J. Tumor Angiogenesis. In: Bast RC Jr, Kufe DW, Pollock, RE, Weichselbaum RR, Holland JF, Frei E III, Gansler RS, Eds.Cancer Medicine 5e. Hamilton, Ontario, Canada: BC Decker; 2000. 132–152Google Scholar
  94. Ganesh S, Sier C, Griffioen G, Vloedgraven H, De Boer A, Welvaart K, Vandevelde C, and Verspaget H. Prognostic Relevance of Plasminogen Activators and their Inhibitors in Colorectal-Cancer. Cancer Res 1994; 54:4065–4071PubMedGoogle Scholar
  95. Ganesh S, Sier C, Heerding M, Vankrieken J, Griffioen G, Welvaart K, Vandevelde C, Verheijen J, Lamers C, and Verspaget H. Prognostic Value of the Plasminogen Activation System in Patients with Gastric Carcinoma. Cancer 1996; 77:1035–1043PubMedGoogle Scholar
  96. Garsky V, Lumma P, Feng D, Wai J, Ramjit H, Sardana M, Oliff A, Jones R, DeFeo-Jones D, and Freidinger R. The Synthesis of a Prodrug of Doxorubicin Designed to Provide Reduced Systemic Toxicity and Greater Target Efficacy. J Med Chem 2001; 44:4216–4224PubMedGoogle Scholar
  97. Gerlach J, Endicott J, Juranka P, Henderson G, Sarangi F, Deuchars, K, and Ling V. Homology between P-Glycoprotein and Bacterial Hemolysin Transport Protein Suggests a Model for Multidrug Resistance. Nature 1986; 324:485–489PubMedGoogle Scholar
  98. Gharat L, Visser P, Brummelhuis M, Guiles R, and Chikhale P. Reductive Activation of Conformationally Constrained, Anticancer Drug Delivery Systems. Med Chem Res 1998; 8:444–456Google Scholar
  99. Ghosh S, Ellerbroek S, Wu Y, and Stack M. Fibrin Proteol 2000; 14:87–97Google Scholar
  100. Giancotti F, and Ruoslahti E. Integrin Signaling. Science 1999; 285:1028–1032PubMedGoogle Scholar
  101. Giovanella B, Hinz H, Kozielski A, Stehlin J, Silber R, and Potmesil M. Complete Growth-Inhibition of Human Cancer Xenografts in Nude-Mice by Treatment with 20-(S)-Camptothecin. Cancer Res 1991; 51:3052–3055PubMedGoogle Scholar
  102. Graham C, Fitzpatrick T, and McCrae K. Hypoxia Stimulates Urokinase Receptor Expression through a Heme Protein-Dependent Pathway. Blood 1998; 91:3300–3307PubMedGoogle Scholar
  103. Graham C, Forsdike J, Fitzgerald C, and Macdonald-Goodfellow S. Hypoxia-Mediated Stimulation of Carcinoma Cell Invasiveness via Upregulation of Urokinase Receptor Expression. Int J Cancer 1999; 80:617–623PubMedGoogle Scholar
  104. Greenwald R. PEG Drugs: An Overview. J Control Release 2001; 74:159–171PubMedGoogle Scholar
  105. Greenwald R, Conover C, and Choe Y. Poly(Ethylene Glycol) Conjugated Drugs and Prodrugs: A Comprehensive Review. Crit Rev Ther Drug Carrier Systems 2000; 17:101–161Google Scholar
  106. Haisma H, van Muijen M, Pinedo H, and Boven E. Comparison of Two Anthracycline-based Prodrugs for Activation by a Monoclonal Antibody-β-Glucuronidase Conjugate in the Specific Treatment of Cancer. Cell Biophys 1994;24/25:185–192Google Scholar
  107. Hanemaaijer R, Verheijen J, Maguire T, Visser H, Toet K, McDermott E, O’Higgins N, and Duffy M. Increased Gelatinase-A and Gelatinase-B Activities in Malignant vs. Benign Breast Tumors. Int J Cancer 2000; 86:204–207PubMedGoogle Scholar
  108. Hapke S, Kessler H, Arroyo de Prada N, Benge A, Schmitt M, Lengyel E, and Reuning U. Integrin Alpha(V)Beta(3)/Vitronectin Interaction Affects Expression of the Urokinase System in Human Ovarian Cancer Cells. J Biol Chem 2001; 276:26340–26348PubMedGoogle Scholar
  109. Haq M, Shafii A, Zervos E, and Rosemurgy A. Addition of Matrix Metalloproteinase Inhibition to Conventional Cytotoxic Therapy Reduces Tumor Implantation and Prolongs Survival in a Murine Model of Human Pancreatic Cancer. Cancer Res. 2000; 60:3207–3211PubMedGoogle Scholar
  110. Hay M, Sykes B, Denny W, and Wilson W. A 2-Nitroimidazole Carbamate Prodrug of 5-Amino-1-(chloromethyl)-3-[(5,6,7-trimethoxyindol-2-Yl)carbonyl]-1,2-dihydro-3H-benz[E]indole (Amino-seco-CBI-TMI) for Use with ADEPT and GDEPT. Bioorg Med Chem Lett 1999; 9:2237–2242PubMedGoogle Scholar
  111. Hay M, Wilson W, and Denny W. Design, Synthesis and Evaluation of Imidazolylmethyl Carbamate Prodrugs of Alkylating Agents. Tetrahedron 2000; 56:645–657Google Scholar
  112. Henderson N, Plumb J, Robins D, and Workman P. Synthesis and Anti-Cancer Activity of 2,6-Disubstituted N-Methylpiperidine Derivatives and their N-Oxides. Anticancer Drug Des. 1996; 11:421–438PubMedGoogle Scholar
  113. Hertzberg R, Caranfa M, and Hecht S. On The Mechanism of Topoisomerase-I Inhibition by Camptothecin — Evidence for Binding to An Enzyme DNA Complex. Biochemistry 1989; 28:4629–4638PubMedGoogle Scholar
  114. Hewitt R, and Dano K. Stromal Cell Expression of Components of Matrix-Degrading Protease Systems in Human Cancer. Enzyme Protein 1996; 49:163–173PubMedGoogle Scholar
  115. Hicklin D, Witte L, Zhu Z, Liao F, Wu Y, Li Y, and Bohlen P. Monoclonal Antibody Strategies to Block Angiogenesis. Drug Disc Today 2001; 6:517–528Google Scholar
  116. Hidalgo M, and Eckhardt S. Development of Matrix Metalloproteinase Inhibitors in Cancer Therapy. J Natl Cancer Inst 2001; 93:178–193PubMedGoogle Scholar
  117. Highfield J, Mehta L, Parrick J, Candeias L, and Wardman P. Synthesis and Properties of Prodrugs Activated in Hypoxia to Give Bleomycin Analogues. Bioorg Med Chem Lett 1998; 8:2609–2614PubMedGoogle Scholar
  118. Highfield J, Mehta L, Parrick J, Candeias L, and Wardman P. Preparative, Physico-Chemical and Cytotoxicity Studies of Prodrugs Activated in Hypoxia to Give Metal-Binding Analogues of Bleomycin. J Chem Soc Perkin Trans I 1999; 16:2343–2351Google Scholar
  119. Hofmann U, Westphal J, Van Kraats A, Ruiter D, Van Muijen G. Expression of Integrin Alpha(Nu)Beta(3) Correlates with Activation of Membrane-Type Matrix Metalloproteinase-1 (MTI-MMP) and Matrix Metalloproteinase-2 (MMP-2) in Human Melanoma Cells In Vitro and In Vivo. Int J Cancer 2000a; 87:12–19PubMedGoogle Scholar
