Hardware Considerations in Ultra High Field MRI

An Overview of System Integration
  • Douglas A. C. Kelley
Part of the Biological Magnetic Resonance book series (BIMR, volume 26)


Ultra high field MRI systems present a number of unique challenges to the system designer and integrator beyond simply scaling up the performance of a lower field system. The primary areas of concern are the magnet, gradient coils and drivers, and RF coils and coil interface. The art of system integration lies in identifying sufficiently clear performance targets for each of the subsystems and ensuring that those targets are met in a way that preserves the overall performance of the system. The following discussion identifies for each of these areas the key performance requirements that are changed at higher field strengths, methods to address those requirements, and how those methods affect the rest of the system. As this is an area of ongoing research and development, many of the specific solutions presented here are likely to be superseded in the future, but the general approach to the problem should remain valid. While a complete description of every aspect of system design and integration of UHFMRI systems is beyond the scope of this chapter, the following is intended to provide practical guidance in addressing the more common problems in siting or operating a UHFMRI system.


High Field Strength Gradient Coil Load Impedance Coil Element Transmitter Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. 1.
    Kimmlingen R, Eberlein E, Gebhardt M, Hartinger B, Ladebeck R, Lazar R, Reese T, Riegler J, Schmitt F, Sorensen GA, Wedeen V, Wald LL. 2005. An easy to exchange high performance head gradient insert for a 3T whole body MRI system: first results. Proc Int Soc Magn Reson Med 1630.Google Scholar
  2. 2.
    Bomsdorf H, Helzel T, Kunz D, Roschmann P, Tschendel O, Wieland J. 1988. Spectroscopy and imaging with a 4 Telsa whole-body MR system. NMR Biomed 1:151–158.PubMedCrossRefGoogle Scholar
  3. 3.
    Barfuss H, Fisher H, Hentschel D, Ladebeck R, Vetter J. 1988. Whole-body MR imaging and spectroscopy with a 4-T system. Radiology 169:811–816.PubMedGoogle Scholar
  4. 4.
    Schenck JF, Dumoulin CL, Redington RW, Kressel HY, Elliott RT, McDougall IL. 1992. Human exposure to 4.0-Tesla magnetic fields in a whole-body scanner. Med Phys 19(4):1089–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Robitaille PML, Warner R, Jagadeesh J, Abduljalil AM, Kangarlu A, Burgess RE, Yu Y, Yang L, Zhu H, Jiang Z, Bailey RE, Chung W, Somawiharja Y, Feynan P, Rayner D. 1999. Design and assembly of an 8 tesla whole body MRI scanner. J Comput Assist Tomogr 23:808–820.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoult DI. 2000. Sensitivity and power deposition in a high field imaging experiment. J Magn Reson Imag 12(1):46–67.CrossRefGoogle Scholar
  7. 7.
    Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Anderson P, Merkle H, Goebel R, Smith MB, Ugurbil K. 2001. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Edelstein WA, Glover GH, Hardy CJ, Redington RW. 1986. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3(4):604–18.9.PubMedCrossRefGoogle Scholar
  9. 9.
    Durney CM, Iskander MF. 1986. Radiofrequency radiation dosimetry handbook. Salt Lake City: U Utah P.Google Scholar
  10. 10.
    Roemer PB, Edelstein WA, Hayes CE, Souza SP, Meuller OM. 1990. The NMR phased array. Magn Reson Med 16:192–225.PubMedCrossRefGoogle Scholar
  11. 11.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson MN. 1983. Superconducting magnets. Oxford: Clarendon Press.Google Scholar
  13. 13.
    Iwasa Y. 1994. Case studies in superconducting magnets. New York: Plenum Press.Google Scholar
  14. 14.
    Montgomery DB. 1969. Solenoid magnet design. New York: Wiley-Interscience.Google Scholar
  15. 15.
    Pearson R. 2004. Personal communication.Google Scholar
  16. 16.
    Wilson JL, Jenkinson M, Jezzard P. 2002. Optimization of static field homogeneity in human brain using diamagnetic passive shims. Magn Reson Med 48(5):906–914.PubMedCrossRefGoogle Scholar
  17. 17.
    Jin JM. 1999. Electromagnetic analysis and design in magnetic resonance imaging. Boca Raton, FL: CRC Press.Google Scholar
  18. 18.
    Strilka RJ, Li SZ, Martin JT, Collins CM, Smith MB. 1998. A numerical study of radiofrequency deposition in a spherical phantom using surface coils. Magn Reson Imag 16(7):787–798.CrossRefGoogle Scholar
  19. 19.
    Ibrahim TL, Baertlein B, Abduljalil A, Zhu H, Robitaille PML. 2001. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imag 19(10):1339–1347.CrossRefGoogle Scholar
  20. 20.
    Edelstein WA, Schenk JF, Hart HR, Hardy CJ, Foster TH, Bottomley PA. 1985. Surface coil magnetic resonance imaging. JAMA 253(6):828.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang X, Webb A. 2004. Design of a capacitively decoupled transmit/receive NMR phased array for high field microscopy at 14.1 T. J Magn Reson 170(1):149–155.PubMedCrossRefGoogle Scholar
  22. 22.
    Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson L, Lerche MH, Servin R, Thaning M, Golman K. 2003. Increase in signal-to-noise ratio of >10,000 times in liquidstate NMR. Proc Natl Acad Sci USA 100(18):10158–10163.PubMedCrossRefGoogle Scholar
  23. 23.
    Golman K, Ardenkjaer-Larsen JH, Svensson J, Axelsson O, Hansson G, Hansson L, Johannesson H, Leunbach I, Mansson S, Petersson JS, Pettersson G, Servin R, Wistrand LG. 2002. 13C-angiography. Acad Radiol 9:S507–510.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Douglas A. C. Kelley
    • 1
  1. 1.Global Applied Science Laboratory General Electric Healthcare TechnologiesUCSF QB3 InstituteSan FranciscoUSA

Personalised recommendations