Skip to main content

Abstract

The intrinsic improvements in signal-to-noise ratio, spectral dispersion, and susceptibility contrast with increasing static magnetic field strength, B 0, has spurred the development of MR technology from its very first application to clinical imaging. With maturing magnet, RF, and gradient technology, the clinical community has seen the static magnetic field of clinical systems increase from 0.2 to 1.5 to 3.0 T. Today, the “high field” label for human MR research describes initial experiences with 7, 8, and 9.4T systems. While currently primarily research instruments, this technology is bound to cross the boundary into the clinical diagnostic arena as key technical issues are solved and the methodology proves itself for addressing clinical issues. In this chapter we discuss the particular advantages and disadvantages of ultra high field systems for clinical imaging as well as some of the immediate technological challenges that must be solved to derive the full benefit of the extraordinary sensitivity of these systems, which has been glimpsed from their research use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R. 1988. Whole-body MR imaging and spectroscopy with a 4-T system. Radiology 169:811–816.

    PubMed  CAS  Google Scholar 

  2. Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig, R, Duerr W, Oppelt R. 1990. In vivo magnetic resonance of humans with a 4T whole body magnet. NMR Biomed 1:31–45.

    Article  Google Scholar 

  3. Akbudak E, Markham J, Kotys M, Foster G, Conturo T. 2002. Whole-brain bolus perfusion imaging in humans at 3T compared to 1.5T. Proc Int Soc Magn Reson Med 1004.

    Google Scholar 

  4. Hoult DI, Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425–433.

    CAS  Google Scholar 

  5. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. 2005. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250.

    Article  PubMed  CAS  Google Scholar 

  6. Basser PJ, Mattiello, LeBihan D. 1994. MR Diffusion tensor spectroscopy and imaging. Biophys J 66:259–267.

    Article  PubMed  CAS  Google Scholar 

  7. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.

    Article  PubMed  CAS  Google Scholar 

  8. Sodickson DK. 2000. Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 44:284–289.

    Article  Google Scholar 

  9. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. 2002. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210.

    Article  PubMed  Google Scholar 

  10. Budinger T. 1990. Private communication.

    Google Scholar 

  11. Robitaille PML, Warner R, Jagadeesh J, Abduljalil AM, Kangarlu A, Burgess RE, Yu Y, Yang L, Zhu H, Jiang Z, Bailey RE, Chung W, Somawiharja Y, Feynan P, Rayner D. 1999. Design and assembly of an 8 tesla whole body MRI scanner. J Comput Assist Tomogr 23:808–820.

    Article  PubMed  CAS  Google Scholar 

  12. Vaughan JT, Garwood M, Collins CM, Liu W, Delabarre L, Adriany G, Anderson P, Merkle H, Goebel R, Smith MB, Ugurbil K. 2001. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30.

    Article  PubMed  CAS  Google Scholar 

  13. Vaughan JT, DelaBarre L, Snyder C, Adriany G, Collins C, Van de Moortele P-F, Moeller S, Ritter J, Strupp J, Andersen P, Tian J, Smith MB, Ugurbil K. 2005. RF Image Optimization at 7T & 9.4T. Proc Int Soc Magn Reson Med 953.

    Google Scholar 

  14. Neurospin. 2005. http://www.meteoreservice.com/neurospin/.

  15. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. 1984. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448.

    Article  PubMed  CAS  Google Scholar 

  16. Mansfield P. 1977. Multi-planar image formation using NMR spin echoes. J Phys C 10:L55–L58.

    Article  CAS  Google Scholar 

  17. Bottomley P, Edelstein WA. 1981. Power deposition in whole body NMR imaging. Med Phys 8:510–512.

    Article  PubMed  CAS  Google Scholar 

  18. Collins CM, Smith MB. 2001. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90 degrees” RF pulse for the head in the birdcage coil. Magn Reson Med 45(4):684–91.

    Article  PubMed  CAS  Google Scholar 

  19. Roeschmann P. Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. Med Phys 1987 14(6):922–931.

    Article  Google Scholar 

  20. IEC, E., 60601-2-33.

    Google Scholar 

  21. Brown IJ, Bird JM, McDouglass IL, Black D. 1986. Magnet assembly for use in NMR apparatus. US Patent 4587504.

    Google Scholar 

  22. Bollenbeck J, Vester M, Oppüelt R, Kroeckel H, Schnell W. 2005. A high performance multi-channel RF receiver for magnetic resonance imaging systems. Proc Int Soc Magn Reson 860.

    Google Scholar 

  23. Ugurbil K. 2005. Personal communciation.

    Google Scholar 

  24. Katscher U, Börnert P, Leussler C, Van den Brink JS. 2003. Transmit SENSE. Magn Reson Med 49:144–150.

    Article  PubMed  Google Scholar 

  25. Ibrahim TS. 2004. A numerical Analysis of radio-frequency power requirments in magnetic resonance imaging experiements. IEEE Trans Microwave Theory Tech 52(8):1999–2003.

    Article  Google Scholar 

  26. Boskamp EB, Lee RF. 2002. Whole body LPSA transceive array with optimized transmit homogeneity. Proc Int Soc Magn Reson Med 903.

    Google Scholar 

  27. Adriany G, Van de Moortele P-F, Wiesinger F, Moeller S, Strupp J, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan JT, Ugurbil K. 2005. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445.

    Article  PubMed  Google Scholar 

  28. Adriany G, Van de Moortele P-F, Wiesinger F, Moeller S, Strupp J, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan JT, Ugurbil K. 2005. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445

    Article  PubMed  Google Scholar 

  29. Katscher U, Bornert P, Leussler C, van der Brink JS. 2003. Transmit SENSE. Magn Reson Med 49:144–150.

    Article  PubMed  Google Scholar 

  30. Zhu Y. 2004. Parallel excitation with an arry of transmit coils. Magn Reson Med 51:775–784.

    Article  PubMed  Google Scholar 

  31. Wald LL, Wiggins GC, Potthast A, Wiggins JC, Triantafyllou C. 2005. Design considerations and coil comparisons for 7 Tesla brain imaging. Proc Int Soc Magn Reson Med 921.

    Google Scholar 

  32. Collins CM, Yang QX, Wang JH, Zhang X, Liu H, Michaeli S, Zhu XH, Adriany G, Vaughan JT, Anderson P, Merkle H, Ugurbil K, Smith MB, Chen W. 2002. Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz. Magn Reson Med 47(5):1026–1028.

    Article  PubMed  CAS  Google Scholar 

  33. Tropp J. 2004. Image brightening in samples of high dielectric constant. J Magn Reson 167(1):12–24.

    Article  PubMed  CAS  Google Scholar 

  34. Vaughan JT, Adriany G, Garwood M, Yocoub E, Duong T, Merkle H, Andersen P, DelaBarre L, Kim SG, Ugurbil K. 2002. A detunable volume coil for high field NMR. Magn Reson Med 47:990–1000.

    Article  PubMed  CAS  Google Scholar 

  35. Vaughan, JT. 1998. Cavity Resonantor for NMR sysytems. Birmingham, AL: UAB Research Foundation.

    Google Scholar 

  36. Wiggins GC, Triantafyllou C, Potthast A, Reykowsky A, Nittka M, Wald LL. 2005. A 32 channel receive-only phased array coil for 3T with novel geodesic tiling geometry. Proc Int Soc Magn Reson Med 679.

    Google Scholar 

  37. Wintersberger BJ, Reeder SB, Dietrich O, Huber A, Lanz T, Greiser A, Reiser MF, Schoenberg SO. 2005. Multi-slice TSENSE cardiac CINE SSFP imaging with a 32 channel cardiac coil. Proc Int Soc Magn Reson Med 277.

    Google Scholar 

  38. Hardy CJ, Cline HE, Giaquinto RO, Niendorf T, Grant AK, Sodickson DK. 2005. A 32-element cardiac receiver-coil array for highly accelerated parallel imaging. Proc Int Soc Magn Reson Med 951.

    Google Scholar 

  39. Wiggins GC, Potthast A, Triantafyllou C, Lin F, Benner T, Wiggins CJ, Wald LL. 2005. A 96 channel MRI sytem with 23-and 90-channel phased array head coil at 1.5 Tesla. Proc Int Soc Magn Reson Med 671.

    Google Scholar 

  40. Rausch M, Gebhardt M, Kaltenbacher M, Landes H. 2005. Computer-aided design of clinical magnetic resonance imaging scanners by coupled magnetomechanicalacoustical modelling. IEEE Trans Magn 41(1):72–81.

    Article  Google Scholar 

  41. Wedeen VV, Song SKV, Wald LL, Reese TG, Benner T, Tseng WYI. 2000. Diffusion Spectrum MRI of cortical architectonics: visualization of cortical layers and segmentation of cortical areas by analysis of planar structure. Proc Int Soc Magn Reson Med 622.

