Magnetic Susceptibility Effects in High Field MRI

  • Qing X. Yang
  • Michael B. Smith
  • Jianli Wang
Part of the Biological Magnetic Resonance book series (BIMR, volume 26)


In high-magnetic-field MRI, both valuable image contrast and undesirable artifacts associated with the magnetic susceptibility effects are significantly increased. The magnetic field distortion in and by the human body is described with computer modeling methods in the human head. The manifestations of the resultant image artifacts include signal loss, blurring, and geometric distortion and are dependent on imaging methods. The treatments of the artifacts in the specific imaging sequences are described and demonstrated with human studies at 3 and 7 Tesla and animal studies at field strengths as high as 14 Tesla. With these in vivo studies, the enhanced image contrast produced by the increased field strength and the improved image quality by the artifact reduction methods provide strong and stimulating evidence for exciting potential scientific applications of high field MRI.


Human Head Gradient Echo Ultra High Field Magnetic Susceptibility Effect Excited Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. 1.
    Robitaille PM, Abduljalil AM, Kangarlu A. 2000. Ultra high resolution imaging of the human head at 8 tesla: 2K × 2K for Y2K. J Comput Assist Tomogr 24:2–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Krauss JD. 1984. In Electromagetics, p. 216. New York: McGraw-Hill.Google Scholar
  3. 3.
    Hopkins JA, Wehrli FW. 1997. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 37:494–500.PubMedCrossRefGoogle Scholar
  4. 4.
    Weisskoff RM, Kiihne S. 1992. MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents, and human blood. Magn Reson Med 24:375–383.PubMedCrossRefGoogle Scholar
  5. 5.
    Frahm J, Haase A, Matthaei D. 1986. Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3:321–327.PubMedCrossRefGoogle Scholar
  6. 6.
    Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X. 2001. Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594.PubMedCrossRefGoogle Scholar
  7. 7.
    Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA. 1995. Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45:1138–1143.PubMedGoogle Scholar
  8. 8.
    Miszkiel KA, Paley MNJ, Wilkinson ID, Hall-Craggs MA, Ordidge R, Kendall BE, Miller RF, Harrison MJG. 1997. The measurement of R 2, R 2*, and R 2 = in HIV-infected patients using the prime sequence as a measure of brain iron deposition. Magn Reson Imag 15:1113–1119.CrossRefGoogle Scholar
  9. 9.
    Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. 1986. MRI of brain iron. Am J Roentgenol 147:103–110.Google Scholar
  10. 10.
    Steffens DC, McDonald WM, Tupler LA, Boyko OB, Krishnan KR. 1996. Magnetic resonance imaging changes in putamen nuclei iron content and distribution in normal subjects. Psychiatry Res 68:55–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. 1994. Assessment of relative brain iron concentrations using T 2-weighted and T 2*-weighted MRI at 3.0 Tesla. Magn Reson Med 32:335–341.PubMedCrossRefGoogle Scholar
  12. 12.
    LeVine SM. 1997. Iron deposition in multiple sclerosis and Alzheimer’s disease brains. Brain Res 760:298–303.PubMedCrossRefGoogle Scholar
  13. 13.
    Deibel MA, Ehmann WD, Markesbery WR. 1996. Copper, iron, and zinc imbalance in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142.PubMedCrossRefGoogle Scholar
  14. 14.
    Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P. 1995. A quantitative analysis of isoferritins in select regions of aged, Parkinsonian, and Alzheimer’s diseased brains. J Neurochem 65:717–724.PubMedCrossRefGoogle Scholar
  15. 15.
    Connor JR, Menzies SL, St Martin SM, Mufson EJ. 1992. A histochemical study of iron, transferrin, and ferritin in Alzheimer’s in the evaluation diseased brains. J Neurosci Res 31:75–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ, Nguyen H, Brickman CM, LeWitt PA. 1995. Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J Neurochem 65:710–716.PubMedGoogle Scholar
  17. 17.
    Good PF, Perl DP, Bierer LM, Schmeidler J. 1992. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31:286–292.PubMedCrossRefGoogle Scholar
  18. 18.
