A Perspective into Ultra High Field MRI RF Coils

  • Tamer S. Ibrahim
Part of the Biological Magnetic Resonance book series (BIMR, volume 26)


The advancement of MRI as a radiological instrument has been associated with a constant drive toward higher magnetic field strengths, resulting in higher operational frequencies. More powerful magnets bring the promise of enhanced signal to noise ratio resulting in exquisite resolution, and reduced scan times. At the same time, however, operating MRI at higher frequencies adds significant physical and engineering complexities to the MRI experiment, most notably in designing safe, versatile, and high-performance radiofrequency (RF) coils. This chapter provides RF coil studies that span frequencies ranging form 1.5 to approx. 12 T. The results and conclusions are based on experimental findings using 8 and 1.5T whole-body MRI systems, computational electromagnetics using the finite-difference time-domain method, and analytical derivations using electromagnetic theory. The outcome of these studies is then utilized to provide new avenues and techniques to improve the performance of RF head coils for human MRI at very high fields.


Human Head Perfectly Match Layer Specific Absorption Rate Coil Element Birdcage Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    Hoult DI, Richard RE. 1976. The Signal to noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85.Google Scholar
  2. 2.
    Gruetter R, Weisdorf SA, Rajanayagan V, Terpstra M, Merkle H, Truwit CL, Garwood M, Nyberg SL, Ugurbil K. 1998. Resolution improvements in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 135:260–264.PubMedCrossRefGoogle Scholar
  3. 3.
    Gati JS, Menon RS, Ugurbil K, Rutt BK. 1997. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302.PubMedCrossRefGoogle Scholar
  4. 4.
    Robitaille PM, Abduljalil AM, Kangarlu A. 2000. Ultra high resolution imaging of the human head at 8 tesla: 2K × 2K for Y2K. J Comput Assist Tomogr 24:2–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Ibrahim TS, Lee R, Baertlein BA, Kangarlu A, Robitaille PML. 2000. Application of finite difference time domain method for the design of birdcage RF head coils using multiport excitations. Magn Reson Imag 18:733–742.CrossRefGoogle Scholar
  6. 6.
    Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K. 2001. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Wei Q, Liu F, Xia L, Crozier S. 2005. An object-oriented designed finite-difference time-domain simulator for electromagnetic analysis and design in MRI—applications to high field analyses. J Magn Reson 172:222–230.PubMedCrossRefGoogle Scholar
  8. 8.
    Beck BL, Jenkins K, Caserta J, Padgett K, Fitzsimmons J, Blackband SJ. 2004. Observation of significant signal voids in images of large biological samples at 11.1 T. Magn Reson Med 51:1103–1107.PubMedCrossRefGoogle Scholar
  9. 9.
    Hayes EC, Wdelstein WA, Schenck DF, Mueller OM, Eash M. 1985. An efficient highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson 63:622–628.Google Scholar
  10. 10.
    Glover H, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, O’Donnell M, Barber WD. 1985. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 64:255–270.Google Scholar
  11. 11.
    Tropp J. 1989. The theory of the bird-cage resonator. J Magn Reson 82:51–62.Google Scholar
  12. 12.
    Pascone RJ, Garcia BJ, Fitzgerald TM, Vullo T, Zipagan R, Cahill PT. 1991. Generalized electrical analysis of low-pass and high-pass birdcage resonators. Magn Reson Imag 9:395–408.CrossRefGoogle Scholar
  13. 13.
    Baertlein BA, Ozbay O, Ibrahim TS, Yu Y, Lee R, Kangarlu A, Robitaille PML. 2000. Theoretical model for an MRI radio frequency resonator. IEEE Trans Biomed Eng 47:535–546.PubMedCrossRefGoogle Scholar
  14. 14.
    Bogdanov G, Ludwig R. 2002. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging. Magn Reson Med 47:579–593.PubMedCrossRefGoogle Scholar
  15. 15.
    Han Y, Wright SM. 1993. Analysis of RF penetration effects in MRI using finitedifference time-domain method. Proc Soc Magn Reson Med 1327.Google Scholar
  16. 16.
    Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost JM. 1994. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 32:206–218.PubMedCrossRefGoogle Scholar
  17. 17.