    Google Scholar 

  42. Irnich W. 1994. Electrostimulation by time-varying magnetic fields. MAGMA 2:43–49.

    Article  Google Scholar 

  43. Reilly JP. 1989. Peripheral nerve stimulation by induced electric currents: exposure to time varying magnetic fields. Med Biol Eng Comput 27:101–110.

    Article  PubMed  CAS  Google Scholar 

  44. Schmitt F, Stehling MK, Turner R. 1998. Physiological side effects of fast gradient switching. Echo-Planar Imaging. ISBN 3-540-63194-1.

    Google Scholar 

  45. Kimmlingen R, Eberlein E, Gebhardt M, Hartinger B, Ladebeck R, Lazar R, Reese T, Riegler J, Schmitt F, Sorensen GA, Wedeen V, Wald LL. 2004. An easy to exchange high performance head gradient insert for a 3T whole body MRI system: first results. Proc Int Soc Magn Reson Med 1630.

    Google Scholar 

  46. Kimmlingen R, Eberlein E, Gebhardt M, Hartinger B, Ladebeck R, Lazar R, Reese T, Riegler J, Schmitt F, Sorensen GA, Wedeen V, Wald LL. 2005. An easy to exchange high performance head gradient insert for a 3T whole body MRI system: first results. Proc Int Soc Magn Reson Med 1630.

    Google Scholar 

  47. Hedeen RA, Edelstein WA. 1997. Characterization and prediction of gradient acoustic noise in MR images. Magn Reson Med 37:7–10.

    Article  PubMed  CAS  Google Scholar 

  48. Edelstein WA. Acoustic noise considerations of a MRI system. 2001.

    Google Scholar 

  49. Arm., r., 3rd Arm artifact.

    Google Scholar 

  50. Stringer M, Dty GN, Shevgoor S, Xiao C, Laws N, Staab JP, Wald LL, Ackerman JL, Doty D. 2005. Progress in the development of a quiet, high performance head gradient coil. Proc Int Soc Magn Reson Med 406.

    Google Scholar 

  51. Augustinack J, Kouwe AVD, Salat D, Wald LL, Blackwell M, Wiggins C, Fischl B. 2004. Detection of entorhinal islands using 7T MRI. Paper presented at Human Brain Mapping 2004. Poster MO288.

    Google Scholar 

  52. Bowtell R, Schmitt F. 1998. Echo-planar imaging hardware. Echo-planar imaging. ISBN 3-540-63194-1.

    Google Scholar 

  53. Rohan M. 1995. Electromechanical coupling at high fields: increased gradient resistance. Proc Soc Magn Reson 937.

    Google Scholar 

  54. Ludeke KM, Röschmann P, Tischler R. 1985. Susceptibility artifacts in NMR imaging. Magn Reson Med 3:329.

    CAS  Google Scholar 

  55. Abduljalil AM, Robitaille PML. 1999. Macroscopic susceptibility in ultra high field MRI. J Comput Assist Tomogr 23(6):832–841.

    Article  PubMed  CAS  Google Scholar 

  56. Jesmanowicz A, Hyde JS, Punchard WFB, Starewicz PM. 2001. Ferroshimming. US Patent 6,294,972.

    Google Scholar 

  57. Wilson JL, Jezzard P. 2003. Utilization of an intra-oral diamagnetic passive shim in functional MRI of the inferior frontal cortex. Magn Reson Med 50(5):1089–1094.

    Article  PubMed  Google Scholar 

  58. Hsu JJ, Glover G. 2005. Mitigation of susceptibility-induced signal loss in neuro imaging using localized shim coils. Magn Reson Med 53(2):243.

    Article  PubMed  Google Scholar 

  59. Gruetter R, Boesch C. 1992. Fast, non-iterative shimming on spatially localized signals: in vivo analysis of the magnetic field along axes. J Magn Reson 96:323–334.

    CAS  Google Scholar 

  60. deGraaf RA, Brown PB, McIntyre S, Rothman DL, Nixon TW. 2003. Dynamic shim updating (DSU) for multislice signal acquisition. Magn Reson Med 49(3):409–416.

    Article  Google Scholar 

  61. Hsu JJ, Glover G. 2005. Towards dynamic shimming for fMRI. Proc Int Soc Magn Reson Med 1535.

    Google Scholar 

  62. Hinton D, Wald LL, Pitts J, Schmitt F. 2003. Comparison of cardiac MRI on a 1.5T and 3T clinical whole body scanner. Invest Radiol 38(7):436–442.

