Advertisement

Aspects of Clinical Imaging at 7 T

  • Franz Schmitt
  • Andreas Potthast
  • Bernd Stoeckel
  • Christina Triantafyllou
  • Christopher J. Wiggins
  • Graham Wiggins
  • Lawrence L. Wald
Part of the Biological Magnetic Resonance book series (BIMR, volume 26)

Abstract

The intrinsic improvements in signal-to-noise ratio, spectral dispersion, and susceptibility contrast with increasing static magnetic field strength, B 0, has spurred the development of MR technology from its very first application to clinical imaging. With maturing magnet, RF, and gradient technology, the clinical community has seen the static magnetic field of clinical systems increase from 0.2 to 1.5 to 3.0 T. Today, the “high field” label for human MR research describes initial experiences with 7, 8, and 9.4T systems. While currently primarily research instruments, this technology is bound to cross the boundary into the clinical diagnostic arena as key technical issues are solved and the methodology proves itself for addressing clinical issues. In this chapter we discuss the particular advantages and disadvantages of ultra high field systems for clinical imaging as well as some of the immediate technological challenges that must be solved to derive the full benefit of the extraordinary sensitivity of these systems, which has been glimpsed from their research use.

Keywords

Arterial Spin Label Clinical Imaging Acoustic Noise Specific Absorption Rate Gradient Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R. 1988. Whole-body MR imaging and spectroscopy with a 4-T system. Radiology 169:811–816.PubMedGoogle Scholar
  2. 2.
    Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig, R, Duerr W, Oppelt R. 1990. In vivo magnetic resonance of humans with a 4T whole body magnet. NMR Biomed 1:31–45.CrossRefGoogle Scholar
  3. 3.
    Akbudak E, Markham J, Kotys M, Foster G, Conturo T. 2002. Whole-brain bolus perfusion imaging in humans at 3T compared to 1.5T. Proc Int Soc Magn Reson Med 1004.Google Scholar
  4. 4.
    Hoult DI, Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425–433.Google Scholar
  5. 5.
    Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. 2005. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250.PubMedCrossRefGoogle Scholar
  6. 6.
    Basser PJ, Mattiello, LeBihan D. 1994. MR Diffusion tensor spectroscopy and imaging. Biophys J 66:259–267.PubMedCrossRefGoogle Scholar
  7. 7.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.PubMedCrossRefGoogle Scholar
  8. 8.
    Sodickson DK. 2000. Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 44:284–289.CrossRefGoogle Scholar
  9. 9.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. 2002. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210.PubMedCrossRefGoogle Scholar
  10. 10.
    Budinger T. 1990. Private communication.Google Scholar
  11. 11.
    Robitaille PML, Warner R, Jagadeesh J, Abduljalil AM, Kangarlu A, Burgess RE, Yu Y, Yang L, Zhu H, Jiang Z, Bailey RE, Chung W, Somawiharja Y, Feynan P, Rayner D. 1999. Design and assembly of an 8 tesla whole body MRI scanner. J Comput Assist Tomogr 23:808–820.PubMedCrossRefGoogle Scholar
  12. 12.
    Vaughan JT, Garwood M, Collins CM, Liu W, Delabarre L, Adriany G, Anderson P, Merkle H, Goebel R, Smith MB, Ugurbil K. 2001. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Vaughan JT, DelaBarre L, Snyder C, Adriany G, Collins C, Van de Moortele P-F, Moeller S, Ritter J, Strupp J, Andersen P, Tian J, Smith MB, Ugurbil K. 2005. RF Image Optimization at 7T & 9.4T. Proc Int Soc Magn Reson Med 953.Google Scholar
  14. 14.
  15. 15.
    Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. 1984. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448.PubMedCrossRefGoogle Scholar
  16. 16.
    Mansfield P. 1977. Multi-planar image formation using NMR spin echoes. J Phys C 10:L55–L58.CrossRefGoogle Scholar
  17. 17.