  120. Hofmann U, Westphal J, Waas E, Becker J, Ruiter D, and Van Muijen G. Coexpression of Integrin Alpha(V)Beta(3) and Matrix Metalloproteinase-2 (MMP-2) Coincides with MMP-2 Activation: Correlation with Melanoma Progression. J Invest Dermatol 2000b; 115:625–632PubMedGoogle Scholar
  121. Holmes W, Nelles L, Lijnen H, and Collen D. Primary Structure of Human Alpha-2-Antiplasmin, a Serine Protease Inhibitor (Serpin). J Biol Chem 1987; 262:1659–1664PubMedGoogle Scholar
  122. Houba P, Leenders R, Boven E, Scheeren J, Pinedo H, and Haisma H. Characterization of Novel Anthracycline Prodrugs Activated by Human Beta-Glucuronidase for Use in Antibody-Directed Enzyme Prodrug Therapy. Biochem Pharmacol 1996; 52:455–463PubMedGoogle Scholar
  123. Houba P, Boven E, Erkelens C, Leenders R, Scheeren J, Pinedo H, and Haisma H. The Efficacy of the Anthracycline Prodrug Daunorubicin-GA3 in Human Ovarian Cancer Xenografts. Brit J Cancer 1998; 78:1600–1606PubMedGoogle Scholar
  124. Houba P, Boven E, van der Meulen-Muileman I, Leenders R, Scheeren J, Pinedo H, and Haisma H.J. Distribution and Pharmacokinetics of the Prodrug Daunorubicin-GA3 in Nude Mice Bearing Human Ovarian Cancer Xenografts. Biochem Pharmacol 1999; 57:673–680PubMedGoogle Scholar
  125. Houba P, Boven E, van der Meulen-Muileman I, Leenders R, Scheeren J, Pinedo H, and Haisma H. Pronounced Antitumor Efficacy of Doxorubicin when Given as the Prodrug Dox-Ga3 in Combination with a Monoclonal Antibody Beta-Glucuronidase Conjugate. Int J Cancer 2001; 91:550–554PubMedGoogle Scholar
  126. Huang S, Arsdall van M, Tedjarati S, McCarty M, Wu W, Langley R, and Fidler I. Contributions of Stromal Metalloproteinase-9 to Angiogenesis and Growth of Human Ovarian Carcinoma in Mice. J Natl Cancer Inst 2002; 94:1134–1142PubMedGoogle Scholar
  127. Huang P, and Oliff A. Drug-Targeting Strategies in Cancer Therapy. Curr Opin Genet Dev 2001; 11:104–110PubMedGoogle Scholar
  128. Huber B, Richards C, and Krentisky T. Retroviral-Mediated Gene-Therapy for the Treatment of Hepatocellular-Carcinoma — An Innovative Approach for Cancer-Therapy. Proc Natl Acad Sci USA 1991; 88:8039–8043PubMedGoogle Scholar
  129. Inuzuka K, Ogata Y, Nagase H, and Shirouzu K. Significance of Coexpression of Urokinase-Type Plasminogen Activator and Matrix Metalloproteinase 3 (Stromelysin) and 9 (Gelatinase in Colorectal Carcinoma. J Surg Res 2000; 93:211–218PubMedGoogle Scholar
  130. Irigoyen J, Muñoz-Cánoves P, Montero L, Koziczak M, and Nagamine Y. The Plasminogen Activator System: Biology and Regulation. Cell Mol Life Sci 1999; 56:104–132PubMedGoogle Scholar
  131. Ivaska J, and Heino J. Adhesion Receptors and Cell Invasion: Mechanisms of Integrin-Guided Degradation of Extracellular Matrix. Cell Mol Life Sci. 2000; 57:16–24PubMedGoogle Scholar
  132. Jaffar M, Naylor M, Robertson N, and Stratford I. Targeting Hypoxia with a New Generation of Indolequinones. Anticancer Drug Des 1998; 13:593–609PubMedGoogle Scholar
  133. Janáky T, Juhász A, Bajusz S, Csernus V, Srkalovic G, Bokser L, Milovanovic S, Redding, T, Rékási Z, Nagy A, and Schally A. Analogs of Luteinizing-Hormone-Releasing Hormone Containing Cytotoxic Groups. Proc Natl Acad Sci USA 1992; 89:972–976PubMedGoogle Scholar
  134. Jenkins T, Naylor M, O’Neill P, Threadgill M, Cole S, Stratford I, Adams G, Fielden E, Suto M, and Stier M. Synthesis and Evaluation of Alpha-[[(2-Haloethyl)Amino]Methyl]-2-Nitro-1h-Imidazole-1-Ethanols As Prodrugs of Alpha-[(1-Aziridinyl)Methyl]-2-Nitro-1h-Imidazole-1-Ethanol (Rsu-1069) and its Analogs which are Radiosensitizers and Bioreductively Activated Cytotoxins. J Med Chem 1990; 33:2603–2610PubMedGoogle Scholar
  135. Johnston D, Schmitt S, Boufford F, and Christensen B. Total Synthesis of (+/−)-Thienamycin. J Am Chem Soc 1978; 100:313–315Google Scholar
  136. Julyan P, Seymour L, Ferry D, Daryani S, Boivin C, Doran J, David M, anderson D, Christodoulou C, Young A, Hesslewood S, and Kerr D. Preliminary Clinical Study of the Distribution of HPMA Copolymers Bearing Doxorubicin and Galactosamine. J Control Release 1999; 57:281–290PubMedGoogle Scholar
  137. Jungwirth A, Schally A, Nagy A, Pinski J, Groot K, Galvan G, Szepeshazi K, and Halmos G. Regression of Rat Dunning R-3327-H Prostate Carcinoma by Treatment with Targeted Cytotoxic Analog of Luteinizing Hormone-Releasing Hormone AN-207 Containing 2-Pyrrolinodoxorubicin. Int J Oncol 1997; 10:877–884Google Scholar
  138. Kahán Z, Nagy A, Schally A, Halmos G, Arencibia J, and Groot K. Administration of a Targeted Cytotoxic Analog of Luteinizing Hormone-Releasing Hormone Inhibits Growth of Estrogen-Independent MDA-MB-231 Human Breast Cancers in Nude Mice. Breast Cancer Res Treatment 2000; 59:255–262Google Scholar
  139. Kehrer D, Soepenberg O, Loos W, Verweij J, and Sparreboom A. Modulation of Camptothecin Analogs in the Treatment of Cancer: A Review. Anticancer Drug 2001; 12:89–105Google Scholar
  140. Kerrigan J, and Pilch D. A Structural Model for the Ternary Cleavable Complex Formed between Human Topoisomerase I, DNA, and Camptothecin. Biochem 2001; 40:9792–9798Google Scholar
  141. Khan S, and Denmeade S. In Vivo Activity of a PSA-Activated Doxorubicin Prodrug against PSA-Producing Human Prostate Cancer Xenografts. Prostate 2000; 45:80–83PubMedGoogle Scholar
  142. Kiaris H, Schally A, Nagy A, Sun B, Armatis P, and Szepeshazi K. Targeted Cytotoxic Analogue of Bombesin/Gastrin Releasing Peptide Inhibits the Growth of H-69 Human Small-Cell Lung Carcinoma in Nude Mice. Brit J Cancer 1999; 81:966–971PubMedGoogle Scholar
  143. King F. (Ed.) Medicinal Chemistry: Principles and Practice. The Royal Society of Chemistry, Cambridge 1994; 172–178.Google Scholar
  144. Kingston D. Taxol, A Molecule for All Seasons. Chem Comm 2001; 10:867–880Google Scholar
  145. Kleiner D, and Stetler-Stevenson W. Matrix Metalloproteinases and Metastasis. Cancer Chemother Pharmacol 1999; 43:S42–S51PubMedGoogle Scholar