    Robitaille PML. 1999. Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI. J Comput Assist Tomogr 23:879–890.PubMedCrossRefGoogle Scholar
  18. 18.
    Ibrahim TS, Kangarlu A, Chakeres DW. 2005. Design and performance issues of RF coils utilized in ultra high field MRI: experimental and numerical evaluations. IEEE Bio Med Eng 52:1277–1284.Google Scholar
  19. 19.
    Ibrahim TS, Mitchell C, Lee R, Schmalbrock P, Chakeres DW. 2005. Perspective into the operation of RF coils from 1.5 to 11.7 Tesla. Magn Reson Med 54:683–690.PubMedCrossRefGoogle Scholar
  20. 20.
    Kangarlu A, Ibrahim TS, Shellock FG. 2005. Effects of coil dimensions and field polarization on RF heating inside a head phantom. Magn Reson Imag 23:53–60.CrossRefGoogle Scholar
  21. 21.
    Ibrahim TS, Abduljalil AM, Lee R, Baertlein BA, Robitaille PML. 2001. Analysis of B1 field profiles and SAR values for multi-strut transverse electromagnetic RF coils in high field MRI application. Phys Med Biol 46:2545–2555.PubMedCrossRefGoogle Scholar
  22. 22.
    Ibrahim TS, Lee R, Baertlein BA, Robitaille PML. 2001. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imag 19:1339–1347.CrossRefGoogle Scholar
  23. 23.
    Ibrahim TS, Lee R, Abduljalil AM, Baertlein BA, Robitaille PML. 2001. Calculations of EM interactions with biological tissue: magnetic resonance imaging at ultra high field. Appl Comput Electromagn 16:137–144.Google Scholar
  24. 24.
    Ibrahim TS, Lee R, Abduljalil AM, Baertlein BA, Robitaille PML. 2001. Dielectric resonances and B 1 field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magn Reson Imag 19:219–226.CrossRefGoogle Scholar
  25. 25.
    Ibrahim TS. 2004. A numerical analysis of radiofrequency power requirements in magnetic resonance imaging experiments. IEEE Trans Microwave Theory Tech 52:1999–2003.CrossRefGoogle Scholar
  26. 26.
    Simunic D, Watch P, Renhart W, Stollberger R. 1996. Spatial distribution of highfrequency electromagnetic energy in human head during MRI: numerical results and measurements. IEEE Trans Biomed Eng 43:87–94.CrossRefGoogle Scholar
  27. 27.
    Collins CM, Li S, Smith MB. 1998. SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil: specific energy absorption rate. Magn Reson Med 40:847–856.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen J, Feng Z, Jin JM. 1998. Numerical simulation of SAR and B1-field inhomogeneity of shielded RF coils loaded with the human head. IEEE Trans Biomed Eng 45:650–659.PubMedCrossRefGoogle Scholar
  29. 29.
    Gandhi OP, Chen XB. 1999. Specific absorption rates and induced current densities for an anatomy-based model of the human for exposure to time-varying magnetic fields of MRI. Magn Reson Med 41:816–823.PubMedCrossRefGoogle Scholar
  30. 30.
    Ibrahim TS, Lee R, Baertlein BA, Yu Y, Robitaille PML. 2000. Computational analysis of the high pass birdcage resonator: finite difference time domain simulations for highfield MRI. Magn Reson Imag 18:835–843.CrossRefGoogle Scholar
  31. 31.
    Ibrahim TS, Lee R, Baertlein BA, Robitaille PML. 2001. B1 field homogeneity and SAR calculations in the high pass birdcage coil. Phys Med Biol 46:609–619.PubMedCrossRefGoogle Scholar
  32. 32.
    Collins CM, Smith MB, Turner R. 2004. Model of local temperature changes in brain upon functional activation. J Appl Physiol 97:2051–2055.PubMedCrossRefGoogle Scholar
  33. 33.
    Trakic A, Crozier S, Liu F. 2004. Numerical modelling of thermal effects in rats due to high-field magnetic resonance imaging (0.5–1 GHz). Phys Med Biol 49:5547–5558.PubMedCrossRefGoogle Scholar
  34. 34.