    Halliday W. 1995. The nosology of Hallervorden-Spatz disease. J Neurol Sci 134(suppl):84–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Miyajima H, Takahashi Y, Kamata T, Shimzu H, Sakai N, Bitlin JD. 1997. Use of desferrioxamine in the treatment of Aceruloplasminemia. Ann Neurol 41:404–407.PubMedCrossRefGoogle Scholar
  20. 20.
    Steinberg PM, Ross JS, Modic MT, Tkach J, Masaryk TJ, Haacke EM. 1990. The value of fast gradient-echo MR sequences of brain disease. Am J Neuroradiol 11:59–67.PubMedGoogle Scholar
  21. 21.
    Henkelman M, Kucharczyk W. 1994. Optimization of gradient-echo MR for calcium detection. Am J Neuroradiol 15:465–472.PubMedGoogle Scholar
  22. 22.
    Atlas SW, Grossman RI, Hackney DB, Gomori JM, Campagna N, Goldberg HI, Bilaniuk LT, Zimmerman RA. 1988. Calcified intracranial lesions: detection with gradient-echo-acquisition rapid MR imaging. Am J Roentgenol 150:1383–1389.Google Scholar
  23. 23.
    Guckel F, Brix G, Rempp K, Deimling M, Rother J, Georgi M. 1994. Assessment of cerebral blood volume with dynamic T 2* contrast enhanced gradient-echo imaging. J Comput Assist Tomogr 18:344–351.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosen BR, Belliveau JW, Vevea JMT, Brady J. 1990. Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamaguchi H, Igarashi H, Katayama Y, Terashi A. 1998. An evaluation of ischemic stroke using dynamic contrast enhanced perfusion MRI. Nippon Ika Daigaku Zasshi 65:148–156.PubMedGoogle Scholar
  26. 26.
    Ida M, Yamashita M, Shimizu S, Kurisu Y. 1997. T 2*-contrast perfusion study: principles, theory and clinical utility in evaluating cerebral hemodynamics. Nippon Rinsho 55:1719–1725.PubMedGoogle Scholar
  27. 27.
    Menon RS, Ogawa S, Tank DW, Ugurbil K. 1993. Tesla gradient recalled echo characteristics of Photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 30:380–386.PubMedCrossRefGoogle Scholar
  28. 28.
    Ernst RR. 1966. Sensitivity enhancement in magnetic resonance. Adv Magn Reson 2:1–135.Google Scholar
  29. 29.
    Brunner P, Ernst RR. 1979. Sensitivity and performance time in NMR imaging. J Magn Reson 33:83–106.Google Scholar
  30. 30.
    Li S, Dardzinski BJ, Collins CM, Yang QX, Smith MB. 1996. Three-dimensional mapping of the static magnetic field inside the human head. Magn Reson Med 36:705–714.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferziger JH. 1981. Numerical methods for engineering application. New York: John Wiley & Sons.Google Scholar
  32. 32.
    Krauss JD. 1984. Electromagetics. New York: McGraw-Hill.Google Scholar
  33. 33.
    Hopkins JA, Wehrli FW. 1997. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 37:494–500.PubMedCrossRefGoogle Scholar
  34. 34.
    Collins CM, Li S, Smith MB. 1998. SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Magn Reson Med 40:847–856.PubMedCrossRefGoogle Scholar
  35. 35.
    Collins CM, Yang B, Yang QX, Smith MB. 2002. Numerical calculations of the static magnetic field in three-dimensional multi-tissue models of the human head. Magn Reson Imag 20:413–424.CrossRefGoogle Scholar
  36. 36.
    Reichenbach JR, Venkatesan R, Yablonsky DA, Thompson MR, Lai S, Haacke EM. 1997. Theory and application od static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imag 7:266–279.CrossRefGoogle Scholar
  37. 37.
    Yang QX, Dardzinski BJ, Li S, Smith MB. 1997. Multi-gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0 T. Magn Reson Med 37:331–335.PubMedCrossRefGoogle Scholar
  38. 38.
    Ro YM, Cho ZH. 1995. Susceptibility magnetic resonance imaging using spectral decomposition. Magn Reson Med 33:521–528.PubMedCrossRefGoogle Scholar
  39. 39.
    Frahm J, Merboldt KD, Hanicke W. 1988. Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med 6:474–480.PubMedCrossRefGoogle Scholar
  40. 40.
    Cho ZH, Ro YM. 1992. Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 23:193–200.PubMedCrossRefGoogle Scholar
  41. 41.
    Haacke EM, Tkach JA, Parrish TB. 1989. Reduction of T2* dephasing in gradient fieldecho imaging. Radiology 170:457–462.PubMedGoogle Scholar
  42. 42.
    Posse S, Aue WP. 1990. Susceptibility artifacts in spin-echo and gradient-echo imaging. J Magn Reson 88:473–492.Google Scholar
  43. 43.
    Yang QX, Dardzinski BJ, Williams GD, Smith MB. 1996. Magnetic susceptibility contrast using an imbalanced slice refocusing gradient: a gradient-echo method for high field MRI. Proc Int Soc Magn Reson Med 1676.Google Scholar
  44. 44.
    Frahm J, Merbold KD, Hanicke W. 1995. The effects of intravoxel dephasing and incomplete slice refocusing on susceptibility contrast in gradient-echo MRI. J Magn Reson B 109:234–237.CrossRefGoogle Scholar
  45. 45.
    Constable RT, Spencer DD. 1999. Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42:110–117.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang QX, Williams GD, Demeure RJ, Mosher TJ, Smith MB. 1998. Removal of local field gradient artifacts in T2*-weighted images at high fields by gradient-echo slice excitation profile imaging. Magn Reson Med 39:402–409.PubMedCrossRefGoogle Scholar
  47. 47.
    Stenger VA, Boada FE, Noll DC. 2000. Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T2*-weighted functional MRI. Magn Reson Med 44:525–531.PubMedCrossRefGoogle Scholar
  48. 48.
    Stenger VA, Boada FE, Noll DC. 2003. Variable-density spiral 3D tailored RF pulses. Magn Reson Med 50:1100–1106.PubMedCrossRefGoogle Scholar
  49. 49.
    Pauly J, Nishimura D, Macovski A. 1989. A k-space analysis of small-tip angle excitation. J Magn Reson 81:43–56.Google Scholar
  50. 50.
    Yang QX, Smith MB, Briggs RW, Rycyna RE. 1999. Microimaging at 14 tesla using GESEPI for removal of magnetic susceptibility artifacts in T2*-weighted image contrast. J Magn Reson 141:1–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Yablonskiy DA, Haacke EM. 1994. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763.PubMedCrossRefGoogle Scholar
  52. 52.
    Abduljalil AM, Robitaille PML. 1999. Macroscopic susceptibility in ultra high field MRI. J Comput Assist Tomogr 23:832–841.PubMedCrossRefGoogle Scholar
  53. 53.
    Yang QX, Smith MB, Zhu X, Liu H, Michaeli S, Zhang X. 2000. T2*-Weighted human brain imaging with the GESEPI at 7.0 Tesla. Proc Int Soc Magn Reson Med 1684.Google Scholar
  54. 54.
    Constable RT. 1995. Functional MR imaging using gradient-echo echo-planar imaging in the presence of large static field inhomogeneities. J Magn Reson Imag 5:746–752.CrossRefGoogle Scholar
  55. 55.
    Chen NK, Wyrwicz AM. 1999. Removal of introvoxel dephasing artifact in gradientecho images using a field-map based RF refocusing technique. Magn Reson Med 42:807–812.PubMedCrossRefGoogle Scholar
  56. 56.
    Posse S, Shen Z, Kiselev V, Kemna LJ. 2003. Single-shot T2* mapping with 3D compensation of local susceptibility gradients in multiple regions. Neuroimage 18:390–400.PubMedCrossRefGoogle Scholar
  57. 57.
    de Zwart JA, van Gelderen P, Kellman P, Duyn JH. 2002. Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48:1011–1020.PubMedCrossRefGoogle Scholar
  58. 58.
    Glover GH. 1999. 3D z-shim method for reduction of susceptibility effects in BOLD fMRI. Magn Reson Med 42:290–299.PubMedCrossRefGoogle Scholar
  59. 59.
    Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P. 2002. Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 48:860–866.PubMedCrossRefGoogle Scholar
  60. 60.
    Fernandez-Seara MA, Wehrli FW. 2000. Postprocessing technique to correct for background gradients in image-based R2* measurements. Magn Reson Med 44:358–366.PubMedCrossRefGoogle Scholar
  61. 61.
    Merbold KD, Finsterbusch J, Frahm J. 2000. Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 145:184–191.CrossRefGoogle Scholar
  62. 62.
    Yang Y, Gu H, Zhan W, Xu S, Silbersweig DA, Stern E. 2002. Simultaneous perfusion and BOLD imaging using reverse spiral scanning at 3T: characterization of functional contrast and susceptibility artifacts. Magn Reson Med 48:278–289.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang QX, Stenger VA, Smith MB, Boada F, Noll D. 2001. Reduction of the blurring artifacts due to the local field inhomogeneity in spiral imaging. Proc Int Soc Magn Reson Med 741.Google Scholar
  64. 64.
    Glover GH, Law CS. 2001. Spiral in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med 46:515–522.PubMedCrossRefGoogle Scholar
  65. 65.
    Schmithorst VJ, Dardzinski BJ, Holland SK. 2001. Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan. IEEE Trans Med Imag 20:535–539.CrossRefGoogle Scholar
  66. 66.
    Wild JM, Martin WR, Allen PS. 2002. Multiple gradient echo sequence optimized for rapid, single-scan mapping of R2* at high B0. Magn Reson Med 48:867–876.PubMedCrossRefGoogle Scholar
  67. 67.
    Gu H, Feng H, Zhan W, Xu S, Silbersweig DA, Stern E, Yang Y. 2002. Single-shot interleaved z-shim EPI with optimized compensation for signal losses due to susceptibility-induced field inhomogeneity at 3 T. Neuroimage 17:1358–1364.PubMedCrossRefGoogle Scholar
  68. 68.
    Li Z, Wu G, Zhao X, Luo F, Li SJ. 2002. Multiecho segmented EPI with z-shimmed background gradient compensation (MESBAC) pulse sequence for fMRI. Magn Reson Med 48:312–321.PubMedCrossRefGoogle Scholar
  69. 69.
    Wilson JL, Jenkinson M, Jezzard P. 2003. Protocol to determine the optimal intraoral passive shim for minimisation of susceptibility artifact in human inferior frontal cortex. Neuroimage 19:1802–1811.PubMedCrossRefGoogle Scholar
  70. 70.
    Deichmann R, Gottfried JA, Hutton C, Turner R. 2003. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19:430–441.PubMedCrossRefGoogle Scholar
  71. 71.
    Yang QX, Wang J, Smith MB, Meadowcroft M, Sun X, Eslinger PJ, Golay X. 2004. Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE and GESEPI at high field. Magn Reson Med 52:1418–1423.PubMedCrossRefGoogle Scholar
  72. 72.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.PubMedCrossRefGoogle Scholar
  73. 73.
    Bammer R, Keeling SL, Augustin M, Pruessmann KP, Wolf R, Stollberger R, Hartung HP, Fazekas F. 2001. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med 46:548–554.PubMedCrossRefGoogle Scholar
  74. 74.
    Golay X, Pruessmann KP, Weiger M, Crelier GR, Folkers PJM, Kollias SS, Boesiger P. 2000. PRESTO-SENSE: an ultra-fast whole brain fMRI technique. Magn Reson Med 43:779–786.PubMedCrossRefGoogle Scholar
  75. 75.
    Jaermann T, Crelier G, Pruessmann KP, Golay X, Netsch T, Van Muiswinkel AM, Mori S, Van Zijl PC, Valavanis A, Kollias S, Boesiger P. 2004. SENSE-DTI at 3 T. Magn Reson Med 51:230–236.PubMedCrossRefGoogle Scholar
  76. 76.
    Bornert P, Aldefeld B, Eggers H. 2000. Reversed spiral MR imaging. Magn Reson Med 44:479–484.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim DH, Adalsteinsson E, Glover GH, Spielman DM. 2002. Regularized higher-order in vivo shimming. Magn Reson Med 48:715–722.PubMedCrossRefGoogle Scholar
  78. 78.
    Wilson JL, Jenkinson M, Jezzard P. 2002. Optimization of static field homogeneity in human brain using diamagnetic passive shims. Magn Reson Med 48:906–914.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Qing X. Yang
    • 1
  • Michael B. Smith
    • 1
  • Jianli Wang
    • 1
  1. 1.Department of RadiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations