Advertisement

Design Considerations for Ultra High Field MRI Magnet Systems

  • John Bird
  • Darren Houlden
  • Nick Kerley
  • David Rayner
  • David Simkin
  • Simon Pittard
Part of the Biological Magnetic Resonance book series (BIMR, volume 26)

Abstract

Magnetic field strength has always been an important parameter to consider for Magnetic Resonance Imaging (MRI). It is generally agreed that the Signal to Noise Ratio (SNR) is approximately proportional to magnetic field strength [1,2], although other more subtle effects, such as chemical shift dispersion and susceptibility, also scale with field strength and can cause problems for good anatomical imaging. However, it is no surprise to learn that the engineering challenges presented by the commercial construction of higher field MRI systems are formidable. This chapter is an opportunity to introduce these to a wider audience.

Keywords

Acoustic Noise Magnetic Resonance Image System General Electric Medical System Gradient Coil Stray Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. 1.
    Hoult DI, Richards RE. 1976. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–83.Google Scholar
  2. 2.
    Edelstein WA, Glover GH, Hardy CJ, Redington RW. 1986. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3(4):604–618.PubMedCrossRefGoogle Scholar
  3. 3.
    Stehling MK, Turner R, Mansfield P. 1991. Echo planar imaging: magnetic resonance imaging in a fraction of a second. Science 254:43–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Pykett IL, Rzedzian RR. 1987. Instant Images of the body by magnetic resonance. Magn Reson Med 5(6):563–571.PubMedCrossRefGoogle Scholar
  5. 5.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. 1992. Intrinsic signal changes accompanying sensory stimulation — functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13), 5951–5955.PubMedCrossRefGoogle Scholar
  6. 6.
    Robitaille P-ML, Warner R, Jagadeesh J, Abduljalil AM, Kangarlu A, Burgess R, Yang YYL, Zhu H, Jiang Z, Bailey RE, Chung W, Somawiharja Y, Feenan P, Rayner DL. 1999. Design and assembly of an 8 Tesla whole-body MR scanner. J Comput Assist Tomogr 23(6):808–820.PubMedCrossRefGoogle Scholar
  7. 7.
    Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. 2001. In-vivo 1H NMR spectroscopy of the human brain at 7T. Magn Reson Med 46(3):451–456.PubMedCrossRefGoogle Scholar
  8. 8.
    Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele PF, Hu X, Ugurbil K. 2002. Perfusion-based high-resolution functional imaging in the human brain at 7T. Magn Reson Med 47(5):903–911.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilson MN. 1998. Superconducting magnets. Oxford: Oxford UP.Google Scholar
  10. 10.
    de Graaf RA, Brown PB, McIntrye S, Rothman DL, Nixon TW. 2003. Dynamic shim updating (DSU) for multislice signal acquisition. Magn Reson Med 49(3):409–416.PubMedCrossRefGoogle Scholar
  11. 11.
    Roopchansingh V, Jesmanowicz A, Hyde JS. 2004. Magnetic field homogeneity improvement in the lower frontal lobe by combined resistive and passive shims with a user-defined mask. Proc Int Soc Magn Reson Med 1650.Google Scholar
  12. 12.
    Wong EC, Mazaheri Y. 2004. Shimming of the inferior frontal cortex using an external local shim coil. Proc Int Soc Magn Reson Med 520.Google Scholar
  13. 13.
    Katsunuma A, Takamori H, Sakakura Y, Hamamura Y, Ogo Y, Katayama R. 2002. Quiet MRI with novel acoustic noise reduction. Magn Reson Mat Phys Biol Med 13:139–144.CrossRefGoogle Scholar
  14. 14.
    Edelstein WA, Hedeen RA, Mallozzi RP, El Hamamsy SA, Ackermann RA, Havens TJ. 2002. Making MRI quieter. Magn Reson Imag 20:155–163.CrossRefGoogle Scholar
  15. 15.
    Bowtell RW, Peters A. 1999. Analytic approach to the design of transverse gradient coils with co-axial return paths. Magn Reson Med 41:600–608.PubMedCrossRefGoogle Scholar
  16. 16.
    Abduljalil AM, Aletras AH, Robitaille P-ML. 1997. Torque free asymmetric gradient coils for echo planar imaging. Magn Reson Med 31:450–453.CrossRefGoogle Scholar
  17. 17.
    Hidalgo-Tobon SS, Bencsik M, Bowtell RW. 2004. Reduction of peripheral nerve stimulation via the use of combined gradient and uniform field coils. Proc Int Soc Magn Reson Med 11:659.Google Scholar
  18. 18.
    Asner FM. 1999. High-field superconducting magnets. Oxford: Oxford UP.Google Scholar
  19. 19.
    Restrictions on exposure to static and time-varying electromagnetic fields. 1995. National Radiological Protection Board, Chilton, Didcot, Oxon.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • John Bird
    • 1
  • Darren Houlden
    • 1
  • Nick Kerley
    • 1
  • David Rayner
    • 1
  • David Simkin
    • 1
  • Simon Pittard
    • 1
  1. 1.The Magnet Technology CenterMagnex Scientific Ltd.Yarnton, OxfordshireUK

Personalised recommendations