    Hand JW, Lau RW, Lagendijk JJ, Ling J, Burl M, Young IR. 1999. Electromagnetic and thermal modeling of SAR and temperature fields in tissue due to an RF decoupling coil. Magn Reson Med 42: 183–192.PubMedCrossRefGoogle Scholar
  35. 35.
    Cline H, Mallozzi R, Li Z, McKinnon G, Barber W. 2004. Radiofrequency power deposition utilizing thermal imaging. Magn Reson Med 51:1129–1137.PubMedCrossRefGoogle Scholar
  36. 36.
    Collins CM, Yang QX, Wang JH, Zhang X, Liu H, Michaeli S, Zhu X H, Adriany G, Vaughan JT, Anderson P, Merkle H, Ugurbil K, Smith MB, Chen W. 2002. Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz. Magn Reson Med 47:1026–1028.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang J, Yang QX, Zhang X, Collins CM, Smith MB, Zhu XH, Adriany G, Ugurbil K, Chen W. 2002. Polarization of the RF field in a human head at high field: a study with a quadrature surface coil at 7.0 T. Magn Reson Med 48:362–369.PubMedCrossRefGoogle Scholar
  38. 38.
    Ibrahim, TS, Mitchell C, Schmalbrock P, Chakeres DW. 2003. The TEM resonator modes: A study at high field MRI. Proc Int Soc Magn Reson Med 2553.Google Scholar
  39. 39.
    Ibrahim TS, Lee R. 2003. Specific absorption rate at 1.5T and 3T: a numerical study of the birdcage coil. Proc Int Soc Magn Reson Med 2602.Google Scholar
  40. 40.
    Ibrahim TS, Mitchell C, Schmalbrock P, Chakeres DW. 2004. Computational and experimental analysis of electromagnetic fields induced by RF coils for high field imaging. Proc Int Soc Magn Reson Med 488.Google Scholar
  41. 41.
    Yee KS. 1966. Numerical solutions of the initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Ant Prop 14:302–317.CrossRefGoogle Scholar
  42. 42.
    Taflove A, Hagness SC. 2000. Computational electrodynamics: the finite difference time domain method. Boston: Artech House.Google Scholar
  43. 43.
    Ibrahim TS. 2003. Design of radiofrequency coils for magnetic resonance imaging applications: a computational electromagnetic approach. PhD Dissertation. The Ohio State University, Columbus.Google Scholar
  44. 44.
    Ibrahim TS, Lee R. 2003. Effects of geometry, excitation and spatial positioning on the birdcage coil performance. Proc Int Soc Magn Reson Med 2518.Google Scholar
  45. 45.
    Tsuei, Y, Cangellaris AC, Prince JL. 1993. Rigorous electromagnetic modelingof chipto-package (first-level) interconnections. IEEE Trans Comp Hybrids Manuf 16:876–882.CrossRefGoogle Scholar
  46. 46.
    Berenger JP. 1994. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200.CrossRefGoogle Scholar
  47. 47.
    Gabriel C, Gabriel S. Compilation of dielectric properties of body tissues at RF and microwave frequencies.
  48. 48.
    Insko EK, Bolinger L. 1993. Mapping of radiofrequency field. J Magn Reson A 103:82–85.CrossRefGoogle Scholar
  49. 49.
    Field S, Francon C. 1987. Physics and technology of hyperthermia. Boston: Martinus Nijhoff Publishers.Google Scholar
  50. 50.
    Butterworth EJ, Walsh EG, Hugg JW. 2001. A TiO2 dielectric filled toroidal radio frequency cavity resonator for high-field NMR. NMR Biomed 14:184–191.PubMedCrossRefGoogle Scholar
  51. 51.
    Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu, H, DelaBarre L, Ugurbil K. 2004. Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52:851–859.PubMedCrossRefGoogle Scholar
  52. 52.
    Baertlein BA, Ozbay O, Ibrahim TS, Yu Y, Lee R, Kangarlu A, Robitaille PML. 2002. Theoretical model for an MRI radio frequency resonator. IEEE Trans Biomed Eng 49:495–496.CrossRefGoogle Scholar
  53. 53.
    Ibrahim TS, Lee R. 2005. Evaluation of MRI RF probes utilizing infrared sensors. IEEE Trans Biomed Eng. In press.Google Scholar
  54. 54.