    Bottomley P, Edelstein WA. 1981. Power deposition in whole body NMR imaging. Med Phys 8:510–512.PubMedCrossRefGoogle Scholar
  18. 18.
    Collins CM, Smith MB. 2001. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90 degrees” RF pulse for the head in the birdcage coil. Magn Reson Med 45(4):684–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Roeschmann P. Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. Med Phys 1987 14(6):922–931.CrossRefGoogle Scholar
  20. 20.
    IEC, E., 60601-2-33.Google Scholar
  21. 21.
    Brown IJ, Bird JM, McDouglass IL, Black D. 1986. Magnet assembly for use in NMR apparatus. US Patent 4587504.Google Scholar
  22. 22.
    Bollenbeck J, Vester M, Oppüelt R, Kroeckel H, Schnell W. 2005. A high performance multi-channel RF receiver for magnetic resonance imaging systems. Proc Int Soc Magn Reson 860.Google Scholar
  23. 23.
    Ugurbil K. 2005. Personal communciation.Google Scholar
  24. 24.
    Katscher U, Börnert P, Leussler C, Van den Brink JS. 2003. Transmit SENSE. Magn Reson Med 49:144–150.PubMedCrossRefGoogle Scholar
  25. 25.
    Ibrahim TS. 2004. A numerical Analysis of radio-frequency power requirments in magnetic resonance imaging experiements. IEEE Trans Microwave Theory Tech 52(8):1999–2003.CrossRefGoogle Scholar
  26. 26.
    Boskamp EB, Lee RF. 2002. Whole body LPSA transceive array with optimized transmit homogeneity. Proc Int Soc Magn Reson Med 903.Google Scholar
  27. 27.
    Adriany G, Van de Moortele P-F, Wiesinger F, Moeller S, Strupp J, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan JT, Ugurbil K. 2005. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445.PubMedCrossRefGoogle Scholar
  28. 28.
    Adriany G, Van de Moortele P-F, Wiesinger F, Moeller S, Strupp J, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan JT, Ugurbil K. 2005. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445PubMedCrossRefGoogle Scholar
  29. 29.
    Katscher U, Bornert P, Leussler C, van der Brink JS. 2003. Transmit SENSE. Magn Reson Med 49:144–150.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhu Y. 2004. Parallel excitation with an arry of transmit coils. Magn Reson Med 51:775–784.PubMedCrossRefGoogle Scholar
  31. 31.
    Wald LL, Wiggins GC, Potthast A, Wiggins JC, Triantafyllou C. 2005. Design considerations and coil comparisons for 7 Tesla brain imaging. Proc Int Soc Magn Reson Med 921.Google Scholar
  32. 32.
    Collins CM, Yang QX, Wang JH, Zhang X, Liu H, Michaeli S, Zhu XH, Adriany G, Vaughan JT, Anderson P, Merkle H, Ugurbil K, Smith MB, Chen W. 2002. Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz. Magn Reson Med 47(5):1026–1028.PubMedCrossRefGoogle Scholar
  33. 33.
    Tropp J. 2004. Image brightening in samples of high dielectric constant. J Magn Reson 167(1):12–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Vaughan JT, Adriany G, Garwood M, Yocoub E, Duong T, Merkle H, Andersen P, DelaBarre L, Kim SG, Ugurbil K. 2002. A detunable volume coil for high field NMR. Magn Reson Med 47:990–1000.PubMedCrossRefGoogle Scholar
  35. 35.
    Vaughan, JT. 1998. Cavity Resonantor for NMR sysytems. Birmingham, AL: UAB Research Foundation.Google Scholar
  36. 36.
    Wiggins GC, Triantafyllou C, Potthast A, Reykowsky A, Nittka M, Wald LL. 2005. A 32 channel receive-only phased array coil for 3T with novel geodesic tiling geometry. Proc Int Soc Magn Reson Med 679.Google Scholar
  37. 37.
