Clinical Promise: Clinical Imaging at Ultra High Field

  • Vera Novak
  • Gregory Christoforidis
Part of the Biological Magnetic Resonance book series (BIMR, volume 26)


As the race for increased magnetic field strength continues, ultra high field magnetic resonance systems are entering the clinical arena. Human brain imaging at ultra high field (7, 8, and 9.4 Tesla) offers an unprecedented resolution for anatomical imaging that approaches in-vivo microscopy. Results from healthy volunteers and from stroke and tumor studies have demonstrated that high field MRI can visualize microvasculature, details of pathological conditions, and iron deposits with a resolution not obtainable at lower fields. High-resolution maps of brain function and biochemical markers have been obtained at 7 Tesla. Clinical brain imaging is feasible at ultra high magnetic field, but more studies need to be done to determine its diagnostic potential.


White Matter High Signal Intensity Signal Void Gradient Echo Gradient Echo Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. 1.
    Chen CN, Sank VJ, Cohen SM, Hoult DI. 1986. The field dependence of NMR imaging, I: laboratory assessment of signal-to-noise ratio and power deposition. Magn Reson Med 3:722–729.PubMedCrossRefGoogle Scholar
  2. 2.
    Robitaille PML, Abduljalil AM, Kangarlu A, Zhang X, Yu Y, Burgess RE, et al. 1998. Human magnetic resonance imaging at 8T. NMR Biomed 11:263–265.PubMedCrossRefGoogle Scholar
  3. 3.
    Robitaille PM, Kangarlu A, Abduljalil AM. 1999. RF penetration in ultra high field MRI: challenges in visualizing details within the center of the human brain. J Comput Assist Tomogr 23:845–849.PubMedCrossRefGoogle Scholar
  4. 4.
    Abduljalil AM, Kangarlu A, Zhang X, Burgess RE, Robitaille PML. 1999. Acquisition of human multislice images at 8T. J Comput Assist Tomogr 23:335–340.PubMedCrossRefGoogle Scholar
  5. 5.
    Burgess RE, Yu Y, Christoforidis GA, Kangarlu A, Abduljalil AM, Robitaille PML. 1999. Human leptomeningeal and cortical vascular anatomy of the cerebral cortex at 8 T. J Comput Assist Tomogr 23:850–856.PubMedCrossRefGoogle Scholar
  6. 6.
    Burgess RE, Yu Y, Abduljalil AM, Kangarlu A, Robitaille PML. 1999. High signal to noise FLASH imaging at 8 Tesla. Magn Reson Imag 17:1099–1103.CrossRefGoogle Scholar
  7. 7.
    Duong TQ, Kim DS, Ugurbil K, Kim SG. 2001. Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 98:10904–10909.PubMedCrossRefGoogle Scholar
  8. 8.
    Yacoub E, Shmuel A, Pfeuffer J, Van de Moortele PF, Adriany G, Andersen P, et al. 2001. Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594.PubMedCrossRefGoogle Scholar
  9. 9.
    Park DC, Polk TA, Park R, Minear M, Sacage A, Smith MR. 2004. Aging reduces neural specialization in ventral visual cortex. Proc Natl Acad Sci USA 101:1309–1315.CrossRefGoogle Scholar
  10. 10.
    Meyer JS, Rogers RL, Judd BW, Mortel KF, Sims P. 2003. Cognition and cerebral blood flow fluctuate together in multi-infarct dementia. Stroke 19:163–169.Google Scholar
  11. 11.
    Bennett DA, Beckett LA, Murray A, Shannon KM, Goetz CG, Pilgrim DM, et al. 1996. Prevalence of parkinsonian signs and associated mortality in a community population of older people. New Engl J Med 334:71–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Rivera M, Vaquero JJ, Santos A, Ruiz-Cabello J, del Pozo F. 1998. MRI visualization of small structures using improved surface coils. Magn Reson Imag 16:157–166.CrossRefGoogle Scholar
  13. 13.
    Bourekas E, Christiforidis G, Abduljalil AM, Kangarlu A, Chakeres DM, Spigos D, Robitaille PML. 1999. High resolution MRI of deep gray nuclei at 8 Tesla. J Comput Assist Tomogr 23:867–866.PubMedCrossRefGoogle Scholar
  14. 14.
    Abduljalil A, Schmalbrock P, Novak V, Chakeres DW. 2003. Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high field magnetic resonance imaging. J Magn Reson Imag 18:284–290.CrossRefGoogle Scholar
  15. 15.
    Abduljalil AM, Kangarlu A, Yu Y, Robitaille PML. 1999. Macroscopic suceptibility in ultra high field MRI, II: acquisition of spin echo images from human head. J Comput Assist Tomogr 23:842–844.PubMedCrossRefGoogle Scholar
  16. 16.
    Norris DG, Kangarlu A, Schwarzbauer C, Abduljalil AM, Christoforidis G, Robitaille PML. 1999. MDEFT imaging of the human brain at 8 T. MAGMA 9:92–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Tell GS, Lefkowitz DS, Diehr P, Elster AD. 1998. Relationship between balance and abnormalities in cerebral magnetic resonance imaging in older adults. Arch Neurol 55:73–9.PubMedCrossRefGoogle Scholar
  18. 18.
    deGroot JC, de Leeuw FE, Ouderk M, Hofman A, Jolles J, Breteler MM. 2001. Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam Scan Study. Neurology 56(1):1539–1541.Google Scholar
  19. 19.
    Whitaker CDS, Schmalbrock P, Dansher RA, Beversdorf DQ, Santi MS, Abduljalil AM, et al. 2001. Ultra-high field magnetic resonance imaging signal intensity change in Alzheimer’s disease [Abstract]. Soc Neurosci 27:323.15.Google Scholar
  20. 20.
    Ay H, Buonanno FS, Rordorf G, Schaefer PW, Schwamm LH, Wu O, et al. 1999. Normal diffusion-weighted MRI during stroke-like deficits. Neurology 52:1784–1792.PubMedGoogle Scholar
  21. 21.
    Novak P, Novak V, Kangarlu A, Abduljalil AM, Chakeres D, Robittaille PML. 2001. High resolution MRI of the brainstem at 8 Tesla. J Comput Assist Tomogr 25:242–246.PubMedCrossRefGoogle Scholar
  22. 22.
    Christoforidis GA, Bourekas E, Baujan M, Abduljalil AM, Kangarlu A, Spigos D, Robitaille PML. 1999. High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 23:857–866.PubMedCrossRefGoogle Scholar
  23. 23.
    Dashner RA, Kangarlu A, Clark DL, Ray-Chaudhuri A, Chakeres DW. 2004. Limits of 8-Tesla magnetic resonance imaging spatial resolution of the deoxygenated cerebral microvasculature. J Magn Reson Imag 19:303–307.CrossRefGoogle Scholar
  24. 24.
    Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. 2001. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32:1318–1322.PubMedGoogle Scholar
  25. 25.
    Marstrand JR, Garde E, Rostrup E, Ring P, Rosenbaum S, Mortensen EL, et al. 2002. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 34(4):972–976.CrossRefGoogle Scholar
  26. 26.
    Pantoni L, Garcia JH. 1997. Pathogenesis of leukoaraoisis: a review. Stroke 28:652–659.PubMedGoogle Scholar
  27. 27.
    Inzitari D. 2003. Leukoaraiosis: an independent risk factor for stroke? Stroke 34(8):2067–2071.PubMedCrossRefGoogle Scholar
  28. 28.
    Price TR, Manolio TA, Kronmal RA, Kittner SJ, Yue NC, Robbins J, et al. 1997. Silent brain infarction on magnetic resonance imaging and neurological abnormalities in community-dwelling older adults. Stroke 28:1158–1164.PubMedGoogle Scholar
  29. 29.
    van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, van Gijn J. 1991. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly: a morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114:761–774.PubMedCrossRefGoogle Scholar
  30. 30.
    Roob G, Schmidt R, Kappeller P, Lechner A, Hartung HP, Fazekas F. 1999. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 52:991–994.PubMedGoogle Scholar
  31. 31.
    Desmond DW, Tatemichi TK, Myunghee P, Stern Y. 1993. Risk factors for cerebrovascular disease as correlate of cognitive function in a stroke-free cohort. Arch Neurol 50:162–166.PubMedGoogle Scholar
  32. 32.
    Novak V, Abduljalil AM, Kangarlu A, Slivka AP, Bourekas E, Novak P, et al. 2001. Intracranial ossifications and micronagiopathy at 8 Tesla MRI. Magn Reson Imag 19:1133–1137.CrossRefGoogle Scholar
  33. 33.
    Novak V, Chowdhary A, Abduljalil A, Novak P, Chakeres D. 2003. Venous cavernoma at 8 Tesla MRI. Magn Reson Imag 21:1087–1089.CrossRefGoogle Scholar
  34. 34.
    Kupersmith MJ, Kalish H, Epstein F, Yu G, Berenstein A, Woo H, et al. 2001. Natural history of brainstem cavernous malformations. Neurosurgery 48(1):47–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Ong WY, Halliwell B. 2004. Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage? Ann NY Acad Sci 1012:51–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Dobson J. 2004. Magnetic iron compounds in neurological disorders. Ann NY Acad Sci 1012:183–192.PubMedCrossRefGoogle Scholar
  37. 37.
    Novak V, Abduljalil AM, Novak P, Robitaille PML. 2005. High resolution ultra high field MRI of stroke. Magn Reson Imag. In press.Google Scholar
  38. 38.
    Novak V, Kangarlu A, Abduljalil A, Novak P, Slivka A, Chakeres D, et al. 2001. Ultra high field MRI of subacute hemorrhagic stroke at 8 Tesla. J Comput Assist Tomogr 25(3):431–435.PubMedCrossRefGoogle Scholar
  39. 39.
    Chakeres D, Abduljalil AM, Novak P, Novak V. 2002. Comparison of 1.5 and 8 Tesla high-resolution magnetic resonance imaging of lacunar infarcts. J Comput Assist Tomogr 26(4):628–632.PubMedCrossRefGoogle Scholar
  40. 40.
    Reichenbach JR, Barth M, Haacke EM, Klarhofer M, Kaiser WA, Moser E. 2000. High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 24:949–957.PubMedCrossRefGoogle Scholar
  41. 41.
    Reichenbach JR, Essig M, Haacke EM, Lee BC, Przetak C, Kaiser WA, et al. 2004. High-resolution venography of the brain using magnetic resonance imaging. MAGMA 6:62–69.CrossRefGoogle Scholar
  42. 42.
    Haacke EM, Tkach JA, Parrish TB. 2004. Reducing T*, dephasing in gradient field-echo imaging. Radiology 170:457–462.Google Scholar
  43. 43.
    Ibrahim TS, Lee R, Baertlein BA, Abduljalil AM, Zhu H, Robitaille PML. 2001. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imag 19:1339–1347.CrossRefGoogle Scholar
  44. 44.
    Ibrahim TS, Abduljalil AM, Baertlein BA, Lee R, Robitaille PML. 2004. Analysis of B1 field profiles and SAR values for multi-strut transverse electromagnetic RF coils in high field MRI applications. Phys Med Biol 46:2545–2555.CrossRefGoogle Scholar
  45. 45.
    Adriany G, Van de Morrtele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, et al. 2005. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53:434–445.PubMedCrossRefGoogle Scholar
  46. 46.
    Folkman J. 1995. Angiogenesis in cancer, vascular, reumatoid and other disease. Nat Med 1:27–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Plate KH, Risau W. 1995. Angiogenesis in malignant gliomas. Glia 15:339–347.PubMedCrossRefGoogle Scholar
  48. 48.
    Weller RO, Foy M, Cox S. 1977. The development and ultrastructure of the microvasculature in malignant gliomas. Appl Neurobiol 3:300–322.Google Scholar
  49. 49.
    Haddad SF, Moore SA, Schlefer RL, Goeken JA. 1992. Vascular smooth muscle hyperplasia underlies the formation of glomeruloid vascular structures in glioblastoma multiforme. J Neuropath Exp Neurol 51:488–492.PubMedCrossRefGoogle Scholar
  50. 50.
    Brem S, Cotran R, Folkman J. 1972. Tumor angiogenesis: A quantitative method for histologic grading. J Natl Cancer Inst 48:347–356.PubMedGoogle Scholar
  51. 51.
    Weidner N. 1998. Tumoral vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol 184:119–122.PubMedCrossRefGoogle Scholar
  52. 52.
    Fox SB. 1997. Tumor angiogenesis and prognosis. Histopathology 30:294–301.PubMedCrossRefGoogle Scholar
  53. 53.
    Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. 2004. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393.Google Scholar
  54. 54.
    Christoforidis GA, Grecula JC, Newton HB, Kangarlu A, Abduljalil AM, Schmalbrock P, et al. 2002. Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. Am J Neuroradiol 23:1553–1556.PubMedGoogle Scholar
  55. 55.
    Christoforidis GA, Kangarlu A, Abduljalil AM, Schmalbrock P, Chaudhry A, Yates A, et al. 2004. Susceptibility-based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and postmortem pathology. Am J Neuroradiol 25:756–760.PubMedGoogle Scholar
  56. 56.
    Abramovitch R, Frenkiel D, Neeman M. 1998. Analysis of subcutaneous angiogenesis by gradient echo magnetic resonance imaging. Magn Reson Med 38:813–824.CrossRefGoogle Scholar
  57. 57.
    Abramovitch R, Meir G, Neeman M. 1995. Neovascularization induced growth of implanted C6 glioma multicellular spheroids: magnetic resonance microimaging. Cancer Res 55:1956–1962.PubMedGoogle Scholar
  58. 58.
    Christoforidis G, Yang M, Figueredo T, Chakeres D, Abduljalil A. 2004. Microvascularity within human gliomas identified at 8T High resolution MRI and histopathology [Abstract]. Proc ASNR.Google Scholar
  59. 59.
    Christoforidis G, Varakis K, Newton HB, Kangarlu A, Abduljalil AM, Schmalbrock P, et al. 2002. Comparison of brain tumor microvascularity identified on gradient echo 8T MRI with perfusion MRI at 1.5 T [Abstract]. Proc Int Soc Magn Reson Med.Google Scholar
  60. 60.
    Christoforidis G, Yang M, Barth W, Chaudhury RF, Chakeres DW, heverhagen D, et al. 2002. Imaging of microvascularity within the F98 glioma model using intravascular contrast agent on high-resolution ultra-high field MRI with histopathologic correlation [Abstract]. Proc ASNR.Google Scholar
  61. 61.
    Neeman M, Dafni H, Bukhari O, Braun RD, Dewhirst MW. 2001. In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation: validation by intravital microscopy. Magn Reson Med 45:887–898.PubMedCrossRefGoogle Scholar
  62. 62.
    Robinson SP, Rijken PF, Howe FA, McSheehy PM, van der Sanden BP, Heerschap A, et al. 2003. Tumor vascular architecture and function evaluated by non-invasive susceptibility MRI methods and immunohistochemistry. J Magn Reson Imag 17:445–454.CrossRefGoogle Scholar
  63. 63.
    Yetkin FZ, Mendelson D. 2002. Hypoxia imaging in brain tumors. Neuroimag Clin N Am 12:537–542.CrossRefGoogle Scholar
  64. 64.
    Ogawa S, Lee TM, Kay AR, Tank DW. 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872.PubMedCrossRefGoogle Scholar
  65. 65.
    Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van de Moortele PF, Hu X, et al. 2002. Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 47:903–911.PubMedCrossRefGoogle Scholar
  66. 66.
    Pfeuffer J, McCullough JC, Van de Moortele PF, Ugurbil K, Hu X. 2003. Spatial dependence of the nonlinear BOLD response at short stimulus duration. NeuroImage 18:990–1000.PubMedCrossRefGoogle Scholar
  67. 67.
    Yacoub E, Duong TQ, Van de Moortele PF, Lindquist M, Adriany G, Kim SG, et al. 2003. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49:655–664.PubMedCrossRefGoogle Scholar
  68. 68.
    Formisano E, Kim DS, Di Salle F, Van de Moortele PF, Ugurbil K, Goebel R. 2003. Mirror-symmetric tonotopic maps in human primary auditory cortex. Br J Radiol 76:631–637.CrossRefGoogle Scholar
  69. 69.
    Ugurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, et al. 2003. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imag 21:1263–1281.CrossRefGoogle Scholar
  70. 70.
    Gruetter R, Seaquist ER, Kim S, Ugurbil K. 1998. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 20:380–388.PubMedCrossRefGoogle Scholar
  71. 71.
    Terpstra M, Ugurbil K, Gruetter R. 2002. Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med 47:1009–1012.PubMedCrossRefGoogle Scholar
  72. 72.
    Lei H, Ugurbil K, Chen W. 2003. Measurement of unidirectional Pi to ATP flux in human visual cortex at 7 T by using in vivo 31P magnetic resonance spectroscopy. Proc Natl Acad Sci USA 100:14409–14414.PubMedCrossRefGoogle Scholar
  73. 73.
    Lei H, Zhu XH, Zhang XL, Ugurbil K, Chen W. 2004. In vivo 31P magnetic resonance spectroscopy of human brain at 7 T: an initial experience. Magn Reson Med 49:199–205.CrossRefGoogle Scholar
  74. 74.
    Hu X, Norris DG. 2004. Advances in high-field magnetic resonance imaging. Annu Rev Biomed Eng 6:157–184.PubMedCrossRefGoogle Scholar
  75. 75.
    Kangarlu A, Burgess RE, Zhu H, Nakayama T, Hamlin RL, Abduljalil A, et al. 1999. Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imag 17:1407–1416.CrossRefGoogle Scholar
  76. 76.
    Chakeres DW, Bornstein R, Kangarlu A. 2003. Randomized comparison of cognitive function in humans at 0 and 8 Tesla. J Magn Reson Imag 18:342–345.CrossRefGoogle Scholar
  77. 77.
    Chakeres DW, Kangarlu A, Boudoulas H, Young DC. 2003. Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements. J Magn Reson Imag 18:346–352.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Vera Novak
    • 1
  • Gregory Christoforidis
    • 2
  1. 1.Division of GerontologyBeth Israel Deaconess Medical CenterBostonUSA
  2. 2.Department of RadiologyThe Ohio State UniversityColumbusUSA

Personalised recommendations