    Kangarlu A, Baertlein BA, Lee R, Ibrahim TS, Abduljalil AM, Yang L, Robitaille PML. 1999. Analysis of the dielectric resonance phenomenon in ultra high field magnetic resonance imaging. J Comput Assist Tomogr 26:821–831.CrossRefGoogle Scholar
  55. 55.
    Hoult DI, Lauterbur PC. 1979. The sensitivity of the zeumatographic experiment involving human samples. J Magn Reson 34:425–433.Google Scholar
  56. 56.
    Bottomley PA, Redington RW, Edelstein WA, Schenck JF. 1985. Estimating radiofrequency power deposition in body NMR imaging. Magn Reson Med 2:336–349.PubMedCrossRefGoogle Scholar
  57. 57.
    Ibrahim TS, Lee R, Baertlein BA, Robitaille PML. 2001. Classical analysis of RF power requirements in MRI. Proc Int Soc Magn Reson Med Eur Soc Magn Reson Med Biol 1578.Google Scholar
  58. 58.
    Collins CM, Smith MB. 2001. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90 degrees” RF pulse for the head in the birdcage coil. Magn Reson Med 45:684–691.PubMedCrossRefGoogle Scholar
  59. 59.
    Robitaille PML, Abduljalil AM, Ibrahim TS, Baertlein BA, Lee R, Ashman C. 2001. A shielded single element TEM Resonator: a simple extremity RF coil for UHFMRI. Proc Int Soc Magn Reson Med Eur Soc Magn Reson Med Biol 1095.Google Scholar
  60. 60.
    Roschmann PK. 1988. High-frequency coil system for magnetic resonance imaging apparatus. US Patent 4,746,866.Google Scholar
  61. 61.
    Robitaille PML, Abduljalil AM, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres DM, Spigos D. 1998. Human magnetic resonance imaging at 8 T. NMR Biomed 11:263–265.PubMedCrossRefGoogle Scholar
  62. 62.
    Ibrahim TS, Lee R, Baertlein BA, Yu Y, Robitaille PML. 1999. On the physical feasibility of achieving linear polarization at high-field: a study of the birdcage coil. Proc Int Soc Magn Reson Med 2058.Google Scholar
  63. 63.
    Edelstein WA Glover GH, Hardy CJ, Redington RW. 1986. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3: 604–618.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen CN, Sank VJ, Cohen SM, Hoult DI. 1986. The field dependence of NMR imaging, I: laboratory assessment of signal-to-noise ratio and power deposition. Magn Reson Med 3:722–729.PubMedCrossRefGoogle Scholar
  65. 65.
    Hoult DI. 2000. The principle of reciprocity in signal strength calculations: a mathematical guide. Conc Magn Reson 12:173–187.CrossRefGoogle Scholar
  66. 66.
    Haacke EM, Brown RW, Thompson MR, Venkatesan R. 1999. Magnetic resonance imaging: physical principles and sequence design. New York: Wiley-Liss.Google Scholar
  67. 67.
    Ibrahim TS. 2005. Analytical approach to the MR signal. Magn Reson Med 54:677–682.PubMedCrossRefGoogle Scholar
  68. 68.
    Abragam A. 1961. The principles of nuclear magnetism. London: Oxford UP.Google Scholar
  69. 69.
    Decker AJ. 1965. Solid state physics. London: MacMillan.Google Scholar
  70. 70.
    Balanis CA. 1989. Advanced engineering electromagnetics. New York: John Wiley and Sons.Google Scholar
  71. 71.
    Ibrahim TS, Lee R, Baertlein BA, Kangarlu A, Robitaille PML. 2000. Dielectric resonance in ultra high field MRI. Proc Int Soc Magn Reson Med 1681.Google Scholar
  72. 72.
    Ibrahim TS, Lee R, Baertlein BA, Kangarlu A, Robitaille PML. 2000. The effect of tissue-coil electromagnetic interactions on field inhomogeneity: study at high field MRI. Proc Eur Soc Magn Reson Med Biol 237.Google Scholar
  73. 73.
    Bomsdorf H, Helzel T, Kunz D, Roschmann P, Tschendel O, Wieland J. 1998. Spectroscopy and imaging with a 4 tesla whole-body MR system. NMR Biomed 1:151–158.CrossRefGoogle Scholar
  74. 74.
    Roschmann P. 1987. Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. Med Phys 14:922–931.PubMedCrossRefGoogle Scholar
  75. 75.
    Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R. 1990. In vivo magnetic resonance imaging and spectroscopy of humans with a 4 T whole-body magnet. NMR Biomed 3:31–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim SG, Menon R, Merkle H, Ogawa S. 1993. Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9:259–277.PubMedGoogle Scholar
  77. 77.
    Jin JM, Chen J, Chew WC, Gan H, Magin RL, Dimbylow PJ. 1996. Computation of electromagnetic fields for high-frequency magnetic resonance imaging applications. Phys Med Biol 41:2719–2738.PubMedCrossRefGoogle Scholar
  78. 78.
    Singerman RW, Denison TJ, Wen H, Balaban RS. 1997. Simulation of B1 field distribution and intrinsic signal-to-noise in cardiac MRI as a function of static magnetic field. J Magn Reson 125:72–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. 2005. Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imag 21:192–196.CrossRefGoogle Scholar
  80. 80.
    Van deMoortele PF, Adriany G, Akgun C, Moeller S, Ritter J, Vaughan JT, Ugurbil K. 2005. B1 phase spatial pattern at 7 Tesla: impact on b1 inhomogeneities with a head transceive. Proc Int Soc Magn Reson Med 2748.Google Scholar
  81. 81.
    Hoge R, Wiggins W, Wiggins G, Triantafyllou CD, Potthast A, Wald L. 2004. High spatial resolution functional imaging of perfusion and BOLD contrast in humans at 7 Tesla. Proc Int Soc Magn Reson Med 1015.Google Scholar
  82. 82.
    Porter JR, Wright SM. 2001. A sixteen-channel multiplexing upgrade for single channel receivers. Magn Reson Imag 19:1009–1016.CrossRefGoogle Scholar
  83. 83.
    Bankson JA, Wright SM. 2001. Multi-channel magnetic resonance spectroscopy through time domain multiplexing. Magn Reson Imag 19:1001–1008.CrossRefGoogle Scholar
  84. 84.
    Bankson JA, Griswold MA, Wright SM, Sodickson DK. 2000. SMASH imaging with an eight element multiplexed RF coil array. MAGMA 10:93–104.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee RF, Hardy CJ, Sodickson DK, Bottomley PA. 2004. Lumped-element planar strip array (LPSA) for parallel MRI. Magn Reson Med 51:172–183.PubMedCrossRefGoogle Scholar
  86. 86.
    Hoult DI, Kolansky G, Kripiakevich D, King SB. 2004. The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 171:64–70.PubMedCrossRefGoogle Scholar
  87. 87.
    Lee RF, Westgate CR, Weiss RG, Newman DC, Bottomley PA. 2001. Planar strip array (PSA) for MRI. Magn Reson Med 45:673–683.PubMedCrossRefGoogle Scholar
  88. 88.
    Vaughan JT. 2005. How to do RF at high fields: human MRI and MRS at high static magnetic fields. Proc Int Soc Magn Reson Med. In press.Google Scholar
  89. 89.
    Caserta J, Beck BL, Fitzsimmons JR. 2004. Reduction of wave phenomena in highfield MRI experiments using absorbing layers. J Magn Reson 169:187–195.PubMedCrossRefGoogle Scholar
  90. 90.
    Tincher M, Meger CR, Gupta R, Williams DM. 1993. Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI. IEEE Trans Med Imag 12: 361–365.CrossRefGoogle Scholar
  91. 91.
    Li S, Collins CM, Dardzinski BJ, Chin CL, Smith MB. 1997. A method to create an optimum current distribution and homogeneous B1 field for elliptical birdcage coils. Magn Reson Med 37:600–608.PubMedCrossRefGoogle Scholar
  92. 92.
    Forbes LK, Crozier S, Doddrell DM. 1987. An analysis and optimization of RF probes used in magnetic resonance imaging. Meas Sci Techn 7:1281–1290.CrossRefGoogle Scholar
  93. 93.