  146. Kobayashi H, Schmitt M, Goretzki L, Chucholowski N, Calvete J, Kramer M, Günzler W, Jänicke F, and Graeff H. Cathepsin-B Efficiently Activates the Soluble and the Tumor-Cell Receptor-Bound Form of the Proenzyme Urokinase-Type Plasminogen-Activator (Pro-Up). J Biol Chem 1991; 266:5147–5152PubMedGoogle Scholar
  147. Koblinski J, Ahram M, and Sloane B. Unraveling The Role of Proteases In Cancer. Clin Chim Acta 2000; 291:113–135PubMedGoogle Scholar
  148. Konyves I, Muntzing J, and Rozencweig M. Chemotherapy Principles in the Treatment of Prostatic-Cancer. Prostate 1984; 5:55–62PubMedGoogle Scholar
  149. Kratz F, Beyer U, and Schütte M. Drug-Polymer Conjugates Containing Acid-Cleavable Bonds. Crit Rev Ther Drug Carrier Systems 1999; 16:245–288Google Scholar
  150. Kratz F, Drevs J, Bing G, Stockmar C, Scheuermann K, Lazar P, and Unger C. Development and In Vitro Efficacy of Novel MMP2 and MMP9 Specific Doxorubicin Albumin Conjugates. Bioorg Med Chem Lett 2001; 11:2001–2006PubMedGoogle Scholar
  151. Krishna A, Kumar D, Kahn B, Rawal S, and Ganesh K. Taxol-DNA Interactions: Fluorescence and CD Studies of DNA Groove Binding Properties of Taxol. Biochem Biophys Acta 1998; 1381:104–112PubMedGoogle Scholar
  152. Kroon M, Koolwijk P, Van der Vecht B, and Van Hinsbergh V. Urokinase Receptor Expression on Human Microvascular Endothelial Cells Is Increased by Hypoxia: Implications for Capillary-Like Tube Formation in a Fibrin Matrix. Blood 2000; 96:2775–2783PubMedGoogle Scholar
  153. Krüger A, Soeltl R, Sopov I, Kopitz C, Arlt M, Magdolen V, Harbeck N, Gänsbacher B, and Schmitt M. Hydroxamate-Type Matrix Metalloproteinase Inhibitor Batimastat Promotes Liver Metastasis. Cancer Res 2001; 61:1272–1275PubMedGoogle Scholar
  154. Kurtzhals P, Larsen C, Hansen S, Aasmul-Olsen S, and Widmer F. On the Design of Urokinase-Labile Prodrugs.2. Structure-Activity-Relationships in the Urokinase Catalyzed-Hydrolysis of H-GluGlyArg-Anilides and H-GluGlyArg-Benzylamide. Acta Pharm Nord 1989; 1:269–278PubMedGoogle Scholar
  155. Ladino C, Chari R, Bourret L, Kedersha N, and Goldmacher V. Folate-Maytansinoids: Target-Selective Drugs of Low Molecular Weight. Int J Cancer 1997; 73:859–864PubMedGoogle Scholar
  156. Lam L, Lam C, Li W, and Cao Y. Recent Advances in Drug-Antibody Immunoconjugates for the Treatment of Cancer. Drugs of the Future 2003; 28:905–910Google Scholar
  157. Lauck-Birkel S, Tang W, Wagner B, Fiebig H, Kohlmüller D, and Eisenbrand G. In: Zeller W, Eisenbrand G, and Hellmann K. (Eds), Reduction of Anticancer Drug Toxicity. Pharmacologic, Biologic, Immunologic and Gene Therapeutic Approaches. Contrib Oncol Basel, Karger 1995; 48:189–194Google Scholar
  158. Leamon C and Low P. Cytotoxicity of Momordin-Folate Conjugates in Cultured Human Cells. J Biol Chem 1992; 267:24966–24971PubMedGoogle Scholar
  159. Leamon CP and Low PS. Folate-mediated Targeting: From Diagnostics to Drug and Gene Delivery. Drug Discov Today, 2001; 6:44–51.PubMedGoogle Scholar
  160. Leamon C, Pastan I, and Low P. Cytotoxicity of Folate-Pseudomonas Exotoxin Conjugates toward Tumor-Cells-Contribution of Translocation Domain. J Biol Chem 1993; 268:24847–24854PubMedGoogle Scholar
  161. Leamon C, DePrince R, and Hendren R. Folate-Mediated Drug Delivery: Effect of Alternative Conjugation Chemistry. J Drug Targeting 1999; 7:157–169CrossRefGoogle Scholar
  162. Lee A, and Wilson W. Hypoxia-Dependent Retinal Toxicity of Bioreductive Anticancer Prodrugs in Mice. Tox Appl Pharmacol 2000; 163:50–59Google Scholar
  163. Leenders R, Gerrits K, Ruijtenbeek R, Scheeren H, Haisma H, and Boven E. Beta-Glucuronyl Carbamate Based Pro-Moieties Designed for Prodrugs in ADEPT. Tetrahedron Lett 1995a; 26:1701–1704Google Scholar
  164. Leenders R, Scheeren H, Houba P, Boven E, and Haisma H. Synthesis and Evaluation of Novel Daunomycin-Phosphate-Sulfate-Beta-Glucuronide and-Beta-Glucoside Prodrugs for Application in ADEPT. Bioorg Med Chem Lett 1995b; 5:2975–2980Google Scholar
  165. Leenders R, Damen E, Bijsterveld E, Scheeren J, Houba P, van der Meulen-Muileman I, Boven E, and Haisma H. Novel Anthracycline-Spacer-Beta-Glucuronide,-Beta-Glucoside, and-Beta-Galactoside Prodrugs for Application in Selective Chemotherapy. Bioorg Med Chem 1999; 7:1597–1610PubMedGoogle Scholar
  166. Lemmon M, Van Zijl P, Fox M, Mauchline M, Giaccia A, Minton N, and Brown J. Anaerobic Bacteria as a Gene Delivery System that is Controlled by the Tumor Microenvironment. Gene Ther 1997; 4:791–796PubMedGoogle Scholar
  167. Letsch M, Schally A, Szepeshazi K, Halmos G, and Nagy A. Preclinical Evaluation of Targeted Cytotoxic Luteinizing Hormone-Releasing Hormone Analogue AN-152 in Androgen-Sensitive and Insensitive Prostate Cancers. Clin Cancer Res 2003; 9:4505–4513PubMedGoogle Scholar
  168. Leu Y, Roffler S, and Chern J. Design and Synthesis of Water-Soluble Glucuronide Derivatives of Camptothecin for Cancer Prodrug Monotherapy and Antibody-Directed Enzyme Prodrug Therapy (ADEPT). J Med Chem 1999; 42:3623–3628PubMedGoogle Scholar
  169. Li S, Deshmukh H, and Huang L. Folate-Mediated Targeting of Antisense Oligodeoxynucleotides to Ovarian Cancer Cells. Pharm Res 1998; 15:1540–1545PubMedGoogle Scholar
  170. Li S, Szalai M, Kevwitch R, and McGrath D. Li S, Szalai M, Kevwitch R, and McGrath D. Dendrimer Disassembly by Benzyl Ether Depolymerization J Am Chem Soc 2003; 125:10516–10517PubMedGoogle Scholar
  171. Lijnen H. Molecular Interactions between the Plasminogen/Plasmin and Matrix Metalloproteinase Systems. Fibrin Proteol 2000; 14:175–181Google Scholar
  172. Liotta L, and Kohn E. The Microenvironment of the Tumour-Host Interface. Nature 2001; 411:375–379PubMedGoogle Scholar
  173. Liu S, Bugge T, and Leppla S. Targeting of Tumor Cells by Cell Surface Urokinase Plasminogen Activator-Dependent Anthrax Toxin. J Biol Chem 2001a; 276:17976–17984PubMedGoogle Scholar
