Advertisement

High Magnetic Fields for Imaging Cerebral Morphology, Function, and Biochemistry

  • Kâmil Uğurbil
  • Gregor Adriany
  • Can Akgün
  • Peter Andersen
  • Wei Chen
  • Michael Garwood
  • Rolf Gruetter
  • Pierre-Gilles Henry
  • Malgorzata Marjanska
  • Steen Moeller
  • Pierre-François Van de Moortele
  • Klaas Prüssmann
  • Ivan Tkac
  • J. Thomas Vaughan
  • Florian Wiesinger
  • Essa Yacoub
  • Xiao-Hong Zhu
Part of the Biological Magnetic Resonance book series (BIMR, volume 26)

Abstract

In the last two decades, magnetic resonance imaging (MRI) instruments operating at a magnetic field strength of 1.5 Tesla have emerged as the most commonly employed high-end platform for clinical diagnosis. Despite the dominant position enjoyed by this field strength, even its promotion as the “optimum” field to work for human applications, the late 1980s witnessed the beginnings of an interest in substantially higher magnetic fields. After brief and cursory explorations, however, high field strengths were virtually abandoned by industry leaders while their efforts were focused on further refinements of the 1.5T or even lower field platforms. Nevertheless, a handful of 3 and 4-Tesla instruments were established in academic research laboratories by about 1990. Since these early beginnings, work conducted in these academic sites has demonstrated that magnetic fields substantially beyond 1.5 Tesla provide numerous advantages in aspects of magnetic resonance imaging and spectroscopy (MRS) applications in humans, even though such high fields also pose serious challenges. In considering these accomplishments, however, it is imperative to recognize that, to date, virtually all of the research at high magnetic fields, especially at field strengths greater than 3 Tesla, has been carried out only in a few laboratories and using instruments that are definitely far less than optimized; as such, the amount of man-hours and talent dedicated to this effort has been minuscule compared to the clinical uses of MR and, even then, this effort has been hampered by suboptimal instrumentation. Therefore, any positive conclusions obtained thus far, and there are many, can only be interpreted as harbingers of potential gains and definitely not as what can be ultimately achieved.

Keywords

Human Head High Magnetic Field Blood Oxygen Level Dependent Blood Oxygen Level Dependent Signal Gradient Echo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. 1.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. 1992. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5955.PubMedCrossRefGoogle Scholar
  2. 2.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al. 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–5679.PubMedCrossRefGoogle Scholar
  3. 3.
    Ogawa S, Menon RS, Tank DW, Kim S-G, Merkle H, Ellermann JM, Ugurbil K. 1993. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys J 64:800–812.CrossRefGoogle Scholar
  4. 4.
    Fujita N. 2001. Extravascular contribution of blood oxygenation level-dependent signal changes: a numerical analysis based on a vascular network model. Magn Reson Med 46(4):723–734.PubMedCrossRefGoogle Scholar
  5. 5.
    Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. 1995. MR contrast due to intravscular magnetic susceptiblity perturbations. Magn Reson Med 34:555–556.PubMedCrossRefGoogle Scholar
  6. 6.
    Kennan RP, Zhong J, Gore JC. 1994. Intravascular susceptibility contrast mechanisms in tissue. Magn Reson Med 31:9–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoult DI, Richards RE. 1976. The signal-to-noise ratio of the nuclear magnetic resonance phenomenon. J Magn Reson 24(71):71–85.Google Scholar
  8. 8.
    Hoult DI, Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425–433.Google Scholar
  9. 9.
    Wen H, Chesnick AS, Balaban RS. 1994. The design and test of a new volume coil for high field imaging. Magn Reson Med 32:492–498.PubMedCrossRefGoogle Scholar
  10. 10.
    Hoult DI. 2000. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imag 12(1):46–67.CrossRefGoogle Scholar
  11. 11.
    Keltner JR, Carlson JW, Roos MS, Wong STS, Wong TL, Budinger TF. 1991. Electromagnetic fields of surface coil in vivo NMR at high frequencies. Magn Reson Med 22:46–480.CrossRefGoogle Scholar
  12. 12.
    Vesselle H, Collin RE. 1995. The signal-to-noise ratio of nuclear magnetic resonance surface coils and application to lossy dielectric cylinder model, part II: the case of cylinderical window studies. IEEE Trans Biomed Eng 42(5):507–520.CrossRefGoogle Scholar
  13. 13.
    Vesselle H, Collin RE. 1995. The signal-to-noise ratio of nuclear magnetic resonance surface coils and application to lossy dielectric cylinder model, part I: theory. IEEE Trans Biomed Eng 42(5):497–505.CrossRefGoogle Scholar
  14. 14.
    Gati JS, Menon RS, Ugurbil K, Rutt BK. 1997. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302.PubMedCrossRefGoogle Scholar
  15. 15.
    Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K. 2001. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang QX, Wang J, Collins CM, Smith MB, Zhang X, Ugurbil K, Chen W. 2004. Phantom design method for high-field MRI human systems. Magn Reson Med 52(5):1016–1020.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang J, Yang QX, Zhang X, Collins CM, Smith MB, Zhu XH, Adriany G, Ugurbil K, Chen W. 2002. Polarization of the RF field in a human head at high field: a study with a quadrature surface coil at 7.0 T. Magn Reson Med 48(2):362–369.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang QX, Wang J, Zhang X, Collins CM, Smith MB, Liu H, Zhu XH, Vaughan JT, Ugurbil K, Chen W. 2002. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 47(5):982–989.PubMedCrossRefGoogle Scholar
  19. 19.
    Collins CM, Yang QX, Wang JH, Zhang X, Liu H, Michaeli S, Zhu XH, Adriany G, Vaughan JT, Anderson P, Merkle H, Ugurbil K, Smith MB, Chen W. 2002. Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz. Magn Reson Med 47(5):1026–1028.PubMedCrossRefGoogle Scholar
  20. 20.
    Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. 2004. Parallel imaging performance as a function of field strength: an experimental investigation using electrodynamic scaling. Magn Reson Med 52(5):953–964.PubMedCrossRefGoogle Scholar
  21. 21.
    Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K. 2005. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445.PubMedCrossRefGoogle Scholar
  22. 22.
    Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, O’Donnel M, Barber WD. 1985. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 64:255.Google Scholar
  23. 23.
    Hoult DI. 2000. The principle of reciprocity in signal strength calculations: a matheatical guide. Conc Magn Reson 12(4):173–187.CrossRefGoogle Scholar
  24. 24.
    Van de Moortele P-F, Akgun C, Adriany G, Moeller S, Ritter J, Collin C, Smith MB, Vaughan JT, Ugurbil K. 2005. B1 destructive to interferences and spatial phase patterns at 7 T with head transceiver array coil. Magn Reson Med 54(6):1503–1518.PubMedCrossRefGoogle Scholar
  25. 25.
    Van de Moortele P-F, Adriany G, Akgun C, Moeller S, Ritter J, Vaughan JT, Ugurbil K. 2005. B1 phase spatial patterns at 7 Tesla: impact on B1 inhomogeneities with a head transceive transmission line array coil. Proc Int Soc Magn Reson Med 13:2748.Google Scholar
  26. 26.
    Zhu XH, Merkle H, Kwag JH, Ugurbil K, Chen W. 2001. 17O relaxation time and NMR sensitivity of cerebral water and their field dependence. Magn Reson Med 45(4):543–549.PubMedCrossRefGoogle Scholar
  27. 27.
    Lei H, Zhu XH, Zhang XL, Ugurbil K, Chen W. 2003. In vivo 31P magnetic resonance spectroscopy of human brain at 7 T: an initial experience. Magn Reson Med 49(2):199–205.PubMedCrossRefGoogle Scholar
  28. 28.
    Pfeuffer J, van de Moortele PF, Yacoub E, Shmuel A, Adriany G, Andersen P, Merkle H, Garwood M, Ugurbil K, Hu X. 2002. Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17(1):272–286.PubMedCrossRefGoogle Scholar
  29. 29.
    Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele PF, Hu X, Ugurbil K. 2002. Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 47(5):903–911.PubMedCrossRefGoogle Scholar
  30. 30.
    Yacoub E, Duong TQ, Van De Moortele PF, Lindquist M, Adriany G, Kim SG, Ugurbil K, Hu X. 2003. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49(4):655–664.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhu XH, Zhang Y, Tian RX, Lei H, Zhang N, Zhang X, Merkle H, Ugurbil K, Chen W. 2002. Development of (17)O NMR approach for fast imaging of cerebral metabolic rate of oxygen in rat brain at high field. Proc Natl Acad Sci USA 99(20):13194–13199.PubMedCrossRefGoogle Scholar
  32. 32.
    Robitaille PML, Abduljalil AM, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres DM, Spigos D. 1998. Human magnetic resonance imaging at 8 T [see comments]. NMR Biomed 11(6):263–265.PubMedCrossRefGoogle Scholar
  33. 33.
    Robitaille PML. 1999. Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI. J Comput Assist Tomogr 23(6):879–890.PubMedCrossRefGoogle Scholar
  34. 34.
    Ibrahim TS, Lee R, Robitaille PML. 2001. Effect of RF excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imag 19:1339–1347.CrossRefGoogle Scholar
  35. 35.
    Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PML. 1999. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 23(6):821–831.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang X, Ugurbil K, Chen W. 2003. A microstrip transmission line volume coil for human head MR imaging at 4T. J Magn Reson 161(2):242–251.PubMedCrossRefGoogle Scholar
  37. 37.
    Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K. 2004. Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52(4):851–859.PubMedCrossRefGoogle Scholar
  38. 38.
    Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim SG, Menon R, Merkle H, Ogawa S, et al. 1993. Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9(4):259–277.PubMedGoogle Scholar
  39. 39.
    Pan JW, Vaughan JT, Kuzniecky RI, Pohost GM, Hetherington HP. 1995. High resolution neuroimaging at 4.1T. Magn Reson Imag 13(7):915–921.CrossRefGoogle Scholar
  40. 40.
    Abduljalil AM, Kangarlu A, Zhang X, Burgess RE, Robitaille PML. 1999. Acquisition of human multislice MR images at 8 Tesla. J Comput Assist Tomogr 23(3):335–340.PubMedCrossRefGoogle Scholar
  41. 41.
    Burgess RE, Yu Y, Abduljalil AM, Kangarlu A, Robitaille PML. 1999. High signal-tonoise FLASH imaging at 8 Tesla. Magn Reson Imag 17(8):1099–1103.CrossRefGoogle Scholar
  42. 42.