    Ocali O, Atalar E. 1998. Ultimate intrinsic signal-to-noise ratio in MRI. Magn Reson Med 39:462–473.PubMedCrossRefGoogle Scholar
  94. 94.
    Riauka TA, Zanche NF, Thompson R, Vermeulen FE, Capjack CE, Allen PS. 1999. A numerical approach to non-circular birdcage RF coil optimization: verification with a fourth-order coil. Magn Reson Med 41:1180–1188.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen JY, Gandhi OP. 1992. Numerical Simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors. IEEE Trans Biomed Eng 39:209–216.PubMedCrossRefGoogle Scholar
  96. 96.
    Dimbylow PJ, Gandhi OP. 1991. Finite-difference time-domain calculations of SAR in a realistic heterogeneous model of the head for plane-wave exposure from 600 MHz to 3 Ghz. Phys Med Biol 36:1075–1089.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhu XL, Gandhi OP. 1988. Design of RF needle applicators for optimum SAR distributions in irregularly shaped tumors. IEEE Trans Biomed Eng 35:382–388.PubMedCrossRefGoogle Scholar
  98. 98.
    Hoult DI. 2000. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imag 12:46–67.CrossRefGoogle Scholar
  99. 99.
    Lee RF, Foresto CM. 2004. A Focused MRI with Coupled Phased Array at 7T. Proc Int Soc Magn Reson Med 34.Google Scholar
  100. 100.
    Adriany G, VandeMoortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K. 2005. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53:434–445.PubMedCrossRefGoogle Scholar
  101. 101.
    Ibrahim TS. 2005. RF selective excitation for localized imaging at 9.4 Tesla. Proc Int Soc Magn Reson Med 890.Google Scholar
  102. 102.
    Ibrahim TS, Abraham R, Abraham D. 2005. Optimized whole-body RF coil for imaging applications at 7 Tesla. Proc Int Soc Magn Reson Med 820.Google Scholar
  103. 103.
    Ibrahim TS. 2005. Homogenous distributions of RF fields over the human head volume at 7 Tesla. Proc Int Soc Magn Reson Med 2752.Google Scholar
  104. 104.
    Pauly JM, Hu BS, Wang SJ, Nishimura DG, Macovski A. 1993. A three-dimensional spin-echo or inversion pulse. Magn Reson Med 29:2–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Conolly S, Pauly J, Nishimura D, Macovski A. 1992. Two-dimensional selective adiabatic pulses. Magn Reson Med 24:302–313.PubMedCrossRefGoogle Scholar
  106. 106.
    Carlson JW, Kramer DM. 1990. Rapid radiofrequency calibration in mri. Magn Reson Med 15:437–445.CrossRefGoogle Scholar
  107. 107.
    Davies NP, Jezzard P. 2005. Calibration of gradient propagation delays for accurate two-dimensional radiofrequency pulses. Magn Reson Med 53:231–236.PubMedCrossRefGoogle Scholar
  108. 108.
    Katscher U, Bornert P, Leussler C, van denBrink JS. 2003. Transmit SENSE. Magn Reson Med 49:144–150.PubMedCrossRefGoogle Scholar
  109. 109.
    Sodickson DK, McKenzie CA, Ohliger MA, Yeh EN, Price MD. 2002. Recent advances in image reconstruction, coil sensitivity calibration, and coil array design for SMASH and generalized parallel MRI. MAGMA 13:157–163.Google Scholar
  110. 110.
    Sodickson DK, McKenzie CA. 2001. A generalized approach to parallel magnetic resonance imaging. Med Phys 28:1629–1643.PubMedCrossRefGoogle Scholar
  111. 111.
    Wiesinger F, Van deMoortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. 2004. Parallel imaging performance as a function of field strength: an experimental investigation using electrodynamic scaling. Magn Reson Med 52:953–964.PubMedCrossRefGoogle Scholar
  112. 112.
    Wiesinger F, Boesiger P, Pruessmann KP. 2004. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52:376–390.PubMedCrossRefGoogle Scholar
  113. 113.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tamer S. Ibrahim
    • 1
  1. 1.School of Electrical and Computer EngineeringThe University of OklahomaNormanUSA

Personalised recommendations