  174. Liu J, Kolar C, Lawson T, and Gmeiner G. Targeted Drug Delivery to Chemoresistant Cells: Folic Acid Derivatization of FdUMP[10] Enhances Cytotoxicity toward 5-FU-Resistant Human Colorectal Tumor Cells. J Org Chem 2001b; 66:5655–5663PubMedGoogle Scholar
  175. Liu S, Aaronson H, Mitola D, Leppla S, and Bugge T. Potent Antitumor Activity of a Urokinase-Activated Engineered Anthrax Toxin. Proc Nat Acad Sci USA 2003; 100:657–662PubMedGoogle Scholar
  176. Lougerstay-Madec R, Florent J, Monneret C, Nemati F, and Poupon M. Synthesis of Self-Immolative Glucuronide-Based Prodrugs of a Phenol Mustard. Anticancer Drug Des 1998; 13:995–1007PubMedGoogle Scholar
  177. Lu Y, Sega E, Leamon C, and Low P. Folate Receptor-Targeted Immunotherapy of Cancer: Mechanism and Therapeutic Potential. Adv Drug Del Rev 2004; 56:1161–1176Google Scholar
  178. Lund L, Romer J, Bugge T, Nielsen B, Frandsen T, Degen J, Stephens R, and Dano K. Functional Overlap between Two Classes of Matrix-Degrading Proteases in Wound Healing. Embo J 1999; 18:4645–4656PubMedGoogle Scholar
  179. Luo Y, and Prestwich G. Synthesis and Selective Cytotoxicity of a Hyaluronic Acid-Antitumor Bioconjugate. Bioconjug Chem 1999; 10:755–763PubMedGoogle Scholar
  180. MacDougall J, and Matrisian L. Contributions of Tumor and Stromal Matrix Metalloproteinases to Tumor Progression, Invasion and Metastasis. Cancer Metastasis Rev 1995; 14:351–362PubMedGoogle Scholar
  181. Madec-Lougerstay R, Florent J, and Monneret C. Synthesis of Self-Immolative Glucuronide Spacers Based on Aminomethylcarbamate. Application to 5-Fluorouracil Prodrugs for Antibody-Directed Enzyme Prodrug Therapy. J Chem Soc Perkin Trans 1 1999; 10:1369–1375Google Scholar
  182. Maeda H, and Matsumura Y. Tumoritropic and Lymphotropic Principles of Macromolecular Drugs. Crit Rev Ther Drug Carrier Systems 1989; 6:193–210Google Scholar
  183. Maekawa R, Maki H, Wada T, Yoshida H, Nishida-Nishimoto K, Okamoto H, Matsumoto Y, Tsuzuki H, and Yoshioka T. Anti-Metastatic Efficacy and Safety of MMI-166, a Selective Matrix Metalloproteinase Inhibitor. Clin Exp Metastasis 2000; 18:61–66PubMedGoogle Scholar
  184. Maity A, and Solomon D. Both Increased Stability and Transcription Contribute to the Induction of the Urokinase Plasminogen Activator Receptor (uPAR) Message By Hypoxia. Exp Cell Res. 2000; 255:250–257PubMedGoogle Scholar
  185. Mann J, and Shervington L. Synthesis of Novel N-Mustards and S-Mustards as Potential Prodrugs Activated by Bioreductive Processes. J Chem Soc Perkin Trans I. 1991; 12:2961–2964Google Scholar
  186. Mao W, Luis E, Ross S, Silva J, Tan C, Crowley C, Chui C, Franz G, Senter P, Koeppen H, and Polakis P. EphB2 as a Therapeutic Antibody Drug Target for the Treatment of Colorectal Cancer. Cancer Res 2004; 64:781–788PubMedGoogle Scholar
  187. Maquoi E, Munaut C, Colige A, Lambert C, Frankenne F, Noël A, Grams F, Krell H, and Foidart J. Stimulation of Matrix Metalloproteinase-9 Expression in Human Fibrosarcoma Cells by Synthetic Matrix Metalloproteinase Inhibitors. Exp Cell Res 2002; 275:110–121PubMedGoogle Scholar
  188. Marcucci F, and Lefoulon F. Active Targeting With Particulate Drug Carriers in Tumor Therapy: Fundamentals and Recent Progress. Drug Disc Today 2004; 9:219–228Google Scholar
  189. Marquisee M, and Kauer J. Collagenase-Sensitive Peptidyl-Nitrogen Mustards as Potential Anti-Tumor Agents. J Med Chem 1978; 21:1188–1194PubMedGoogle Scholar
  190. Masquelier M, Baurain R, and Trouet A. Amino-Acid and Dipeptide Derivatives of Daunorubicin. 1. Synthesis, Physicochemical Properties, and Lysosomal Digestion. J Med Chem. 1980;23:1166–1170PubMedGoogle Scholar
  191. May A, Kanse S, Chavakis T, and Preissner K. Molecular Interactions between the Urokinase Receptor and Integrins in the Vasculature. Fibrin Proteol 1998; 12:205–210Google Scholar
  192. McKerrow J, Bhargava V, Hansell E, Huling S, Kuwahara T, Matley M, Coussens L, and Warren R. A Functional Proteomics Screen of Proteases in Colorectal Carcinoma. Mol Med 2000; 6:450–460PubMedGoogle Scholar
  193. McMahon G, Petitclerc E, Stefansson S, Smith E, Wong M, Westrick R, Ginsburg D, Brooks P, and Lawrence D. Plasminogen Activator Inhibitor-1 Regulates Tumor Growth and Angiogenesis. J Biol Chem 2001; 276:33964–33968PubMedGoogle Scholar
  194. Melton R, Connors T, and Knox R. The Use of Prodrugs in Targeted Anticancer Therapies. STP Pharma Sciences 1999; 9:13–33Google Scholar
  195. Meijer E, and van Genderen M. Dendrimers Set to Self-Destruct. Nature 2003; 426:128–129PubMedGoogle Scholar
  196. Menrad A, Speicher D, Wacker J, and Herlyn M. Biochemical and Functional-Characterization of Aminopeptidase-N Expressed by Human-Melanoma Cells. Cancer Res 1993; 53:1450–1455PubMedGoogle Scholar
  197. Meyer T, and Hart I. Mechanisms of Tumour Metastasis. Eur J Cancer 1998; 34:214–221PubMedGoogle Scholar
  198. Miyashita H, Karaki Y, Kikuchi M, and Fujii I. Prodrug Activation via Catalytic Antibodies. Proc Natl Acad Sci USA 1993; 90:5337–5340PubMedGoogle Scholar
  199. Miyazaki M, Schally A, Nagy A, Lamharzi N, Halmos G, Szepeshazi K, and Armatis P. Targeted Cytotoxic Analog of Luteinizing Hormone-Releasing Hormone AN-207 Inhibits Growth of OV-1063 Human Epithelial Ovarian Cancers in Nude Mice. Am J Obstet Gynecol 1999; 180:1095–1103PubMedGoogle Scholar
  200. Mizejewski G. Role of Integrins in Cancer: Survey of Expression Patterns. Proc Soc Exp Biol Med 1999; 222:124–138PubMedGoogle Scholar
  201. Muehlenweg B, Sperl S, Magdolen V, Schmitt M, and Harbeck N. Interference with the Urokinase Plasminogen Activator System: A Promising Therapy Concept for Solid Tumours. Exp Opin Biol Ther 2001; 1:683–691Google Scholar