    Wintersberger BJ, Reeder SB, Dietrich O, Huber A, Lanz T, Greiser A, Reiser MF, Schoenberg SO. 2005. Multi-slice TSENSE cardiac CINE SSFP imaging with a 32 channel cardiac coil. Proc Int Soc Magn Reson Med 277.Google Scholar
  38. 38.
    Hardy CJ, Cline HE, Giaquinto RO, Niendorf T, Grant AK, Sodickson DK. 2005. A 32-element cardiac receiver-coil array for highly accelerated parallel imaging. Proc Int Soc Magn Reson Med 951.Google Scholar
  39. 39.
    Wiggins GC, Potthast A, Triantafyllou C, Lin F, Benner T, Wiggins CJ, Wald LL. 2005. A 96 channel MRI sytem with 23-and 90-channel phased array head coil at 1.5 Tesla. Proc Int Soc Magn Reson Med 671.Google Scholar
  40. 40.
    Rausch M, Gebhardt M, Kaltenbacher M, Landes H. 2005. Computer-aided design of clinical magnetic resonance imaging scanners by coupled magnetomechanicalacoustical modelling. IEEE Trans Magn 41(1):72–81.CrossRefGoogle Scholar
  41. 41.
    Wedeen VV, Song SKV, Wald LL, Reese TG, Benner T, Tseng WYI. 2000. Diffusion Spectrum MRI of cortical architectonics: visualization of cortical layers and segmentation of cortical areas by analysis of planar structure. Proc Int Soc Magn Reson Med 622.Google Scholar
  42. 42.
    Irnich W. 1994. Electrostimulation by time-varying magnetic fields. MAGMA 2:43–49.CrossRefGoogle Scholar
  43. 43.
    Reilly JP. 1989. Peripheral nerve stimulation by induced electric currents: exposure to time varying magnetic fields. Med Biol Eng Comput 27:101–110.PubMedCrossRefGoogle Scholar
  44. 44.
    Schmitt F, Stehling MK, Turner R. 1998. Physiological side effects of fast gradient switching. Echo-Planar Imaging. ISBN 3-540-63194-1.Google Scholar
  45. 45.
    Kimmlingen R, Eberlein E, Gebhardt M, Hartinger B, Ladebeck R, Lazar R, Reese T, Riegler J, Schmitt F, Sorensen GA, Wedeen V, Wald LL. 2004. An easy to exchange high performance head gradient insert for a 3T whole body MRI system: first results. Proc Int Soc Magn Reson Med 1630.Google Scholar
  46. 46.
    Kimmlingen R, Eberlein E, Gebhardt M, Hartinger B, Ladebeck R, Lazar R, Reese T, Riegler J, Schmitt F, Sorensen GA, Wedeen V, Wald LL. 2005. An easy to exchange high performance head gradient insert for a 3T whole body MRI system: first results. Proc Int Soc Magn Reson Med 1630.Google Scholar
  47. 47.
    Hedeen RA, Edelstein WA. 1997. Characterization and prediction of gradient acoustic noise in MR images. Magn Reson Med 37:7–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Edelstein WA. Acoustic noise considerations of a MRI system. 2001.Google Scholar
  49. 49.
    Arm., r., 3rd Arm artifact.Google Scholar
  50. 50.
    Stringer M, Dty GN, Shevgoor S, Xiao C, Laws N, Staab JP, Wald LL, Ackerman JL, Doty D. 2005. Progress in the development of a quiet, high performance head gradient coil. Proc Int Soc Magn Reson Med 406.Google Scholar
  51. 51.
    Augustinack J, Kouwe AVD, Salat D, Wald LL, Blackwell M, Wiggins C, Fischl B. 2004. Detection of entorhinal islands using 7T MRI. Paper presented at Human Brain Mapping 2004. Poster MO288.Google Scholar
  52. 52.