    Article  PubMed  Google Scholar 

  63. Hennig J, Scheffler K. 2001. Hyperechoes. Magn Reson Med 46(1):6–12.

    Article  PubMed  CAS  Google Scholar 

  64. Mugler JP, Brookeman JR. 2001. T 2-weighted 3D spin-echo train imaging of the brain at 3 Tesla: reduced power deposition using low flip-angle refocusing RF pulses. Proc Int Soc Magn Reson Med 438.

    Google Scholar 

  65. Kangarlu A, Baertlein BA, Lee R, Ibrahim TS, Abduljalil AM, Yang L, Robitaille PML. 1999. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 23(6):821–831.

    Article  PubMed  CAS  Google Scholar 

  66. Roeschmann P. 1999. Comments on “Human magnetic resonance imaging at 8 T”. NMR Biomed 12(5):315–319.

    Article  Google Scholar 

  67. Schmitt M, Feiweier T, Voellmecke E, Lazar R, Krueger G, Reykowsky A. 2005. B1 homogenization in abdominal imaging at 3T. Proc Int Soc Magn Reson Med 331.

    Google Scholar 

  68. Liu F, Zhao H, Crozier S. 2003. Calculation of electric fields induced by body and head motion in high magnetic fields. J Magn Reson 161(1):99.

    Article  PubMed  CAS  Google Scholar 

  69. Schenk J. 1992. Health and physiological effects of human exposure to whole body four-tesla magnetic field during MRI. Ann Acad Sci NY 649:285–301.

    Article  Google Scholar 

  70. Geim AK, Simon MD, Boamfa MI, Heflinger LO. 1999. Magnetic levitation at your fingertips. Nature 400:323–324.

    Article  CAS  Google Scholar 

  71. Berry MV, Geim AK. 1997. Of flying frogs and levitrons. Eur J Phys 18:307–313.

    Article  Google Scholar 

  72. Kangarlu A, Abduljalil AM, Robitaille PML. 1999. T 1-and T 2-weighted imaging at 8 Tesla. J Comput Assist Tomogr 23(6):875–878.

    Article  PubMed  CAS  Google Scholar 

  73. Burgess RE, Yu Y, Christoforidis GA, Bourekas EC, Chakeres DM, Spigos D, Kangarlu A, Abduljalil AM, Robitaille PML. 1999. Human leptomeningeal and cortical vascular anatomy of the cerebral cortex at 8 Tesla. J Comput Assist Tomogr 23(6):850–856.

    Article  PubMed  CAS  Google Scholar 

  74. Burgess RE, Yu Y, Abduljalil AM, Kangarlu A, Robitaille PML. 1999. High signal-tonoise FLASH imaging at 8 Tesla. Magn Reson Imag 17(8):1099–1103.

    Article  CAS  Google Scholar 

  75. Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PML. 1999. High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 23(6):857–866.

    Article  PubMed  CAS  Google Scholar 

  76. van der Kouwe A, Gicquel S, Chen G. 2003. On-line automatic slice positioning and between-scan correction for brain MR protocols. Proc Int Soc Magn Reson Med 797.

    Google Scholar 

  77. van der Kouwe AJW, Benner T, Fischl B, Schmitt F, Salat HD, Harder M, Sorensen AG, Dale AM. 2005. On-line automatic slice positioning for brain MR imaging. Neuroimage.

    Google Scholar 

  78. Mugler IJP, Brookeman JR. 1990. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MPRAGE). Magn Reson Med 15:152–157.

    Article  PubMed  Google Scholar 

  79. Detre JA, Leigh JS, Williams DS, Koretsky AP. 1992. Perfusion imaging. Magn Reson Med 23:37–45.

    Article  PubMed  CAS  Google Scholar 

  80. Detre JA, Alsop DC, Samuels OB, Gonzalez-Atavales J, Raps EC. 1998. Cerebrovascular reserve testing using perfusion MRI with arterial spin labeling in normal subjects and patients with cerebrovascular disease. Proc Int Soc Magn Reson Med 243.

    Google Scholar 

  81. Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, et al. 1994. Qualitative mapping of cerebral blood-flow and functional localization with echo-planar MR-imaging and signal targeting with alternating radio-frequency. Radiology 192:513–520.