  202. Mürdter T, Sperker B, Kivistö K, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K, Toomes H, Dierkesmann R, and Kroemer H. Enhanced Uptake of Doxorubicin into Bronchial Carcinoma: Beta-Glucuronidase Mediates Release of Doxorubicin from a Glucuronide Prodrug (HMR 1826) at the Tumor Site. Cancer Res 1997; 57:2440–2445PubMedGoogle Scholar
  203. Nagy A, Schally, A, Armatis P, Szepeshazi K, Halmos G, Kovacs M, Zarandi M, Groot K, Miyazaki M, Jungwirth A, and Horvath J. Cytotoxic Analogs of Luteinizing Hormone-Releasing Hormone Containing Doxorubicin or 2-Pyrrolinodoxorubicin, a Derivative 500–1000 Times More Potent. Proc Natl Acad Sci USA 1996; 93:7269–7273PubMedGoogle Scholar
  204. Nagy A, Armatis P, Cai R, Szepeshazi K, Halmos G, and Schally A. Design, Synthesis, and In Vitro Evaluation of Cytotoxic Analogs of Bombesin-Like Peptides Containing Doxorubicin or its Intensely Potent Derivative, 2-Pyrrolinodoxorubicin. Proc Natl Acad Sci USA 1997; 94:652–656PubMedGoogle Scholar
  205. Nagy A, Schally A, Halmos G, Armatis P, Cai R, Csernus V, Kovács M, Koppán M, Szepeshazi K, and Kahán Z. Synthesis and Biological Evaluation of Cytotoxic Analogs of Somatostatin Containing Doxorubicin or its Intensely Potent Derivative, 2-Pyrrolinodoxorubicin. Proc Natl Acad Sci USA 1998; 95:1794–1799PubMedGoogle Scholar
  206. Nagy A, Plonowski A, and Schally A. Stability of Cytotoxic Luteinizing Hormone-Releasing Hormone Conjugate (AN-152) Containing Doxorubicin-14-OHemiglutarate in Mouse and Human Serum In Vitro: Implications for the Design of Preclinical Studies. Proc Natl Acad Sci USA 2000; 97:829–834PubMedGoogle Scholar
  207. Nelson A, Fingleton B, Rothenberg M, and Matrisian L. Matrix Metalloproteinases: Biologic Activity and Clinical Implications. J Clin Oncol 2000; 18:1135–1149PubMedGoogle Scholar
  208. Nicolaou K, Dai W, and Guy R. Chemistry and Biology of Taxol. Angew Chem Int Ed Engl 1994; 33:15–44Google Scholar
  209. Nicolaou M, Yuan C, and Borchardt R. Phosphate Prodrugs for Amines Utilizing a Fast Intramolecular Hydroxy Amide Lactonization. J Org Chem 1996; 61:8636–8641Google Scholar
  210. Niculescu-Duvaz I, Scanlon I, Niculescu-Duvaz D, Friedlos F, Martin J, Marais R, and Springer C. Significant Differences in Biological Parameters between Prodrugs Cleavable by Carboxypeptidase G2 that Generate 3,5-Difluoro-Phenol and-Aniline Nitrogen Mustards in Gene-Directed Enzyme Prodrug Therapy Systems. J Med Chem 2004; 47:2651–2658PubMedGoogle Scholar
  211. Okada Y, Matsumoto Y, Tsuda Y, Tada M, Wanaka K, Hijikata-Okunomiya A, and Okamoto S. Development of Plasmin-Selective Inhibitors and Studies of their Structure-Activity Relationship. Chem Pharm Bull 2000a; 48:184–193PubMedGoogle Scholar
  212. Okada Y, Tsuda Y, Tada M, Wanaka K, Okamoto U, Hijikata-Okunomiya A, and Okamoto S. Development of Potent and Selective Plasmin and Plasma Kallikrein Inhibitors and Studies on the Structure-Activity Relationship. Chem Pharm Bull 2000b; 48:1964–1972PubMedGoogle Scholar
  213. Omelyanenko V, Kopeãková P, Prakash R, Ebert C, and Kopecek J. Biorecognition of HPMA Copolymer-Adriamycin Conjugates by Lymphocytes Mediated By Synthetic Receptor Binding Epitopes. Pharm Res 1999; 16:1010–1019PubMedGoogle Scholar
  214. Overall C, and López-Otín C. Strategies for MMP Inhibition in Cancer: Innovations for the Post-Trial Era. Nat Rev Cancer 2002; 2:657–672PubMedGoogle Scholar
  215. Pan C, Cardarelli P, Nieder M, Pickford L, Gangwar S, King D, Yarranton G, Buckman D, Roscoe W, Zhou F, Salles A, Chen T, Horgan K, Wang Y, Nguyen T, Bebbington C. CD10 is a Key Enzyme Involved in the Activation of Tumor-Activated Peptide Prodrug CPI-0004Na and Novel Analogues: Implications for the Design of Novel Peptide Prodrugs for the Therapy of CD10(+) Tumors. Cancer Res 2003; 63:5526–5531PubMedGoogle Scholar
  216. Panchagnula R. Pharmaceutical Aspects of Paclitaxel. Int J Pharmaceutics 1998; 172:1–15Google Scholar
  217. Panchal R. Novel Therapeutic Strategies to Selectively Kill Cancer Cells. Biochem Pharmacol 1998; 55:247–252PubMedGoogle Scholar
  218. Papot S, Combaud D, and Gesson J. A New Spacer Group Derived from Arylmalonaldehydes for Glucuronylated Prodrugs. Bioorg Med Chem Lett 1998; 8:2545–2548PubMedGoogle Scholar
  219. Parveen I, Naughton D, Whish W, and Threadgill M. 2-Nitroimidazol-5-Ylmethyl as a Potential Bioreductively Activated Prodrug System: Reductively Triggered Release of the PARP Inhibitor 5-Bromoisoquinolinone. Bioorg Med Chem Lett 1999 9:2031–2036PubMedGoogle Scholar
  220. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun R, Shapiro L, Arap W, and Ruoslahti E. Aminopeptidase N is a Receptor for Tumor-Homing Peptides and a Target for Inhibiting Angiogenesis. Cancer Res 2000; 60:722–727PubMedGoogle Scholar
  221. Pepper M. Role of The Matrix Metalloproteinase and Plasminogen Activator-Plasmin Systems in Angiogenesis. Arterioscler Thromb Vasc Biol 2001; 21:1104–1117PubMedGoogle Scholar
  222. Pinski J, Schally A, Yano T, Szepeshazi K, Halmos G, Groot K, Comaru-Schally A, Radulovic S, and Nagy A. Inhibition of Growth of Experimental Prostate-Cancer in Rats by Lh-Rh Analogs Linked to Cytotoxic Radicals. Prostate 1993; 23:165–178PubMedGoogle Scholar
  223. Platel D, Bonoron-Adèle S, Dix R, and Robert J. Preclinical Evaluation of The Cardiac Toxicity of HMR-1826, A Novel Prodrug of Doxorubicin. Br J Cancer 1999; 81:24–27PubMedGoogle Scholar
  224. Plow E, and Miles L. Plasminogen Receptors in the Mediation of Pericellular Proteolysis. Cell Differ Dev 1990; 32:293–298PubMedGoogle Scholar
  225. Polette M, Nawrocki-Raby B, Gilles C, Clavel C, and Birembaut P. Tumour Invasion and Matrix Metalloproteinases. Crit Rev Oncol Hematol 2004; 49:179–186PubMedGoogle Scholar
  226. Pommier Y. DNA Topoisomerase-I and Topoisomerase-II in Cancer-Chemotherapy — Update and Perspectives. Cancer Chemother Pharmacol 1993; 32:103–108PubMedGoogle Scholar
  227. Potmesil M. Camptothecins — From Bench Research to Hospital Wards. Cancer Res 1994; 54:1431–1439PubMedGoogle Scholar
  228. Preissner K, Kanse S, and May A. Urokinase Receptor: A Molecular Organizer in Cellular Communication. Curr Opin Cell Biol 2000; 12:621–628PubMedGoogle Scholar
  229. Priebe W. Anthracycline Antibiotics. American Chemical Society. ACS Symposium Series 574. Washington DC; 1995.Google Scholar
  230. Quax P, van Leeuwen R, Verspaget H, and Verheijen J. Protein and Messenger-RNA Levels of Plasminogen Activators and Inhibitors Analyzed in 22 Human Tumor-Cell Lines. Cancer Res 1990; 50:1488–1494PubMedGoogle Scholar
  231. Quax P, Lamfers M, Lardenoye J, Grimbergen J, De Vries M, Slomp J, De Ruiter M, Kockx M, Verheijen J, and Van Hinsbergh V. Adenovirus Mediated Local Overexpression of ATF.BPTI, A Cell Surface Directed Plasmin Inhibitor, Reduces Neointima Formation in Balloon Injured Rat Carotid Arteries In Vivo. Circulation 2000; 103:562–569Google Scholar
  232. Radulovic S, Nagy A, Szoke B, and Schally A. Cytotoxic Analog of Somatostatin Containing Methotrexate Inhibits Growth of Mia Paca-2 Human Pancreatic-Cancer Xenografts in Nude Mice. Cancer Lett 1992; 62:263–271PubMedGoogle Scholar
  233. Raleigh S, Wanogho E, Burke M, McKeown S, and Patterson L. Involvement of Human Cytochromes P450 (CYP) in the Reductive Metabolism of AQ4N, a Hypoxia Activated Anthraquinone Di-N-Oxide Prodrug. Int J Rad Oncol Biol Phys 1998; 42:763–767Google Scholar
  234. Raleigh S, Wanogho E, Burke M, and Patterson L. Rat Cytochromes P450 (CYP) Specifically Contribute to the Reductive Bioactivation of AQ4N, an Alkylaminoanthraquinone-Di-N-Oxide Anticancer Prodrug. Xenobiotica 1999; 29:1115–1122PubMedGoogle Scholar
  235. Rauth A, Melo T, and Misra V. Bioreductive Therapies: An Overview of Drugs and their Mechanisms of Action. Int J Rad Oncol Biol Phys 1998; 42:755–762Google Scholar
  236. Reddy J, and Low P. Folate-Mediated Targeting of Therapeutic and Imaging Agents to Cancers. Crit Rev Ther Drug Carrier Systems 1998; 15:587–627Google Scholar
  237. Redinbo M, Stewart L, Kuhn P, Champoux J, and Hol W. Crystal Structures of Human Topoisomerase I in Covalent and Noncovalent Complexes with DNA. Science 1998; 279:1504–1513PubMedGoogle Scholar
  238. Reijerkerk A, Voest E, and Gebbink M. No Grip, No Growth: the Conceptual Basis of Excessive Proteolysis in the Treatment of Cancer. Eur J Cancer 2000; 36:1695–1705PubMedGoogle Scholar
  239. Reynolds T, Rockwell S, and Glazer P. Genetic Instability Induced by the Tumor Microenvironment. Cancer Res 1996; 56:5754–5757PubMedGoogle Scholar
  240. Reynolds R, Tiwari A, Harwell J, Gordon D, Garrett B, Gilbert K, Schmid S, Waud W, and Struck R. Synthesis and Evaluation of Several New (2-Chloroethyl)Nitrosocarbamates as Potential Anticancer Agents. J Med Chem 2000; 43:1484–1488PubMedGoogle Scholar
  241. Rihová B, Etrych T, Pechar M, JelÍnková M, Stastny M, Hovorka O, Kovár M, and Ulbrich K. Doxorubicin Bound to a HPMA Copolymer Carrier through Hydrazone Bond Is Effective also in a Cancer Cell Line with a Limited Content of Lysosomes. J Control Release 2001; 74:225–232PubMedGoogle Scholar
  242. Ringsdorf H. Structure and Properties of Pharmacologically Active Polymers. J Pol Sci Pol Symp 1975; 51:135–153CrossRefGoogle Scholar
  243. Rivault F, Tranoy-Opalinski I, and Gesson J. A New Linker for Glucuronylated Anticancer Prodrugs. Bioorg Med Chem 2004; 12:675–682PubMedGoogle Scholar
  244. Rodi D, Janes R, Sanganee H, Holton R, Wallace B, and Makowski L. Screening of A Library of Phage-Displayed Peptides Identifies Human Bcl-2 as a Taxol Binding Protein. J Mol Biol 1999; 285:197–203PubMedGoogle Scholar
  245. Roffler S, Wang S, Chern J, Yeh M, and Tung E. Antineoplastic Glucuronide Prodrug Treatment of Human Tumor-Cells Targeted with a Monoclonal-Antibody Enzyme Conjugate. Biochem Pharmacol 1991; 42:2062–2065.PubMedGoogle Scholar
  246. Rosenberg S. Modulators of the Urokinase-Type Plasminogen Activation System for Cancer. Exp Opin Ther Pat 2000; 10:1843–1852Google Scholar
  247. Ross D, Siegel D, Beall H, Prakash A, Mulcahy R, and Gibson N. DT-diaphorase in Activation and Detoxification of Quinones-Bioreductive Activation of Mitomycin-C. Cancer Metast Rev 1993; 12:83–102Google Scholar
  248. Reuning U, Magdolen V, Wilhelm O, Fischer K, Lutz V, Graeff H, and Schmitt M. Multifunctional Potential of the Plasminogen Activation System in Tumor Invasion and Metastasis (Review). Int J Oncol 1998; 13:893–906PubMedGoogle Scholar
  249. Ruoslahti E. RGD and Other Recognition Sequences for Integrins. Annu Rev Cell Dev Biol 1996; 12:697–716PubMedGoogle Scholar
  250. Saari W, Schwering J, Lyle P, Smith S, and Engelhardt E. Cyclization-Activated Prodrugs — Basic Carbamates of 4-Hydroxyanisole. J Med Chem 1990;33: 97–101PubMedGoogle Scholar
  251. Safavy A, Raisch K, Khazaeli M, Buchsbaum D, and Bonner J. Paclitaxel Derivatives for Targeted Therapy of Cancer: Toward the Development of Smart Taxanes. J Med Chem 1999; 42:4919–4924PubMedGoogle Scholar
  252. Sahin U, Hartmann F, Senter P, Pohl C, Engert A, Diehl V, and Pfreundschuh M. Specific Activation of the Prodrug Mitomycin Phosphate by a Bispecific Anti-Cd30 Antialkaline Phosphatase Monoclonal-Antibody. Cancer Res 1990; 50:6944–6948PubMedGoogle Scholar
  253. Saiki I, Fujii H, Yoneda J, Abe F, Nakajima M, Tsuruo T, and Azuma I. Role of Aminopeptidase-N (CD13) in Tumor-Cell Invasion and Extracellular-Matrix Degradation. Int J Cancer 1993; 54:137–143PubMedGoogle Scholar
  254. Sanders T, and Seto C. 4-Heterocyclohexanone-based Inhibitors of the Serine Protease Plasmin. J Med Chem 1999; 42:2969–2976PubMedGoogle Scholar
  255. Satchi R, Connors T, and Duncan R. PDEPT: Polymer-Directed Enzyme Prodrug Therapy I. HPMA Copolymer-Cathepsin B and PK1 as a Model Combination. Br J Cancer 2001; 85:1070–1076PubMedGoogle Scholar
  256. Satchi-Fainaro R, Hailu H, Davies J, Summerford C, and Duncan R. PDEPT: Polymer-Directed Enzyme Prodrug Therapy. 2. HPMA Copolymer-Beta-Lactamase and HPMA Copolymer-C-Dox as a Model Combination. Bioconjug Chem 2003; 14:797–804PubMedGoogle Scholar
  257. Schally A, and Nagy N. Cancer Chemotherapy Based On Targeting of Cytotoxic Peptide Conjugates to Their Receptors on Tumors. Eur J Endocrin 1999; 141:1–14Google Scholar
  258. Schiff P, Fant J, and Horwitz S. Promotion of Microtubule Assembly In Vitro by Taxol. Nature 1979; 277:665–667PubMedGoogle Scholar
  259. Schmidt F, Florent J, Monneret C, Straub R, Czech J, Gerken M, and Bosslet K. Glucuronide Prodrugs of Hydroxy Compounds for Antibody Directed Enzyme Prodrug Therapy (ADEPT): A Phenol Nitrogen Mustard Carbamate. Bioorg Med Chem Lett 1997; 7:1071–1076Google Scholar
  260. Schmidt F, and Monneret C. Prodrug Mono Therapy: Synthesis and Biological Evaluation of an Etoposide Glucuronide-Prodrug. Bioorg Med Chem 2003; 11:2277–2283PubMedGoogle Scholar
  261. Schmitt M, Harbeck N, Thomssen C, Wilhelm O, Magdolen V, Reuning U, Ulm K, Hofler H, Jänicke F, and Graeff H. Clinical Impact of the Plasminogen Activation System in Tumor Invasion and Metastasis: Prognostic Relevance and Target for Therapy. Thromb Haemost. 1997; 78:285–296PubMedGoogle Scholar
  262. Schmitt M, Wilhelm O, Reuning U, Krüger A, Harbeck N, Lengyel E, Graeff H, Gänsbacher B, Kessler H, Bürgle M, Stürzebecher J, Sperl S, and Magdolen V. The Urokinase Plasminogen Activator System as a Novel Target for Tumour Therapy. Fibrin Proteol 2000; 14:114–132Google Scholar
  263. Schweiki D, Itin A, Soffer D, and Keshet E. Vascular Endothelial Growth-Factor Induced by Hypoxia May Mediate Hypoxia-Initiated Angiogenesis. Nature 1992; 359:843–845Google Scholar
  264. Senter P, Saulnier M, Schreiber G, Hirschberg D, Brown J, Hellström I, and Hellström K. Anti-Tumor Effects of Antibody Alkaline-Phosphatase Conjugates in Combination with Etoposide Phosphate. Proc Natl Acad Sci USA 1988; 85:4842–4846PubMedGoogle Scholar
  265. Shyam K, Penketh P, Shapiro M, Belcourt M, Loomis R, Rockwell S, and Sartorelli A. Hypoxia-Selective Nitrobenzyloxycarbonyl Derivatives of 1,2-Bis(Methylsulfonyl)-1-(2-Chloroethyl)Hydrazines. J Med Chem 1999; 42:941–946PubMedGoogle Scholar
  266. Siim B, Denny W, and Wilson W. Oncol Res 1997; 9:357–369PubMedGoogle Scholar
  267. Silletti S, Kessler T, Goldberg J, Boger D, and Cheresh D. Disruption of Matrix Metalloproteinase 2 Binding to Integrin Alpha(v)Beta(3) by an Organic Molecule Inhibits Angiogenesis and Tumor Growth In Vivo. Proc Natl Acad Sci USA 2001; 98:119–124PubMedGoogle Scholar
  268. Simon D, Wei Y, Zhang L, Rao N, Xu H, Chen Z, Liu Q, Rosenberg S, and Chapman H. Identification of a Urokinase Receptor-Integrin Interaction Site — Promiscuous Regulator of Integrin Function. J Biol Chem 2000; 275:10228–10234PubMedGoogle Scholar
  269. Skarsgard L, Acheson D, Vinczan A, Wouters B, Heinrichs B, Loblaw D, Minchinton A, and Chaplin D. Cytotoxic Effect of Rb-6145 In Human Tumor-Cell Lines-Dependence on Hypoxia, Extracellular and Intracellular pH and Drug Uptake. Brit J Cancer 1995; 72:1479–1486PubMedGoogle Scholar
  270. Smal M, Dong Z, Cheung H, Asano Y, Escoffier L, Costello M, and Tattersall M. Activation and Cytotoxicity of 2-Alpha-Aminoacyl Prodrugs of Methotrexate. Biochem Pharmacol 1995; 49:567–574PubMedGoogle Scholar
  271. Soyez H, Schacht E, De Marre A, and Seymour L. Polymeric Prodrugs of Mitomycin C. Macromol Symp 1996; 103:163–176Google Scholar
  272. Soyez H, Schacht E, and Vanderkerken S. The Crucial Role of Spacer Groups in Macromolecular Prodrug Design. Adv Drug Del Rev 1996; 21:81–106Google Scholar
  273. Sperker B, Backman J, and Kroemer H. The Role of Beta-Glucuronidase in Drug Disposition and Drug Targeting in Humans. Clin Pharmacokinet 1997; 33:18–31PubMedGoogle Scholar
  274. Sperl S, Jacob U, de Prada N, Sturzebecher J, Wilhelm O, Bode W, Magdolen V, Huber R, and Moroder L. (4-Aminomethyl)Phenylguanidine Derivatives as Nonpeptidic Highly Selective Inhibitors of Human Urokinase. Proc Natl Acad Sci USA 2000; 97:5113–5118PubMedGoogle Scholar
  275. Steinberg G, and Borch R. Synthesis and Evaluation of Pteroic Acid-Conjugated Nitroheterocyclic Phosphoramidates as Folate Receptor-Targeted Alkylating Agents. J Med Chem 2001; 44:69–73PubMedGoogle Scholar
  276. Sudimack J, and Lee R. Targeted Drug Delivery via the Folate Receptor. Adv Drug Del Rev 2000; 41:147–162Google Scholar
  277. Sundfor K, Lyng H, and Rofstad E. Tumour Hypoxia and Vascular Density as Predictors of Metastasis in Squamous Cell Carcinoma of the Uterine Cervix. Brit J Cancer 1998; 78:822–827PubMedGoogle Scholar
  278. Sykes B, Atwell G, Hogg A, Wilson W, O’Connor C, and Denny W. N-Substituted 2-(2,6-Dinitrophenylamino)Propanamides: Novel Prodrugs that Release a Primary Amine via Nitroreduction and Intramolecular Cyclization. J Med Chem 1999; 42:346–355PubMedGoogle Scholar
  279. Szebeni J, Muggia F, and Alving C. Complement Activation By Cremophor EL as a Possible Contributor to Hypersensitivity to Paclitaxel: An In Vitro Study. J Natl Cancer Inst 1998; 90:300–306PubMedGoogle Scholar
  280. Szpaderska A, and Frankfater A. An Intracellular Form of Cathepsin B Contributes to Invasiveness in Cancer. Cancer Res 2001; 61:3493–3500PubMedGoogle Scholar
  281. Tannock I, and Hill R. The Basic Science of Oncology. New York: McGraw-Hill; 1998Google Scholar
  282. Tarui T, Mazar A, Cines D, and Takada Y. Urokinase-Type Plasminogen Activator Receptor (CD87) Is a Ligand for Integrins and Mediates Cell-Cell Interaction. J Biol Chem 2001; 276:3983–3990PubMedGoogle Scholar
  283. Thorpe P. Vascular Targeting Agents as Cancer Therapeutics. Clin Cancer Res 2004; 10:415–427PubMedGoogle Scholar
  284. Timár F, Botyánszki J. Süli-Vargha H, Babó I, Oláh J, Pogány G, and Jeney A. The Antiproliferative Action of a Melphalan Hexapeptide with Collagenase-Cleavable Site. Cancer Chemother Pharmacol 1998; 41:292–298PubMedGoogle Scholar
  285. Toki B, Cerveny C, Wahl A, and Senter P. Protease-Mediated Fragmentation of p-Amidobenzyl Ethers: A New Strategy for the Activation of Anticancer Prodrugs. J Org Chem. 2002; 67:1866–1872PubMedGoogle Scholar
  286. Tomlinson R, Heller J, Brocchini S, and Duncan R. Polyacetal-Doxorubicin Conjugates Designed for pH-Dependent Degradation. Bioconjugate Chem 2003; 14:1096–1106Google Scholar
  287. Trouet A, Baurain R, Deprez-De Campeneere D, Masquelier M, Pirson P. Targeting of Antitumour and Antiprotozoal Drugs by Covalent Linking to Protein Carriers, In: Gregoriadis G, Senior J, and Trouet A, Eds. Targeting of Drugs, New York: Plenum Press; 1982; 19–30Google Scholar
  288. Trouet A, Passioukov A, Van derpoorten K, Fernandez A, Abarca-Quinones J, Baurain R, Lobl T, Oliyai C, Shochat D, and Dubois V. Extracellularly Tumor-Activated Prodrugs for the Selective Chemotherapy of Cancer: Application to Doxorubicin and Preliminary In Vitro and In Vivo Studies. Cancer Res 2001; 61:2843–2846PubMedGoogle Scholar
  289. Van der Pluijm G, Sijmons B, Vloedgraven H, Van der Bent C, Drijfhout J, Verheijen J, Quax P, Karperien M, Papapoulos S, and Löwik C. Urokinase-Receptor/Integrin Complexes Are Functionally Involved in Adhesion and Progression of Human Breast Cancer In Vivo. Am J Pathol 2001; 159:971–982PubMedGoogle Scholar
  290. Van Noorden C, Jonges T, Meade-Tollin L, Smith R, and Koehler A. In Vivo Inhibition of Cysteine Proteinases Delays the Onset of Growth of Human Pancreatic Cancer Explants. Brit J Cancer 2000; 82:931–936PubMedGoogle Scholar
  291. Varga J. Hormone Drug Conjugates. Meth Enzymol 1985; 112:259–269PubMedGoogle Scholar
  292. Vasey P, Kaye S, Morrison R, Twelves C, Wilson P, Duncan R, Thomson A, Murray L, Hilditch T, Murray T, Burtles S, Fraier D, Frigerio E, and Cassidy J. Phase I Clinical and Pharmacokinetic Study of PK1 [N-(2-Hydroxypropyl)Methacrylamide Copolymer Doxorubicin]: First Member of A New Class of Chemotherapeutic Agents — Drug-Polymer Conjugates. Clin Cancer Res 1999;. 5:83–94PubMedGoogle Scholar
  293. Vaupel P, Kallinowski F, and Okunieff P. Blood-Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human-Tumors — A Review. Cancer Res 1989; 49:6449–6465PubMedGoogle Scholar
  294. Verner E, Katz B, Spencer J, Allen D, Hataye J, Hruzewicz W, Hui H, Kolesnikov A, Li Y, Luong C, Martelli A, Radika K, Rai R, She M, Shrader W, Sprengeler P, Trapp S, Wang J, Young W, and Mackman R. Development of Serine Protease Inhibitors Displaying a Multicentered Short (< 2.3 Angstrom) Hydrogen Bond Binding Mode: Inhibitors of Urokinase-Type Plasminogen Activator and Factor Xa. J Med Chem 2001; 44:2753–2771PubMedGoogle Scholar
  295. Volm M. Multidrug Resistance and Its Reversal. Anticancer Res 1998; 18:2905–2917PubMedGoogle Scholar
  296. Vu T. Don’t Mess with the Matrix. Nat Genet 2001; 28:202–203PubMedGoogle Scholar
  297. Wall M, Wani M, Cook C, Palmer K, McPhail A, and Sim G. Plant Antitumor Agents. I. Isolation and Structure of Camptothecin A Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca Acuminata. J Am Chem Soc 1966; 88:3889–3890Google Scholar
  298. Wang B, Gangwar S, Pauletti G, Siahaan T, and Borchardt R. Synthesis of a Novel Esterase-Sensitive Cyclic Prodrug System for Peptides that Utilizes a “Trimethyl Lock”-Facilatated Lactonization Reaction. J Org Chem 1997; 62:1363–1367Google Scholar
  299. Wang J. DNA Topoisomerases. Annu Rev Biochem 1985; 54:665–697PubMedGoogle Scholar
  300. Wang J, Biedermann K, and Brown J. Repair of DNA and Chromosome Breaks in Cells Exposed to Sr-4233 under Hypoxia or to Ionizing-Radiation. Cancer Res 1992; 52:4473–4477PubMedGoogle Scholar
  301. Wang T, Wang H, and Soong, Y. Paclitaxel-Induced Cell Death — Where the Cell Cycle and Apoptosis Come Together. Cancer 2000; 88:2619–2628PubMedGoogle Scholar
  302. Weiss R. Weiss R. The Anthracyclines-Will We Ever Find A Better Doxorubicin? Sem Oncol 1992; 19:670–686Google Scholar
  303. White I, Suzanger M, Mattocks A, Bailey E, Farmer P, and Connors T. Reduction of Nitromin to Nitrogen-Mustard-Unscheduled DNA-Synthesis in Aerobic or Anaerobic Rat Hepatocytes, JB1, BL8 and Walker Carcinoma Cell-Lines. Carcinogenesis 1989; 10:2113–2118PubMedGoogle Scholar
  304. Wilson W, Denny W, Pullen S, Thompson K, Li A, Patterson L, and Lee H. Tertiary Amine N-Oxides as Bioreductive Drugs: DACA N-Oxide, Nitracrine N-Oxide and AQ4N. Brit J Cancer 1996; 74(suppl. XXVII): S 43–S47Google Scholar
  305. Wilson K, Illig C, Subasinghe N, Hoffman J, Rudolph M, Soll R, Molloy C, Bone R, Green D, Randall T, Zhang M, Lewandowski F, Zhou Z, Sharp C, Maguire D, Grasberger B, DesJarlais R, and Spurlino J. Synthesis of Thiophene-2-Carboxamidines Containing 2-Amino-Thiazoles and their Biological Evaluation as Urokinase Inhibitors. Bioorg Med Chem Lett 2001; 11:915–918PubMedGoogle Scholar
  306. Wiman B, Lijnen H, and Collen D. Specific Interaction between the Lysine-Binding Sites in Plasmin and Complementary Sites in Alpha-2-Antiplasmin and in Fibrinogen. Biochim Biophys Acta 1979; 579:142–154PubMedGoogle Scholar
  307. Wong B, Defeo-Jones D, Jones R, Garsky V, Feng D, Oliff A, Chiba M, Ellis J, and Lin J. PSA-Specific and Non-PSA-Specific Conversion of a PSA-Targeted Peptide Conjugate of Doxorubicin to Its Active Metabolites. Drug Met Disp 2001; 29:313–318Google Scholar
  308. Yamashita J, and Ogawa M. Cell Biologic Factors and Cancer Spread. Int J Oncol 1997; 10:807–813Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2007

Authors and Affiliations

  • Vincent (F.M.H.) de Groot
    • 1
  1. 1.ToernooiveldSyntarga B.V.NijmegenThe Netherlands

Personalised recommendations