    Bowtell R, Schmitt F. 1998. Echo-planar imaging hardware. Echo-planar imaging. ISBN 3-540-63194-1.Google Scholar
  53. 53.
    Rohan M. 1995. Electromechanical coupling at high fields: increased gradient resistance. Proc Soc Magn Reson 937.Google Scholar
  54. 54.
    Ludeke KM, Röschmann P, Tischler R. 1985. Susceptibility artifacts in NMR imaging. Magn Reson Med 3:329.Google Scholar
  55. 55.
    Abduljalil AM, Robitaille PML. 1999. Macroscopic susceptibility in ultra high field MRI. J Comput Assist Tomogr 23(6):832–841.PubMedCrossRefGoogle Scholar
  56. 56.
    Jesmanowicz A, Hyde JS, Punchard WFB, Starewicz PM. 2001. Ferroshimming. US Patent 6,294,972.Google Scholar
  57. 57.
    Wilson JL, Jezzard P. 2003. Utilization of an intra-oral diamagnetic passive shim in functional MRI of the inferior frontal cortex. Magn Reson Med 50(5):1089–1094.PubMedCrossRefGoogle Scholar
  58. 58.
    Hsu JJ, Glover G. 2005. Mitigation of susceptibility-induced signal loss in neuro imaging using localized shim coils. Magn Reson Med 53(2):243.PubMedCrossRefGoogle Scholar
  59. 59.
    Gruetter R, Boesch C. 1992. Fast, non-iterative shimming on spatially localized signals: in vivo analysis of the magnetic field along axes. J Magn Reson 96:323–334.Google Scholar
  60. 60.
    deGraaf RA, Brown PB, McIntyre S, Rothman DL, Nixon TW. 2003. Dynamic shim updating (DSU) for multislice signal acquisition. Magn Reson Med 49(3):409–416.CrossRefGoogle Scholar
  61. 61.
    Hsu JJ, Glover G. 2005. Towards dynamic shimming for fMRI. Proc Int Soc Magn Reson Med 1535.Google Scholar
  62. 62.
    Hinton D, Wald LL, Pitts J, Schmitt F. 2003. Comparison of cardiac MRI on a 1.5T and 3T clinical whole body scanner. Invest Radiol 38(7):436–442.PubMedCrossRefGoogle Scholar
  63. 63.
    Hennig J, Scheffler K. 2001. Hyperechoes. Magn Reson Med 46(1):6–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Mugler JP, Brookeman JR. 2001. T 2-weighted 3D spin-echo train imaging of the brain at 3 Tesla: reduced power deposition using low flip-angle refocusing RF pulses. Proc Int Soc Magn Reson Med 438.Google Scholar
  65. 65.
    Kangarlu A, Baertlein BA, Lee R, Ibrahim TS, Abduljalil AM, Yang L, Robitaille PML. 1999. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 23(6):821–831.PubMedCrossRefGoogle Scholar
  66. 66.
    Roeschmann P. 1999. Comments on “Human magnetic resonance imaging at 8 T”. NMR Biomed 12(5):315–319.CrossRefGoogle Scholar
  67. 67.
    Schmitt M, Feiweier T, Voellmecke E, Lazar R, Krueger G, Reykowsky A. 2005. B1 homogenization in abdominal imaging at 3T. Proc Int Soc Magn Reson Med 331.Google Scholar
  68. 68.
    Liu F, Zhao H, Crozier S. 2003. Calculation of electric fields induced by body and head motion in high magnetic fields. J Magn Reson 161(1):99.PubMedCrossRefGoogle Scholar
  69. 69.
    Schenk J. 1992. Health and physiological effects of human exposure to whole body four-tesla magnetic field during MRI. Ann Acad Sci NY 649:285–301.CrossRefGoogle Scholar
  70. 70.
    Geim AK, Simon MD, Boamfa MI, Heflinger LO. 1999. Magnetic levitation at your fingertips. Nature 400:323–324.CrossRefGoogle Scholar
  71. 71.
    Berry MV, Geim AK. 1997. Of flying frogs and levitrons. Eur J Phys 18:307–313.CrossRefGoogle Scholar
  72. 72.
    Kangarlu A, Abduljalil AM, Robitaille PML. 1999. T 1-and T 2-weighted imaging at 8 Tesla. J Comput Assist Tomogr 23(6):875–878.PubMedCrossRefGoogle Scholar
  73. 73.
    Burgess RE, Yu Y, Christoforidis GA, Bourekas EC, Chakeres DM, Spigos D, Kangarlu A, Abduljalil AM, Robitaille PML. 1999. Human leptomeningeal and cortical vascular anatomy of the cerebral cortex at 8 Tesla. J Comput Assist Tomogr 23(6):850–856.PubMedCrossRefGoogle Scholar
  74. 74.
    Burgess RE, Yu Y, Abduljalil AM, Kangarlu A, Robitaille PML. 1999. High signal-tonoise FLASH imaging at 8 Tesla. Magn Reson Imag 17(8):1099–1103.CrossRefGoogle Scholar
  75. 75.
    Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PML. 1999. High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 23(6):857–866.PubMedCrossRefGoogle Scholar
  76. 76.
    van der Kouwe A, Gicquel S, Chen G. 2003. On-line automatic slice positioning and between-scan correction for brain MR protocols. Proc Int Soc Magn Reson Med 797.Google Scholar
  77. 77.
    van der Kouwe AJW, Benner T, Fischl B, Schmitt F, Salat HD, Harder M, Sorensen AG, Dale AM. 2005. On-line automatic slice positioning for brain MR imaging. Neuroimage.Google Scholar
  78. 78.
    Mugler IJP, Brookeman JR. 1990. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MPRAGE). Magn Reson Med 15:152–157.PubMedCrossRefGoogle Scholar
  79. 79.
    Detre JA, Leigh JS, Williams DS, Koretsky AP. 1992. Perfusion imaging. Magn Reson Med 23:37–45.PubMedCrossRefGoogle Scholar
  80. 80.
    Detre JA, Alsop DC, Samuels OB, Gonzalez-Atavales J, Raps EC. 1998. Cerebrovascular reserve testing using perfusion MRI with arterial spin labeling in normal subjects and patients with cerebrovascular disease. Proc Int Soc Magn Reson Med 243.Google Scholar
  81. 81.
    Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, et al. 1994. Qualitative mapping of cerebral blood-flow and functional localization with echo-planar MR-imaging and signal targeting with alternating radio-frequency. Radiology 192:513–520.PubMedGoogle Scholar
  82. 82.
    Edelman RR, Chen Q. 1998. EPISTAR MRI: multi-slice mapping of cerebral blood flow. Magn Reson Med 40:800–805.PubMedCrossRefGoogle Scholar
  83. 83.
    Wong EC, Buxton RB, Frank LR. 1997. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249.PubMedCrossRefGoogle Scholar
  84. 84.
    Wong EC, Buxton RB, Frank LR. 1998. uantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708.PubMedCrossRefGoogle Scholar
  85. 85.
    Ruggieri PM, Laub GA, Masaryk TM, Modic MT. 1989. Intracranial circulation: pulsesequence considerations in three-dimensional (volume) MR angiography. Radiology 171:785–791.PubMedGoogle Scholar
  86. 86.
    Jellus V, Kiefer B. 2005. Optimization of the homomorphic filer for bias field correction. Proc Int Soc Magn Reson Med 2248.Google Scholar
  87. 87.
    Cho I, Song JOH, Kim T, Jeong D. 2004. The effect of optimal design of low-pass filter with image type in RF field inhomogeneity correction using homomorphic filtering-based method. Proc Int Soc Magn Reson Med 11:2192.Google Scholar
  88. 88.
    Triantafyllou C, Dale A, Fischl B, Knake S, Wald LL. 2005. Optimized B1 inhomogeneity correction for high field magnetic resonance imaging. NeuroImage 19(2, Suppl 1):1347.Google Scholar
  89. 89.
    Wald LL, Carvajal L, Moyher SE, Nelson SJ, Grant PE, Barkovich AJ. 1995. Phased array detectors and an automated intensity-correction algorithm for high-resolution MR imaging of the human brain. Magn Reson Med 34(3):433–439.PubMedCrossRefGoogle Scholar
  90. 90.
    Barbier EL, Marret S, Danek A, Vortmeyer A, Gelderen PV, Duyn J, Bandettini P, Grafman J, Koretsky A. 2002. Imaging cortical anatomy by high resolution MR at 3.0T: detection of the stripe of Gennari in visual area 17. Magn Reson Med 48:735–738.PubMedCrossRefGoogle Scholar
  91. 91.
    Hennig J, Weigel M, Scheffler K. 2004. Multiecho sequences with variable refocusing flip angles: Optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49(3):527–535.CrossRefGoogle Scholar
  92. 92.
    Schmitt F, Stehling MK, Turner R. 1998. Echo-Planar Imaging. ISBN 3-540-63194-1.Google Scholar
  93. 93.
    Rosen BR, Belliveau JW, Aronen HJ, et al. 1991. Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22:221–226.Google Scholar
  94. 94.
    Kucharczyk J, Vexler ZS, Roberts TP, et al. 1993. Echo-planar perfusion-sensitive MR imaging of acute cerebral ischemia. Radiology 188:711–717.PubMedGoogle Scholar
  95. 95.
    Ostergaard L, Sorensen AG, Kwong KK, et al. 1996. High resolution measurement of cerebral blood flow using intra vascuar tracer bolus passages, II: experimental comparison and preliminary results. Magn Reson Med 36:726–736.PubMedCrossRefGoogle Scholar
  96. 96.
    Warach, S, Li W, Ronthal M, et al. 1992. Acute cerebral ischemia: evaluation with dynamic contrast-enhanced MR imaging and MR angiography. Radiology 182:41–47.PubMedGoogle Scholar
  97. 97.
    Warach S, Gaa J, Siewert B, Wielopolski P, Edelman R. 1995. Acute human stroke studied by whole brain echo planar diffusion-weighted MRI. Ann Neurol 37:231–241.PubMedCrossRefGoogle Scholar
  98. 98.
    Belliveau JW, Kennedy DN, McKinstry RC, et al. 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719.PubMedCrossRefGoogle Scholar
  99. 99.
    Ogawa S, Menon R, Tank D, Kim S, Merkle H, Ellermann J, Ugurbil K. 1993. Functional mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: a comparison of signal characteristics with biophysical model. Biophys J 64:803–812.PubMedGoogle Scholar
  100. 100.
    Thomas DL, De Vita E, Deichmann R, Turner R, Ordidge R. 2005. 3D MDEFT imaging of the human brain at 4.7T with reduced sensitivity to radiofrequency inhomogeneity. Magn Reson Med 53:1452–1458.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Franz Schmitt
    • 1
  • Andreas Potthast
    • 2
  • Bernd Stoeckel
    • 3
  • Christina Triantafyllou
    • 4
  • Christopher J. Wiggins
    • 4
  • Graham Wiggins
    • 4
  • Lawrence L. Wald
    • 4
  1. 1.MREF Development Field Generating UnitsSiemens Medical SolutionsErlangenGermany
  2. 2.CSG R&D Collaborations MGH NMR CenterSiemens Medical Solutions Inc.CambridgeUSA
  3. 3.Siemens Medical Solutions USANew YorkUSA
  4. 4.Department of RadiologyMGHCharlestownUSA

Personalised recommendations