    PubMed  CAS  Google Scholar 

  82. Edelman RR, Chen Q. 1998. EPISTAR MRI: multi-slice mapping of cerebral blood flow. Magn Reson Med 40:800–805.

    Article  PubMed  CAS  Google Scholar 

  83. Wong EC, Buxton RB, Frank LR. 1997. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249.

    Article  PubMed  CAS  Google Scholar 

  84. Wong EC, Buxton RB, Frank LR. 1998. uantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708.

    Article  PubMed  CAS  Google Scholar 

  85. Ruggieri PM, Laub GA, Masaryk TM, Modic MT. 1989. Intracranial circulation: pulsesequence considerations in three-dimensional (volume) MR angiography. Radiology 171:785–791.

    PubMed  CAS  Google Scholar 

  86. Jellus V, Kiefer B. 2005. Optimization of the homomorphic filer for bias field correction. Proc Int Soc Magn Reson Med 2248.

    Google Scholar 

  87. Cho I, Song JOH, Kim T, Jeong D. 2004. The effect of optimal design of low-pass filter with image type in RF field inhomogeneity correction using homomorphic filtering-based method. Proc Int Soc Magn Reson Med 11:2192.

    Google Scholar 

  88. Triantafyllou C, Dale A, Fischl B, Knake S, Wald LL. 2005. Optimized B1 inhomogeneity correction for high field magnetic resonance imaging. NeuroImage 19(2, Suppl 1):1347.

    Google Scholar 

  89. Wald LL, Carvajal L, Moyher SE, Nelson SJ, Grant PE, Barkovich AJ. 1995. Phased array detectors and an automated intensity-correction algorithm for high-resolution MR imaging of the human brain. Magn Reson Med 34(3):433–439.

    Article  PubMed  CAS  Google Scholar 

  90. Barbier EL, Marret S, Danek A, Vortmeyer A, Gelderen PV, Duyn J, Bandettini P, Grafman J, Koretsky A. 2002. Imaging cortical anatomy by high resolution MR at 3.0T: detection of the stripe of Gennari in visual area 17. Magn Reson Med 48:735–738.

    Article  PubMed  Google Scholar 

  91. Hennig J, Weigel M, Scheffler K. 2004. Multiecho sequences with variable refocusing flip angles: Optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49(3):527–535.

    Article  Google Scholar 

  92. Schmitt F, Stehling MK, Turner R. 1998. Echo-Planar Imaging. ISBN 3-540-63194-1.

    Google Scholar 

  93. Rosen BR, Belliveau JW, Aronen HJ, et al. 1991. Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22:221–226.

    Google Scholar 

  94. Kucharczyk J, Vexler ZS, Roberts TP, et al. 1993. Echo-planar perfusion-sensitive MR imaging of acute cerebral ischemia. Radiology 188:711–717.

    PubMed  CAS  Google Scholar 

  95. Ostergaard L, Sorensen AG, Kwong KK, et al. 1996. High resolution measurement of cerebral blood flow using intra vascuar tracer bolus passages, II: experimental comparison and preliminary results. Magn Reson Med 36:726–736.

    Article  PubMed  CAS  Google Scholar 

  96. Warach, S, Li W, Ronthal M, et al. 1992. Acute cerebral ischemia: evaluation with dynamic contrast-enhanced MR imaging and MR angiography. Radiology 182:41–47.

    PubMed  CAS  Google Scholar 

  97. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman R. 1995. Acute human stroke studied by whole brain echo planar diffusion-weighted MRI. Ann Neurol 37:231–241.

    Article  PubMed  CAS  Google Scholar 

  98. Belliveau JW, Kennedy DN, McKinstry RC, et al. 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719.

    Article  PubMed  CAS  Google Scholar 

  99. Ogawa S, Menon R, Tank D, Kim S, Merkle H, Ellermann J, Ugurbil K. 1993. Functional mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: a comparison of signal characteristics with biophysical model. Biophys J 64:803–812.

    PubMed  CAS  Google Scholar 

  100. Thomas DL, De Vita E, Deichmann R, Turner R, Ordidge R. 2005. 3D MDEFT imaging of the human brain at 4.7T with reduced sensitivity to radiofrequency inhomogeneity. Magn Reson Med 53:1452–1458.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmitt, F. et al. (2006). Aspects of Clinical Imaging at 7 T. In: Ultra High Field Magnetic Resonance Imaging. Biological Magnetic Resonance, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49648-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49648-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34231-3

  • Online ISBN: 978-0-387-49648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics