In-Vivo NMR Spectroscopy of the Brain at High Fields

  • Rolf Gruetter
  • Pierre-Gilles Henry
  • Hongxia Lei
  • Silvia Mangia
  • Gülin Öz
  • Melissa Terpstra
  • Ivan Tkac
Part of the Biological Magnetic Resonance book series (BIMR, volume 26)


Increased magnetic fields in principle provide increased sensitivity and specificity. In vivo, however, the increase in magnetic field alone does not automatically result in obvious improvements. Among the factors that are set to impede the improvements in sensitivity for in-vivo NMR spectroscopy are the increased challenges in eliminating the macroscopic inhomogeneities caused by mainly the air- tissue interface and increased RF power requirements. Changes in relaxation times may in addition adversely affect the increases in sensitivity, as T 1 tends to increase and T 2 tends to decrease with higher magnetic field. In the past 10 years at field strengths of 4 Tesla and higher, we have delineated technical advances that have permitted garnering the advantages of higher field, resulting in substantial gains for 1H and 13C NMR spectroscopy. The improvements can be broadly classified into increased sensitivity, leading to smaller volumes and shorter acquisition times and increased specificity, leading to the detection of many novel compounds. In dynamic 13C NMR it was shown that, in addition to measuring the label incorporation into several positions of many compounds, the time-resolved measurement of isotopomers was possible in the brain in vivo, leading to dynamic isotopomer analysis, a fusion of previously existing techniques. Improvements in sensitivity further advanced the use of localization in 13C NMR spectroscopy, which was critical in detection of brain glycogen metabolism in humans and rodents. Advances in 1H NMR spectroscopy permitted the precise measurement of an array of neurochemicals, ranging from Vitamin C, to glutathione, to glutamine, resulting in an extensive neurochemical profile of different extent that can be measured, e.g., in the unilateral mouse hippocampus, and human substantia nigra.


Specific Absorption Rate Brain Glucose Neurochemical Profile Brain Glycogen Spectral Editing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. 1.
    Hoult D, Richards R. 1976. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85.Google Scholar
  2. 2.
    Barker PB, Hearshen DO, Boska MD. 2001. Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 45:765–769.PubMedGoogle Scholar
  3. 3.
    Gruetter R, Weisdorf SA, Rajanayagan V, Terpstra M, Merkle H, Truwit CL, Garwood M, Nyberg SL, Ugurbil K. 1998. Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 135:260–264.PubMedGoogle Scholar
  4. 4.
    Tkac I, Rao R, Georgieff MK, Gruetter R. 2003. Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med 50:24–32.PubMedGoogle Scholar
  5. 5.
    Pfeuffer J, Tkac I, Provencher SW, Gruetter R. 1999. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 141:104–120.PubMedGoogle Scholar
  6. 6.
    Tkác I, Starcuk Z, Choi I-Y, Gruetter R. 1998. Ultra-short Echo-time “Dehydrated” in vivo 1H NMR Spectroscopy. Proc Int Soc Magn Reson Med 1760.Google Scholar
  7. 7.
    Van Cauteren M, Miot F, Segebarth CM, Eisendrath H, Osteaux M, Willem R. 1992. Excitation characteristics of adiabatic half-passage RF pulses used in surface coil MR spectroscopy: application to 13C detection of glycogen in the rat liver. Phys Med Biol 37:1055–1064.PubMedGoogle Scholar
  8. 8.
    Gruetter R, Rothman DL, Novotny EJ, Shulman RG. 1992. Localized 13C NMR spectroscopy of myo-inositol in the human brain in vivo. Magn Reson Med 25:204–210.PubMedGoogle Scholar
  9. 9.
    Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV. 1992. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci USA 89:1109–1112.PubMedGoogle Scholar
  10. 10.
    deGraaf R, Luo Y, Terpstra M, Garwood M. 1995. Spectral editing with adiabatic pulses. J Magn Reson B 109:184–193.Google Scholar
  11. 11.
    Gruetter R, Seaquist E, Kim S-W, Ugurbil K. 1998. Localized in vivo 13C NMR of glutamate metabolism: initial results at 4 Tesla. Dev Neurosci 20:380–388.PubMedGoogle Scholar
  12. 12.
    Choi IY, Tkac I, Ugurbil K, Gruetter R. 1999. Noninvasive measurements of [1-13C]glycogen concentrations and metabolism in rat brain in vivo. J Neurochem 73:1300–1308.PubMedGoogle Scholar
  13. 13.
    Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL. 1999. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96:8235–8240.PubMedGoogle Scholar
  14. 14.
    Oz G, Henry PG, Seaquist ER, Gruetter R. 2003. Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 43:323–329.PubMedGoogle Scholar
  15. 15.
    Henry PG, Tkac I, Gruetter R. 2003. 1H-localized broadband 13C NMR spectroscopy of the rat brain in vivo at 9.4 T. Magn Reson Med 50:684–692.PubMedGoogle Scholar
  16. 16.
    Collins CM, Liu W, Wang J, Gruetter R, Vaughan JT, Ugurbil K, Smith MB. 2004. Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz. J Magn Reson Imag 19:650–656.Google Scholar
  17. 17.
    van den Bergh AJ, van den Boogert HJ, Heerschap A. 1998. Calibration of the 1H decoupling field strength and experimental evaluation of the specific RF absorption rate in 1H-decoupled human 13C-MRS. Magn Reson Med 39:642–646.PubMedGoogle Scholar
  18. 18.
    Bax A. 1983. A simple method for the calibration of the decoupler radiofrequency field strength. J Magn Reson 52:76–80.Google Scholar
  19. 19.
    Tkac I, Henry PG, Andersen P, Keene CD, Low WC, Gruetter R. 2004. Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn Reson Med 52:478–484.PubMedGoogle Scholar
  20. 20.
    Shen J, Rycyna RE, Rothman DL. 1997. Improvements on an in vivo automatic shimming method (FASTERMAP). Magn Reson Med 38:834–839.PubMedGoogle Scholar
  21. 21.
    Manabe A. 1994. Multi-angle projection shim (MAPShim): in vivo shim adjustment up to 2nd order in 0.2 second sequence time. Proc Soc Magn Reson 765.Google Scholar
  22. 22.
    Gruetter R. 1993. Automatic, localized in vivo adjustment of all first-and second-order shim coils. Magn Reson Med 29:804–811.PubMedGoogle Scholar
  23. 23.
    Gruetter R, Boesch C. 1992. Fast, non-iterative shimming on spatially localized signals: in vivo analysis of the magnetic field along axes. J Magn Reson 96:323–334.Google Scholar
  24. 24.
    Gruetter R, Tkac I. 2000. Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43:319–323.PubMedGoogle Scholar
  25. 25.
    Tkac I, Starcuk Z, Choi I-Y, Gruetter R. 1999. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656.PubMedGoogle Scholar
  26. 26.
    Tkac I, Keene CD, Pfeuffer J, Low WC, Gruetter R. 2001. Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo 1H NMR spectroscopy. J Neurosci Res 66:891–898.PubMedGoogle Scholar
  27. 27.
    Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Gruetter R. 1997. In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 68:161–172.PubMedGoogle Scholar
  28. 28.
    Bluml S, Hwang JH, Moreno A, Ross BD. 2000. Novel peak assignments of in vivo 13C MRS in human brain at 1.5 T. J Magn Reson 143:292–298.Google Scholar
  29. 29.
    Choi IY, Gruetter R. 2004. Dynamic or inert metabolism? Turnover of N-acetyl aspartate and glutathione from D-[1-13C]glucose in the rat brain in vivo. J Neurochem 91:778–787.PubMedGoogle Scholar
  30. 30.
    Gruetter R, Adriany G, Choi IY, Henry PG, Lei H, Oz G. 2003. Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16:313–338.PubMedGoogle Scholar
  31. 31.
    Gruetter R, Adriany G, Merkle H, Andersen PM. 1996. Broadband decoupled, 1H localized 13C MRS of the human brain at 4 Tesla. Magn Reson Med 36:659–664.PubMedGoogle Scholar
  32. 32.
    Terpstra M, Henry PG, Gruetter R. 2003. Measurement of reduced glutathione (GSH) in human brain using LCModel analysis of difference-edited spectra. Magn Reson Med 50:19–23.PubMedGoogle Scholar
  33. 33.
    Seaquist ER, Gruetter R. 1998. Identification of a high concentration of scyllo-inositol in the brain of a healthy human subject using 1H and 13C NMR. Magn Reson Med 39:313–316.PubMedGoogle Scholar
  34. 34.
    Gruetter R, Ugurbil K, Seaquist ER. 1998. Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70:397–408.PubMedGoogle Scholar
  35. 35.
    Bluml S. 1999. In vivo quantitation of cerebral metabolite concentrations using natural abundance 13C MRS at 1.5 T. J Magn Reson 136:219–225.PubMedGoogle Scholar
  36. 36.
    Sonnewald U, Gribbestad IS, Westergaard N, Nilsen G, Unsgard G, Schousboe A, Petersen SB. 1994. Nuclear magnetic resonance spectroscopy: biochemical evaluation of brain function in vivo and in vitro. Neurotoxicology 15:579–590.PubMedGoogle Scholar
  37. 37.
    Leibfritz D. 1996. An introduction to the potential of 1H-, 31P-and 13C-NMR spectroscopy. Anticancer Res 16:1317–1324.PubMedGoogle Scholar
  38. 38.
    Shaka AJ, Keeler J, Freeman R. 1983. Evaluation of a new broadband decouling sequence: WALTZ-16. J Magn Reson 53:313–340.Google Scholar
  39. 39.
    Pfeuffer J, Tkac I, Choi I-Y, Merkle H, Ugurbil K, Garwood M, Gruetter R. 1999. Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1-13C] D-glucose. Magn Reson Med 41:1077–1083.PubMedGoogle Scholar
  40. 40.
    De Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL. 2004. Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci USA 101(34):12700–12705.PubMedGoogle Scholar
  41. 41.
    Muller S, Beckmann N. 1989. 13C spectroscopic imaging. A simple approach to in vivo 13C investigations. Magn Reson Med 12:400–406.PubMedGoogle Scholar
  42. 42.
    van den Bergh AJ, van den Boogert HJ, Heerschap A. 1998. Heteronuclear cross polarization for enhanced sensitivity of in vivo 13C MR spectroscopy on a clinical 1.5 T MR system. J Magn Reson 135:93–98.PubMedGoogle Scholar
  43. 43.
    Brown TR, Kincaid BM, Ugurbil K. 1982. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79:3523–3526.PubMedGoogle Scholar
  44. 44.
    Haupt CI, Schuff N, Weiner MW, Maudsley AA. 1996. Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation. Magn Reson Med 35:678–687.PubMedGoogle Scholar
  45. 45.
    Hu X, Patel M, Chen W, Ugurbil K. 1995. Reduction of truncation artifacts in CSI by extended sampling using variable TR. J Magn Reson A 106:292–296.Google Scholar
  46. 46.
    Doddrell DM, Pegg DT, Bendall MR. 1982. Distortionless Enhancment of NMR signals by polarization transfer. J Magn Reson 48:323–327.Google Scholar
  47. 47.
    Merkle H, Wei H, Garwood M, Ugurbil K. 1992. B1 insensitive heteronuclear adiabatic polarizaton transfer for signal enhancement. J Magn Reson 99:480–494.Google Scholar
  48. 48.
    Gruetter R, Seaquist ER, Ugurbil K. 2001. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol 281:E100–112.Google Scholar
  49. 49.
    Bomsdorf H, Roschmann P, Wieland J. 1991. Sensitivity enhancement in whole-body natural abundance 13C spectroscopy using 13C/1H double-resonance techniques at 4 tesla. Magn Reson Med 22:10–22.PubMedGoogle Scholar
  50. 50.
    Overloop K, Vanstapel F, Vanhecke P. 1996. 13C-NMR relaxation in glycogen. Magn Reson Med 36:45–51.PubMedGoogle Scholar
  51. 51.
    Zang LH, Laughlin MR, Rothman DL, Shulman RG. 1990. 13C NMR relaxation times of hepatic glycogen in vitro and in vivo. Biochemistry 29:6815–6820.PubMedGoogle Scholar
  52. 52.
    Choi IY, Tkac I, Gruetter R. 2000. Single-shot, three-dimensional “non-echo” localization method for in vivo NMR spectroscopy. Magn Reson Med 44:387–394.PubMedGoogle Scholar
  53. 53.
    Pan JW, Hetherington HP. 1996. J-refocused coherence transfer spectroscopy to observe GABA at 4.1 T. Proc Intl Soc Magn Reson Med 1229.Google Scholar
  54. 54.
    Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. 2001. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46:451–456.PubMedGoogle Scholar
  55. 55.
    Tkac I, Andersen P, Adriany G, Gruetter R, Ugurbil K. 1999. 4-ms echo-time 1H NMR spectra of human brain measured in a 4 Tesla/90 cm magnet using a body gradient coil. Proc Int Soc Magn Reson Med, Poster M1612.Google Scholar
  56. 56.
    Tannus A, Garwood M. 1996. Improved performance of frequency-swept pulses using offset-independent adiabaticity. J Magn Reson A 120:133–137.Google Scholar
  57. 57.
    Garwood M, DelaBarre L. 2001. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177.PubMedGoogle Scholar
  58. 58.
    Hetherington HH, Pan JW, Mason GF, Ponder S, Twieg DB, Deutsch G, Mountz J, Pohost GM. 1994. 2D 1H spectrosocopic imaging of the human brain at 4.lT. Magn Reson Med 32:530–534.PubMedGoogle Scholar
  59. 59.
    Oz G, Tkac I, Charnas LR, Choi IY, Bjoraker KJ, Shapiro EG, Gruetter R. 2005. Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology 64:434–441.PubMedGoogle Scholar
  60. 60.
    Gruetter R, Garwood M, Ugurbil K, Seaquist ER. 1996. Observation of resolved glucose signals in 1H NMR spectra of human brain at 4 Tesla. Magn Reson Med 36:1–6.PubMedGoogle Scholar
  61. 61.
    Trabesinger AH, Weber OM, Duc CO, Boesiger P. 1999. Detection of glutathione in the human brain in vivo by means of double quantum coherence filtering. Magn Reson Med 42:283–289.PubMedGoogle Scholar
  62. 62.
    Rothman DL, Petroff OA, Behar KL, Mattson RH. 1993. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 90:5662–5666.PubMedGoogle Scholar
  63. 63.
    Jouvensal L, Carlier PG, Bloch G. 1996. Practical implementation of single-voxel double-quantum editing on a whole-body NMR spectrometer: localized monitoring of lactate in the human leg during and after exercise. Magn Reson Med 36:487–490.PubMedGoogle Scholar
  64. 64.
    Behar KL, Rothman DL, Spencer DD, Petroff OAC. 1994. Analysis of macromolecule resonances in 1H MR spectra of human brain. Magn Reson Med 32:294–302.PubMedGoogle Scholar
  65. 65.
    Hanstock CC, Coupland NJ, Allen PS. 2002. GABA X2 multiplet measured pre-and post-administration of vigabatrin in human brain. Magn Reson Med 48:617–623.PubMedGoogle Scholar
  66. 66.
    Marjanska M, Henry PG, Bolan PJ, Vaughan B, Seaquist ER, Gruetter R, Ugurbil K, Garwood M. 2005. Uncovering hidden in vivo resonances using editing based on localized TOCSY. Magn Reson Med 53:783–789.PubMedGoogle Scholar
  67. 67.
    Terpstra M, Ugurbil K, Gruetter R. 2002. Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med 47:1009–1012.PubMedGoogle Scholar
  68. 68.
    Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R. 1998. Simultaneous water suppression and editing in vivo. NMR Biomed 11:266–272.PubMedGoogle Scholar
  69. 69.
    Slotboom J, Boesch C, Kreis R. 1998. Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 39:899–911.PubMedGoogle Scholar
  70. 70.
    Provencher SW. 1993. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679.PubMedGoogle Scholar
  71. 71.
    Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D. 2001. Java-based graphical user interface for the MRUI quantitation package. MAGMA 12:141–152.PubMedGoogle Scholar
  72. 72.
    de Beer R, van den Boogaart A, van Ormondt D, Pijnappel WW, den Hollander JA, Marien AJ, Luyten PR. 1992. Application of time-domain fitting in the quantification of in vivo 1H spectroscopic imaging data sets. NMR Biomed 5:171–178.PubMedGoogle Scholar
  73. 73.
    Provencher SW. 2001. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264.PubMedGoogle Scholar
  74. 74.
    Mader I, Seeger U, Karitzky J, Erb M, Schick F, Klose U. 2002. Proton magnetic resonance spectroscopy with metabolite nulling reveals regional differences of macromolecules in normal human brain. J Magn Reson Imag 16:538–546.Google Scholar
  75. 75.
    Opstad KS, Provencher SW, Bell BA, Griffiths JR, Howe FA. 2003. Detection of elevated glutathione in meningiomas by quantitative in vivo 1H MRS. Magn Reson Med 49:632–637.PubMedGoogle Scholar
  76. 76.
    Garcia-Martin ML, Garcia-Espinosa MA, Ballesteros P, Bruix M, Cerdan S. 2002. Hydrogen turnover and subcellular compartmentation of hepatic [2-13C]glutamate and [3-13C]aspartate as detected by 13C NMR. J Biol Chem 277:7799–7807.PubMedGoogle Scholar
  77. 77.
    Mason GF, Behar KL, Rothman DL, Shulman RG. 1992. NMR determination of intracerebral glucose concentration and transport kinetics in rat brain. J Cereb Blood Flow Met 12:448–455.Google Scholar
  78. 78.
    Choi IY, Lee SP, Kim SG, Gruetter R. 2001. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Met 21:653–663.Google Scholar
  79. 79.
    Criego AB, Tkac I, Kumar A, Thomas W, Gruetter R, Seaquist ER. 2005. Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J Neurosci Res 79:42–47.PubMedGoogle Scholar
  80. 80.
    Gruetter R, Rothman DL, Novotny EJ, Shulman GI, Prichard JW, Shulman RG. 1992. Detection and assignment of the glucose signal in 1H NMR spectra of the human brain. Magn Reson Med 26:183–188.Google Scholar
  81. 81.
    Choi IY, Lei H, Gruetter R. 2002. Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: on the correlation of total glucose consumption with glutamatergic action. J Cereb Blood Flow Met 22:1343–1351.Google Scholar
  82. 82.
    de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, Hetherington HP, Rothman DL. 2001. Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Met 21:483–492.Google Scholar
  83. 83.
    Seaquist ER, Damberg GS, Tkac I, Gruetter R. 2001. The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes 50:2203–2209.PubMedGoogle Scholar
  84. 84.
    Pfeuffer J, Tkac I, Gruetter R. 2000. Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Met 20:736–746.Google Scholar
  85. 85.
    Gjedde A, Diemer NH. 1983. Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Met 3:303–310.Google Scholar
  86. 86.
    Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L. 1991. Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Met 11:171–182.Google Scholar
  87. 87.
    Lund-Andersen H. 1979. Transport of glucose from blood to brain. Physiol Rev 59:305–352.PubMedGoogle Scholar
  88. 88.
    Hasselbalch SG, Knudsen GM, Holm S, Hageman LP, Capaldo B, Paulson OB. 1996. Transport of D-glucose and 2-fluorodeoxyglucose across the blood-brain barrier in humans. J Cereb Blood Flow Met 16:659–666.Google Scholar
  89. 89.
    Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Shulman RG. 1996. 1H NMR studies of glucose transport in the human brain. J Cereb Blood Flow Met 16:427–438.Google Scholar
  90. 90.
    Dienel GA, Cruz NF, Adachi K, Sokoloff L, Holden JE. 1997. Determination of local brain glucose level with [14C]methylglucose: effects of glucose supply and demand. Am J Physiol 273:E839–849.PubMedGoogle Scholar
  91. 91.
    Cunningham VJ, Hargreaves RJ, Pelling D, Moorhouse SR. 1986. Regional blood-brain glucose transfer in the rat: a novel double-membrane kinetic analysis. J Cereb Blood Flow Met 6:305–314.Google Scholar
  92. 92.
    Gruetter R. 2003. Glycogen: the forgotten cerebral energy store. J Neurosci Res 74:179–183.PubMedGoogle Scholar
  93. 93.
    Choi IY, Seaquist ER, Gruetter R. 2003. Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 72:25–32.PubMedGoogle Scholar
  94. 94.
    Lowry O, Passonneau J, Hasselberger F, Schulz D. 1964. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30.PubMedGoogle Scholar
  95. 95.
    Swanson RA, Sagar SM, Sharp FR. 1989. Regional brain glycogen stores and metabolism during complete global ischaemia. Neurol Res 11:24–28.PubMedGoogle Scholar
  96. 96.
    Cruz NF, Dienel GA. 2002. High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Met 22:1476–1489.Google Scholar
  97. 97.
    Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD. 2002. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22:5581–5587.PubMedGoogle Scholar
  98. 98.
    Choi IY, Gruetter R. 2003. In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int 43:317–322.PubMedGoogle Scholar
  99. 99.
    Sorg O, Magistretti PJ. 1992. Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J Neurosci 12:4923–4931.PubMedGoogle Scholar
  100. 100.
    Fox PT, Raichle ME, Mintun MA, Dence C. 1988. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464.PubMedGoogle Scholar
  101. 101.
    Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R. 1991. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831.PubMedGoogle Scholar
  102. 102.
    Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW. 1992. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Met 12:584–592.Google Scholar
  103. 103.
    Merboldt KD, Bruhn H, Hanicke W, Michaelis T, Frahm J. 1992. Decrease of glucose in the human visual cortex during photic stimulation. Magn Reson Med 25:187–194.PubMedGoogle Scholar
  104. 104.
    Frahm J, Kruger G, Merboldt KD, Kleinschmidt A. 1996. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35:143–148.PubMedGoogle Scholar
  105. 105.
    Madsen PL, Cruz NF, Sokoloff L, Dienel GA. 1999. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Met 19:393–400.Google Scholar
  106. 106.
    Shulman RG, Hyder F, Rothman DL. 2001. Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci USA 98:6417–6422.PubMedGoogle Scholar
  107. 107.
    Chen W, Zhu XH, Gruetter R, Seaquist ER, Adriany G, Ugurbil K. 2001. Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using 1H-[13C] MRS and fMRI. Magn Reson Med 45:349–355.PubMedGoogle Scholar
  108. 108.
    Ogawa S, Menon RS, Kim SG, Ugurbil K. 1998. On the characteristics of functional magnetic resonance imaging of the brain. Ann Rev Biophys Biomol Struct 27:447–474.Google Scholar
  109. 109.
    Berkich DA, Xu Y, LaNoue KF, Gruetter R, Hutson SM. 2005. Evaluation of brain mitochondrial glutamate and alpha-ketoglutarate transport under physiologic conditions. J Neurosci Res 79:106–113.PubMedGoogle Scholar
  110. 110.
    Henry PG, Lebon V, Vaufrey F, Brouillet E, Hantraye P, Bloch G. 2002. Decreased TCA cycle rate in the rat brain after acute 3-NP treatment measured by in vivo 1H-[13C] NMR spectroscopy. J Neurochem 82:857–866.PubMedGoogle Scholar
  111. 111.
    Yu X, White LT, Alpert NM, Lewandowski ED. 1996. Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool. Biochemistry 35:6963–6968.PubMedGoogle Scholar
  112. 112.
    Jeffrey FM, Reshetov A, Storey CJ, Carvalho RA, Sherry AD, Malloy CR. 1999. Use of a single 13C NMR resonance of glutamate for measuring oxygen consumption in tissue. Am J Physiol 277:E1111–1121.PubMedGoogle Scholar
  113. 113.
    Jucker BM, Ren J, Dufour S, Cao X, Previs SF, Cadman KS, Shulman GI. 2000. 13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake fed and fasted rats: relationship with uncoupling protein 3 expression. J Biol Chem 275:39279–39286.PubMedGoogle Scholar
  114. 114.
    LaNoue KF, Tischler ME. 1974. Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter. J Biol Chem 249:7522–7528.PubMedGoogle Scholar
  115. 115.
    Chatham JC, Forder JR, Glickson JD, Chance EM. 1995. Calculation of absolute metabolic flux and the elucidation of the pathways of glutamate labeling in perfused rat heart by 13C NMR spectroscopy and nonlinear least squares analysis. J Biol Chem 270:7999–8008.PubMedGoogle Scholar
  116. 116.
    Gruetter R. 2002. In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism. Neurochem Int 41:143–154.PubMedGoogle Scholar
  117. 117.
    Oz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R. 2004. Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24:11273–11279.PubMedGoogle Scholar
  118. 118.
    Yudkoff M, Nissim I, Daikhin Y, Lin Z, Nelson D, Pleasure D, Erecinska M. 1993. Brain glutamate metabolism: neuronal-astroglial relationships. Dev Neurosci 15:343–350.PubMedGoogle Scholar
  119. 119.
    Schousboe A, Westergaard N, Hertz L. 1993. Neuronal-astrocytic interactions in glutamate metabolism. Biochem Soc Trans 21:49–53.PubMedGoogle Scholar
  120. 120.
    McKenna MC, Stevenson JH, Huang X, Hopkins IB. 2000. Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37:229–241.PubMedGoogle Scholar
  121. 121.
    Daikhin Y, Yudkoff M. 2000. Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031S.PubMedGoogle Scholar
  122. 122.
    Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L. 1993. Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366.PubMedGoogle Scholar
  123. 123.
    Nicklas WJ, Zeevalk G, Hyndman A. 1987. Interactions between neurons and glia in glutamate/glutamine compartmentation. Biochem Soc Trans 15:208–210.PubMedGoogle Scholar
  124. 124.
    Eriksson G, Peterson A, Iverfeldt K, Walum E. 1995. Sodium-dependent glutamate uptake as an activator of oxidative metabolism in primary astrocyte cultures from newborn rat. Glia 15:152–156.PubMedGoogle Scholar
  125. 125.
    Magistretti P, Pellerin L. 1996. Cellular mechanisms of brain energy metabolism: relevance to functional brain imaging and to neurodegenerative disorders. Ann NY Acad Sci 777:380–387.PubMedGoogle Scholar
  126. 126.
    Silver IA, Erecinska M. 1997. Energetic demands of the Na+/K+ ATPase in mammalian astrocytes. Glia 21:35–45.PubMedGoogle Scholar
  127. 127.
    Tsacopoulos M, Magistretti P. 1996. Metabolic coupling between glia and neurons. J Neurosci 16:877–885.PubMedGoogle Scholar
  128. 128.
    Magistretti PJ, Pellerin L. 1999. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil Trans Roy Soc London B (Biol Sci) 354:1155–1163.Google Scholar
  129. 129.
    Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L. 1993. Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 15:306–312.PubMedGoogle Scholar
  130. 130.
    Bergles DE, Dzubay JA, Jahr CE. 1997. Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci USA 94:14821–14825.PubMedGoogle Scholar
  131. 131.
    Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. 1998. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321.PubMedGoogle Scholar
  132. 132.
    Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Met 21:1133–1145.Google Scholar
  133. 133.
    Siegel GJ, Agranoff BW. 1999. Basic neurochemistry: molecular, cellular and medical aspects. Philadelphia: Lippincott-Raven Publishers.Google Scholar
  134. 134.
    Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG. 1999. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Phil Trans Roy Soc London B (Biol Sci) 354:1165–1177Google Scholar
  135. 135.
    Lapidot A, Gopher A. 1994. Cerebral metabolic compartmentation: estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J Biol Chem 269:27198–27208.PubMedGoogle Scholar
  136. 136.
    Merle M, Bouzier-Sore AK, Canioni P. 2002. Time-dependence of the contribution of pyruvate carboxylase versus pyruvate dehydrogenase to rat brain glutamine labelling from [1-13C]glucose metabolism. J Neurochem 82:47–57.PubMedGoogle Scholar
  137. 137.
    Berl S, Nicklas WJ, Clarke DD. 1970. Compartmentation of citric acid cycle metabolism in brain: labelling of glutamate, glutamine, aspartate and gaba by several radioactive tracer metabolites. J Neurochem 17:1009–1015.PubMedGoogle Scholar
  138. 138.
    Waniewski RA, Martin DL. 1998. Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233.PubMedGoogle Scholar
  139. 139.
    Dienel GA, Liu K, Popp D, Cruz NF. 1999. Enhanced acetate and glucose utilization during graded photic stimulation: neuronal-glial interactions in vivo. Ann NY Acad Sci 893:279–281.PubMedGoogle Scholar
  140. 140.
    Cruz-Aguado R, Francis-Turner L, Diaz CM, Antunez I. 2000. Quinolinic acid lesion induces changes in rat striatal glutathione metabolism. Neurochem Int 37:53–60.PubMedGoogle Scholar
  141. 141.
    Terpstra M, Gruetter R. 2004. 1H NMR detection of vitamin C in human brain in vivo. Magn Reson Med 51:225–229.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Rolf Gruetter
    • 1
  • Pierre-Gilles Henry
    • 2
  • Hongxia Lei
    • 1
  • Silvia Mangia
    • 2
  • Gülin Öz
    • 2
  • Melissa Terpstra
    • 2
  • Ivan Tkac
    • 2
  1. 1.EPFL SB IPMC LIFMETLausanneSwitzerland
  2. 2.Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUSA

Personalised recommendations