    Burgess RE, Yu Y, Christoforidis GA, Bourekas EC, Chakeres DW, Spigos D, Kangarlu A, Abduljalil AM, Robitaille PML. 1999. Human leptomeningeal and cortical vascular anatomy of the cerebral cortex at 8 Tesla. J Comput Assist Tomogr 23(6):850–856.PubMedCrossRefGoogle Scholar
  43. 43.
    Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PML. 1999. High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 23(6):857–866.PubMedCrossRefGoogle Scholar
  44. 44.
    Robitaille PML, Abduljalil AM, Kangarlu A. 2000. Ultra high resolution imaging of the human head at 8 tesla: 2K × 2K for Y2K. J Comput Assist Tomogr 24(1):2–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Kangarlu A, Abduljalil AM, Robitaille PML. 1999. T 1-and T 2-weighted imaging at 8 Tesla. J Comput Assist Tomogr 23(6):875–878.PubMedCrossRefGoogle Scholar
  46. 46.
    Bourekas EC, Christoforidis GA, Abduljalil AM, Kangarlu A, Chakeres DW, Spigos DG, Robitaille PML. 1999. High resolution MRI of the deep gray nuclei at 8 Tesla. J Comput Assist Tomogr 23(6):867–874.PubMedCrossRefGoogle Scholar
  47. 47.
    Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PML. 1999. High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 23(6):857–866.PubMedCrossRefGoogle Scholar
  48. 48.
    Vaughan JT, DelaBarre L, Snyder C, Adriany G, Collins CM, Van de Moortele P-F, Moeller S, Ritter J, Strupp J, Andersen P, Tian J, Smith MB, Ugurbil K. 2005. RF Image Optimization at 7T and 9.4T. Proc Int Soc Magn Reson Med 13:953.Google Scholar
  49. 49.
    Darwin RH, Drayer BP, Riederer SJ, Wang HZ, MacFall JR. 1986. T 2 estimates in healthy and diseased brain tissue: a comparison using various MR pulse sequences. Radiology 160(2):375–381.PubMedGoogle Scholar
  50. 50.
    Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. 1986. MRI of brain iron. Am J Roentgenol 147(1):103–110.Google Scholar
  51. 51.
    Englund E, Brun A, Larsson EM, Gyorffy-Wagner Z, Persson B. 1986. Tumours of the central nervous system. Proton magnetic resonance relaxation times T 1 and T 2 and histopathologic correlates. Acta Radiol Diagn (Stockh) 27(6):653–659.Google Scholar
  52. 52.
    Larsson EM, Englund E, Gyorffy-Wagner Z, Brun A, Cronqvist S, Persson B. 1986. Regional differences in the proton magnetic resonance relaxation times T 1 and T 2 within the normal human brain. Acta Radiol Diagn (Stockh) 27(2):231–234.Google Scholar
  53. 53.
    MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. 1994. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31(6):673–677.PubMedCrossRefGoogle Scholar
  54. 54.
    Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G. 1999. T 1 and T 2 in the brain of healthy subjects, patients with Parkinson’s disease, and patients with multiple system atrophy: relation to iron content. Radiology 211(2):489–495.PubMedGoogle Scholar
  55. 55.
    Wehrli FW, MacFall JR, Schutts D, Breger R, Herfkens RJ. 1984. Mechanism ofcontrast in NMR. J Comput Assist Tomogr 8(3):369–380.PubMedCrossRefGoogle Scholar
  56. 56.
    Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW. 1997. In vivo measurement of T 2 distributions and water contents in normal human brain. Magn Reson Med 37(1):34–43.PubMedCrossRefGoogle Scholar
  57. 57.
    Antonini A, Leenders KL, Meier D, Oertel WH, Boesiger P, Anliker M. 1993. T 2 relaxation time in patients with Parkinson’s disease. Neurology 43(4):697–700.PubMedGoogle Scholar
  58. 58.
    Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A. 1993. Age distribution and iron dependency of the T 2 relaxation time in the globus pallidus and putamen. Neuroradiology 35(2):119–124.PubMedCrossRefGoogle Scholar
  59. 59.
    Vymazal J, Brooks RA, Baumgarner C, Tran V, Katz D, Bulte JW, Bauminger R, Di Chiro G. 1996. The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 35(1):56–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Vymazal J, Hajek M, Patronas N, Giedd JN, Bulte JW, Baumgarner C, Tran V, Brooks RA. 1995. The quantitative relation between T 1-weighted and T 2-weighted MRI of normal gray matter and iron concentration. J Magn Reson Imag 5(5):554–560.CrossRefGoogle Scholar
  61. 61.
    Zhou J, Golay X, van Zijl PC, Silvennoinen MJ, Kauppinen R, Pekar J, Kraut M. 2001. Inverse T 2 contrast at 1.5 Tesla between gray matter and white matter in the occipital lobe of normal adult human brain. Magn Reson Med 46(2):401–406.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim SG, Hu X, Ugurbil K. 1994. Accurate T 1 determination from inversion recovery images: application to human brain at 4 Tesla. Magn Reson Med 31(4):445–449.PubMedCrossRefGoogle Scholar
  63. 63.
    Jezzard P, Duewell S, Balaban RS. 1996. MR relaxation times in human brain: measurement at 4 T. Radiology 199(3):773–779.PubMedGoogle Scholar
  64. 64.
    Bartha R, Michaeli S, Merkle H, Adriany G, Andersen P, Chen W, Ugurbil K, Garwood M. 2002. In vivo 1H2O T 2* measurement in the human occipital lobe at 4T and 7T by Carr-Purcell MRI: detection of microscopic susceptibility contrast. Magn Reson Med 47(4):742–750.PubMedCrossRefGoogle Scholar
  65. 65.
    Michaeli S, Garwood M, Zhu XH, DelaBarre L, Andersen P, Adriany G, Merkle H, Ugurbil K, Chen W. 2002. Proton T 2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. Magn Reson Med 47(4):629–633.PubMedCrossRefGoogle Scholar
  66. 66.
    Norris DG. 2003. High field human imaging. J Magn Reson Imag 18(5):519–529.CrossRefGoogle Scholar
  67. 67.
    Rooney WD, Johnson G, Li X, Cohen R, Kim S-G, Ugurbil K, Springer CS. 2006. The magnetic field and tissue dependences of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med. In press.Google Scholar
  68. 68.
    Lee JH, Garwood M, Menon R, Adriany G, Andersen P, Truwit CL, Ugurbil K. 1995. High contrast and fast three-dimensional magnetic resonance imaging at high fields. Magn Reson Med 34(3):308–312.PubMedCrossRefGoogle Scholar
  69. 69.
    Dobre MC, Marjanska M, Ugurbil K. 2005. Blood T 1 measurement at high magnetic field strength. Proc Int Soc Magn Reson Med 13:1162.Google Scholar
  70. 70.
    Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Kim SG. 2003. Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49(6):1019–1027.PubMedCrossRefGoogle Scholar
  71. 71.
    Haacke EM, Xu Y, Cheng YC, Reichenbach JR. 2004. Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612–618.PubMedCrossRefGoogle Scholar
  72. 72.
    Reichenbach JR, Essig M, Haacke EM, Lee BC, Przetak C, Kaiser WA, Schad LR. 1998. High-resolution venography of the brain using magnetic resonance imaging. MAGMA 6(1):62–69.PubMedCrossRefGoogle Scholar
  73. 73.
    Jack Jr CR, Garwood M, Wengenack TM, Borowski B, Curran GL, Lin J, Adriany G, Grohn OH, Grimm R, Poduslo JF. 2004. In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 52(6):1263–1271.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang J, Yarowsky P, Gordon MN, Di Carlo G, Munireddy S, van Zijl PC, Mori S. 2004. Detection of amyloid plaques in mouse models of Alzheimer’s disease by magnetic resonance imaging. Magn Reson Med 51(3):452–457.PubMedCrossRefGoogle Scholar
  75. 75.
    Helpern JA, Lee SP, Falangola MF, Dyakin VV, Bogart A, Ardekani B, Duff K, Branch C, Wisniewski T, de Leon MJ, Wolf O, O’Shea J, Nixon RA. 2004. MRI assessment of neuropathology in a transgenic mouse model of Alzheimer’s disease. Magn Reson Med 51(4):794–798.PubMedCrossRefGoogle Scholar
  76. 76.
    Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, Borowski BJ, Jack Jr CR. 2002. Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 11(2):315–329.PubMedCrossRefGoogle Scholar
  77. 77.
    Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA. 1999. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96(24):14079–14084.PubMedCrossRefGoogle Scholar
  78. 78.
    Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. 1992. Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397.PubMedCrossRefGoogle Scholar
  79. 79.
    Detre JA, Wang J. 2002. Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 113(5):621–634.PubMedCrossRefGoogle Scholar
  80. 80.
    Kim SG. 1995. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301.PubMedCrossRefGoogle Scholar
  81. 81.
    Duong TQ, Kim DS, Ugurbil K, Kim SG. 2001. Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 98(19):10904–10909.PubMedCrossRefGoogle Scholar
  82. 82.
    Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. 1999. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 96(16):9403–9408.PubMedCrossRefGoogle Scholar
  83. 83.
    Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K. 2002. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6):1195–1210.PubMedCrossRefGoogle Scholar
  84. 84.
    Song AW, Li T. 2003. Improved spatial localization based on flow-moment-nulled and intra-voxel incoherent motion-weighted fMRI. NMR Biomed 16(3):137–143.PubMedCrossRefGoogle Scholar
  85. 85.
    Song AW, Harshbarger T, Li T, Kim KH, Ugurbil K, Mori S, Kim DS. 2003. Functional activation using apparent diffusion coefficient-dependent contrast allows better spatial localization to the neuronal activity: evidence using diffusion tensor imaging and fiber tracking. Neuroimage 20(2):955–961.PubMedCrossRefGoogle Scholar
  86. 86.
    Mandeville J, Marota J, Keltner J, Kosovsky B, Burke J. 1996. CBV functional imaging in rat brain using iron oxide agent at steady state concentration. Proc Int Soc Magn Reson Med 292.Google Scholar
  87. 87.
    Kim SG, Ugurbil K. 2003. High-resolution functional magnetic resonance imaging of the animal brain. Methods 30(1):28–41.PubMedCrossRefGoogle Scholar
  88. 88.
    Lu H, Golay X, Pekar JJ, Van Zijl PC. 2003. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50(2):263–274.PubMedCrossRefGoogle Scholar
  89. 89.
    Ogawa S, Lee T-M, Nayak AS, Glynn P. 1990. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78.PubMedCrossRefGoogle Scholar
  90. 90.
    Ogawa S, Lee T-M, Kay AR, Tank DW. 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872.PubMedCrossRefGoogle Scholar
  91. 91.
    Ogawa S, Lee TM. 1990. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurments and image simulation. Magn Reson Med 16:9–18.PubMedCrossRefGoogle Scholar
  92. 92.
    Ogawa S, Lee TM, Barrere B. 1993. Sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 29:205–210.PubMedCrossRefGoogle Scholar
  93. 93.
    Fox PT, Raichle ME, Mintun MA, Dence C. 1988. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464.PubMedCrossRefGoogle Scholar
  94. 94.
    Raichle ME. 1987. Circulatory and metabolic correlates of braln function in normal humans. In Handbook of physiology — the nervous system, Vol. 5, pp. 643–674. Ed F Plum. Bethesda: American Physics Society.Google Scholar
  95. 95.
    Pfeuffer J, McCullough JC, Van de Moortele PF, Ugurbil K, Hu X. 2003. Spatial dependence of the nonlinear BOLD response at short stimulus duration. Neuroimage 18(4):990–1000.PubMedCrossRefGoogle Scholar
  96. 96.
    Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X. 2001. Imaging brain function in humans at 7 Tesla. Magn Reson Med 45(4):588–594.PubMedCrossRefGoogle Scholar
  97. 97.
    Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, Hu X. 2001. Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14(7–8):408–412.PubMedCrossRefGoogle Scholar
  98. 98.
    Yacoub E, Van De Moortele PF, Shmuel A, Ugurbil K. 2005. Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage 24(3):738–750.PubMedCrossRefGoogle Scholar
  99. 99.
    Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Vaughan JT, Merkle H, Kim SG. 2002. High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48(4):589–593.PubMedCrossRefGoogle Scholar
  100. 100.
    Silva AC, Koretsky AP. 2002. Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci USA 99(23):15182–15187.PubMedCrossRefGoogle Scholar
  101. 101.
    Menon RS, Ogawa S, Tank DW, Ugurbil K. 1993. 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 30(3):380–386.PubMedCrossRefGoogle Scholar
  102. 102.
    Segebarth C, Belle V, Delon C, Massarelli R, Decety J, Le Bas J-F, Decorpts M, Benabid AL. 1994. Functional MRI of the human brain: predominance of signals from extracerebral veins. Neuro Report 5:813–816.Google Scholar
  103. 103.
    Fujita I, Tanaka K, Ito M, Cheng K. 1992. Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang G, Tanaka K, Tanifuji M. 1996. Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272:1665–1668.PubMedCrossRefGoogle Scholar
  105. 105.
    Iadecola C, Yang G, Ebner TJ, Chen G. 1997. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J Neurophysiol 78(2):651–659.PubMedGoogle Scholar
  106. 106.
    Tsekos NV, Zhang F, Merkle H, Nagayama M, Iadecola C, Kim SG. 1998. Quantitative measurements of cerebral blood flow in rats using the FAIR technique: correlation with previous iodoantipyrine autoradiographic studies. Magn Reson Med 39(4):564–573.PubMedCrossRefGoogle Scholar
  107. 107.
    Thulborn KR, Waterton JC, Matthews PM, Radda GK. 1982. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714(2):265–270.PubMedGoogle Scholar
  108. 108.
    Lee S-P, Silva AC, Ugurbil K, Kim S-G. 1999. Diffusion weighted spin echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 42(5):919–928.PubMedCrossRefGoogle Scholar
  109. 109.
    Duong TQ, Yacoub E, Adriany G, Hu X, Andersen P, Vaughan JT, Ugurbil K, Kim SG. 2004. Spatial specificity of high-resolution, spin-echo BOLD, and CBF fMRI at 7 T. Magn Reson Med 51(3):646–647.CrossRefGoogle Scholar
  110. 110.
    Park JC, Ronen I, Kim D-S, Ugurbil K. 2004. Spatial specificity of high resolution GE BOLD and CBF fMRI in the cat visual cortex. Proc Int Soc Magn Reson Med 1014.Google Scholar
  111. 111.
    Grinvald A, Vanzetta I. 2003. Personal communications.Google Scholar
  112. 112.
    Sheth S, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW. 2003. Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex. Neuroimage 19(3):884–894.PubMedCrossRefGoogle Scholar
  113. 113.
    Harrison RV, Harel N, Panesar J, Mount RJ. 2002. Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb Cortex 12(3):225–233.PubMedCrossRefGoogle Scholar
  114. 114.
    Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH. 1995. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893.PubMedCrossRefGoogle Scholar
  115. 115.
    DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J. 1996. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 93(6):2382–2386.PubMedCrossRefGoogle Scholar
  116. 116.
    Engel SA, Glover GH, Wandell BA. 1997. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7(2):181–192.PubMedCrossRefGoogle Scholar
  117. 117.
    Pawlik G, Rackl A, Bing RJ. 1981. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res 208(1):35–58.PubMedCrossRefGoogle Scholar
  118. 118.
    Eichling JO, Raichle ME, Grubb RL, Ter-Pogossian MM. 1974. Evidence of the limitations of water as a freely diffusable tracer in brain of the Rheusus monkey. Circ Res 35(3):358–364.PubMedGoogle Scholar
  119. 119.
    Paulson OB, Hertz MM, Bolwig TG, Lassen NA. 1977. Filtration and diffusion of water across the blood-brain barrier in man. Microvasc Res 13(1):113–124.PubMedCrossRefGoogle Scholar
  120. 120.
    Paulson OB, Hertz MM, Bolwig TG, Lassen NA. 1977. Water filtration and diffusion across the blood brain barrier in man. Acta Neurol Scand Suppl 64:492–493.PubMedGoogle Scholar
  121. 121.
    Boxerman JL, Weisskoff RM, Hoppel BE, Rosen BR. 1993. MR contrast due to microscopically heterogeneous magnetic susceptibilty: cylindrical geometry. Proc Int Soc Magn Reson Med 389.Google Scholar
  122. 122.
    Ugurbil K, Hu X, Chen W, Zhu X-H, Kim S-G, Georgopoulos A. 1999. Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354(1387):1195–1213.PubMedCrossRefGoogle Scholar
  123. 123.
    van Zijl PC, Eleff SM, Ulatowski JA, Oja JM, Ulug AM, Traystman RJ, Kauppinen RA. 1998. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging [see comments]. Nat Med 4(2):159–167.PubMedCrossRefGoogle Scholar
  124. 124.
    Ugurbil K, Adriany G, Andersen P, Chen W, Gruetter R, Hu X, Merkle H, Kim DS, Kim SG, Strupp J, Zhu XH, Ogawa S. 2000. Magnetic resonance studies of brain function and neurochemistry. Ann Rev Biomed Eng 2:633–660.CrossRefGoogle Scholar
  125. 125.
    Barth M, Moser E. 1997. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol (Noisy-le-grand) 43(5):783–791.Google Scholar
  126. 126.
    Zhu XH, Chen W. 2001. Observed BOLD effects on cerebral metabolite resonances in human visual cortex during visual stimulation: a functional 1H MRS study at 4 T. Magn Reson Med 46(5):841–847.PubMedCrossRefGoogle Scholar
  127. 127.
    Stejskal EO, Tanner JE. 1965. Spin diffusion measuremnts: spin-echoes in the presence of a time dependent field gradient. J Chem Phys 42:288–292.CrossRefGoogle Scholar
  128. 128.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. 1986. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407.PubMedGoogle Scholar
  129. 129.
    Song AW, Wong EC, Tan SG, Hyde JS. 1996. Diffusion weighted fMRI at 1.5 T. Magn Reson Med 35(2):155–158.PubMedCrossRefGoogle Scholar
  130. 130.
    Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM. 1995. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34(1):4–10.PubMedCrossRefGoogle Scholar
  131. 131.
    Mildner T, Norris DG, Schwarzbauer C, Wiggins CJ. 2001. A qualitative test of the balloon model for BOLD-based MR signal changes at 3T. Magn Reson Med 46(5):891–899.PubMedCrossRefGoogle Scholar
  132. 132.
    Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R. 1993. Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med 30(3):387–392.PubMedCrossRefGoogle Scholar
  133. 133.
    Haacke EM, Hopkins A, Lai S, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R, Klein S, Thompson L, et al. 1994. 2D and 3D high resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies [published erratum appears in NMR Biomed Dec 1994, 7(8):374]. NMR Biomed 7(1–2):54–62.PubMedCrossRefGoogle Scholar
  134. 134.
    Duong QD, Kim D-S, Ugurbil K, Kim S-G. 2000. Spatio-temporal dynamics of BOLD fMRI signals: towards mapping submillimeter cortical columns using the early negative response. Magn Reson Med 44(2):231–242.PubMedCrossRefGoogle Scholar
  135. 135.
    Kim DS, Duong TQ, Kim SG. 2000. High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3(2):164–169.PubMedCrossRefGoogle Scholar
  136. 136.
    Toth LJ, Ronen I, Olman C, Ugurbil K, Kim D-S. 2001. Spatial correlation of BOLD activity with neuronal responses. Proc Int Soc Magn Reson Med 6.Google Scholar
  137. 137.
    Ugurbil K, Toth L, Kim DS. 2003. How accurate is magnetic resonance imaging of brain function? Trends Neurosci 26(2):108–114.PubMedCrossRefGoogle Scholar
  138. 138.
    Wong-Riley M, Anderson B, Liebl W, Huang Z. 1998. Neurochemical organization of the macaque striate cortex: correlation of cytochrome oxidase with Na+K+ATPase, NADPH-diaphorase, nitric oxide synthase, and N-methyl-D-aspartate receptor subunit 1. Neuroscience 83(4):1025–1045.PubMedCrossRefGoogle Scholar
  139. 139.
    Ronen I, Lee JH, Merkle H, Ugurbil K, Navon G. 1997. Imaging H2 17O distribution in a phantom and measurement of metabolically produced H2 17O in live mice by proton NMR. NMR Biomed 10(7):333–340.PubMedCrossRefGoogle Scholar
  140. 140.
    Grinvald A, Frostig RD, Siegel RM, Bartfeld E. 1991. High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci USA 88(24):11559–11563.PubMedCrossRefGoogle Scholar
  141. 141.
    Venzetta I, Grinvald A. 1998. Phosphorescence decay measurements in cat visual cortex show early blood oxygenation level decrease in response to visual stimulation. Neurosci Lett Supp 51:S42.Google Scholar
  142. 142.
    Vanzetta I, Grinvald A. 1999. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286(5444):1555–1558.PubMedCrossRefGoogle Scholar
  143. 143.
    Malonek D, Dirnagl U, Lindauer U, Yamada K, Kanno I, Grinvald A. 1997. Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci USA 94(26):14826–14831.PubMedCrossRefGoogle Scholar
  144. 144.
    Grinvald A, Slovin H, Vanzetta I. 2000. Non-invasive visualization of cortical columns by fMRI. Nat Neurosci 3(2):105–107.PubMedCrossRefGoogle Scholar
  145. 145.
    Hu X, Le TH, Ugurbil K. 1997. Evaluation of the early response in fMRI using short stimulus duration. Magn Reson Med 37:877–884.PubMedCrossRefGoogle Scholar
  146. 146.
    Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Ugurbil K. 1995. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33(3):453–459.PubMedCrossRefGoogle Scholar
  147. 147.
    Twieg DB, Moore GG, Zhang YT. 1997. Estimating fast response onset time. Proc Int Soc Magn Reson Med 1645.Google Scholar
  148. 148.
    Yacoub E, Le TH, Ugurbil K, Hu X. 1999. Further evaluation of the initial negative response in functional magnetic resonance imaging. Magn Reson Med 41(3):436–441.PubMedCrossRefGoogle Scholar
  149. 149.
    Yacoub E, Vaughn T, Adriany G, Andersen P, Merkle H, Ugurbil K, Hu X. 2000. Observation of the initial “dip” in fMR1 signal in human visual cortex at 7 Tesla. Proc Int Soc Magn Reson Med 8:991.Google Scholar
  150. 150.
    Cannestra AF, Pouratian N, Bookheimer SY, Martin NA, Beckerand DP, Toga AW. 2001. Temporal spatial differences observed by functional MRI and human intraoperative optical imaging. Cereb Cortex 11(8):773–782.PubMedCrossRefGoogle Scholar
  151. 151.
    Logothetis NK, Gugenberger H, Peled S, Pauls J. 1999. Functional imaging of the monkey brain. Nat Neurosci 2(6):555–560.PubMedCrossRefGoogle Scholar
  152. 152.
    Kim S-G, Hendrich K, Hu X, Merkle H, Ugurbil K. 1994. Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR Biomed 7(1/2):69–74.PubMedCrossRefGoogle Scholar
  153. 153.
    Hu X, Kim S-G. 1994. Reduction of physiological noise in functional MRI using navigator echo. Magn Reson Med 31:495–503.PubMedCrossRefGoogle Scholar
  154. 154.
    Hyde JS, Biswal B, Song AW, Tan SG. 1994. Physiological and instrumental fluctuations in fMRI data. Paper presented at Annual Midwest Functional MRI Workshop, pp. 73–76, Madison, WI.Google Scholar
  155. 155.
    Kruger G, Glover GH. 2001. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46(4):631–637.PubMedCrossRefGoogle Scholar
  156. 156.
    Kruger G, Kastrup A, Glover GH. 2001. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45(4):595–604.PubMedCrossRefGoogle Scholar
  157. 157.
    Hyde JS, Biswal BB, Jesmanowicz A. 2001. High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46(1):114–125.PubMedCrossRefGoogle Scholar
  158. 158.
    Pfeuffer J, Van De Moortele PF, Ugurbil K, Hu X, Glover GH. 2002. Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magn Reson Med 47(2):344–353.PubMedCrossRefGoogle Scholar
  159. 159.
    Van De Moortele PF, Pfeuffer J, Glover GH, Ugurbil K, Hu X. 2002. Respirationinduced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla. Magn Reson Med 47(5):888–895.PubMedCrossRefGoogle Scholar
  160. 160.
    Detre JA, Leigh JS, Williams DS, Koretsky AP. 1992. Perfusion imaging. Magn Reson Med 23(1):37–45.PubMedCrossRefGoogle Scholar
  161. 161.
    Zhang W, Williams DS, Koretsky AP. 1993. Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn Reson Med 29(3):416–421.PubMedCrossRefGoogle Scholar
  162. 162.
    Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS. 1994. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 7(1–2):75–82.PubMedCrossRefGoogle Scholar
  163. 163.
    Barbier EL, Silva AC, Kim HJ, Williams DS, Koretsky AP. 1999. Perfusion analysis using dynamic arterial spin labeling (DASL). Magn Reson Med 41(2):299–308.PubMedCrossRefGoogle Scholar
  164. 164.
    Barbier EL, Silva AC, Kim SG, Koretsky AP. 2001. Perfusion imaging using dynamic arterial spin labeling (DASL). Magn Reson Med 45(6):1021–1029.PubMedCrossRefGoogle Scholar
  165. 165.
    Edelman RE, Siewer B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S. 1994. Quantitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192:513–520.PubMedGoogle Scholar
  166. 166.
    Wong EC, Buxton RB, Frank LR. 1998. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39(5):702–708.PubMedCrossRefGoogle Scholar
  167. 167.
    Talagala SL, Ye FQ, Ledden PJ, Chesnick S. 2004. Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52(1):131–140.PubMedCrossRefGoogle Scholar
  168. 168.
    Mildner T, Trampel R, Moller HE, Schafer A, Wiggins CJ, Norris DG. 2003. Functional perfusion imaging using continuous arterial spin labeling with separate labeling and imaging coils at 3 T. Magn Reson Med 49(5):791–795.PubMedCrossRefGoogle Scholar
  169. 169.
    Sodickson DsK, Manning WJ. 1997. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38(4):591–603.PubMedCrossRefGoogle Scholar
  170. 170.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962.PubMedCrossRefGoogle Scholar
  171. 171.
    Abragam A. 1961. The principles of nuclear magnetism. Ed NF Mott, EC Bullard, DH Wilkinson. London: Oxford UP.Google Scholar
  172. 172.
    Steinhoff HJ, Kramm B, Hess G, Owerdieck C, Redhardt A. 1993. Rotational and translational water diffusion in the hemoglobin hydration shell: dielectric and proton nuclear relaxation measurements. Biophys J 65(4):1486–1495.PubMedGoogle Scholar
  173. 173.
    Meiboom S. 1961. NMR study of proton transfer in water. J Chem Phys 34:375–388.CrossRefGoogle Scholar
  174. 174.
    Nakao Y, Itoh Y, Kuang TY, Cook M, Jehle J, Sokoloff L. 2001. Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc Natl Acad Sci USA 98(13):7593–7598.PubMedCrossRefGoogle Scholar
  175. 175.
    Siesjo B. 1978. Brain energy metabolism. New York: Wiley.Google Scholar
  176. 176.
    Zhang NY, Zhu XH, Lei H, Ugurbil K, Chen W. 2002. Calculation of cerebral metabolic rate of oxygen based on 17O MRS imaging with 2 minutes 17O2 Inhalation: a simplified approach. Proc Int Soc Magn Reson Med 344.Google Scholar
  177. 177.
    Hetherington HP, Mason GF, Pan JW, Ponder SL, Vaughan JT, Twieg DB, Pohost GM. 1994. Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T. Magn Reson Med 32:565–571.PubMedCrossRefGoogle Scholar
  178. 178.
    Gruetter R, Garwood M, Ugurbil K, Seaquist ER. 1996. Observation of resolved glucose signals in 1H NMR spectra of the human brain at 4 Tesla. Magn Reson Med 36(1):1–6.PubMedCrossRefGoogle Scholar
  179. 179.
    Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. 2001. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46(3):451–456.PubMedCrossRefGoogle Scholar
  180. 180.
    Chen W, Novotny E, Zhu X-H, Rothman D, Shulman RG. 1993. Localized 1H NMR measurement of glucose consumption in human brain during visual stimulation. Proc Natl Acad Sci USA 90:9896–9900.PubMedCrossRefGoogle Scholar
  181. 181.
    Frahm J, Kruger KD, Merboldt KD, Kleinschmidt A. 1996. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35:143–148.PubMedCrossRefGoogle Scholar
  182. 182.
    Merboldt KD, Bruhn H, Hanicke W, Michaelis T, Frahm J. 1992. Decrease of glucose in the human visual cortex during photic stimulation. Magn Reson Med 25:187–194.PubMedCrossRefGoogle Scholar
  183. 183.
    Lei H, Ugurbil K, Chen W. 2003. Measurement of unidirectional Pi to ATP flux in human visual cortex at 7 T by using in vivo 31P magnetic resonance spectroscopy. Proc Natl Acad Sci USA 100(24):14409–14414.PubMedCrossRefGoogle Scholar
  184. 184.
    Chen W, Zhu XH, Gruetter R, Seaquist ER, Adriany G, Ugurbil K. 2001. Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using 1H-[13C] MRS and fMRI. Magn Reson Med 45(3):349–355.PubMedCrossRefGoogle Scholar
  185. 185.
    Hyder F, Chase JR, Behar KL, Mason GF, Siddeek M, Rothman DL, Shulman RG. 1996. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]-NMR. Proc Natl Acad Sci USA 93(15):7612–7617.PubMedCrossRefGoogle Scholar
  186. 186.
    Hyder F, Rothman DL, Mason GF, Rangarajan A, Behar KL, Shulman RG. 1997. Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H[13C] nuclear magnetic resonance study. J Cereb Blood Flow Metab 17(10):1040–1047.PubMedCrossRefGoogle Scholar
  187. 187.
    Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Prichard JW, Shulman RG. 1994. Localized 13C NMR spectroscopy of amino acid labeling from [1-13C] D-glucose in the human brain. J Neurochem 63:1377–1385.PubMedCrossRefGoogle Scholar
  188. 188.
    Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG. 1997. In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci USA 94(6):2699–2704.PubMedCrossRefGoogle Scholar
  189. 189.
    Gruetter R, Seaquest ER, Kim SW, Ugurbil K. 1998. Localized in vivo 13C NMR of glutamate metabolism in the human brain: initial results at 4 Tesla. Dev Neurosci 20(4–5):380–388.PubMedCrossRefGoogle Scholar
  190. 190.
    Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL. 1999. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96(14):8235–8240.PubMedCrossRefGoogle Scholar
  191. 191.
    Gruetter R, Seaquist B, Ugurbil K. 2001. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281(1):E100–E112.PubMedGoogle Scholar
  192. 192.
    Ugurbil K, Brown TR, den Hollander JA, Glynn P, Shulman RG. 1978. Highresolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc Natl Acad Sci USA 75(8):3742–3746.PubMedCrossRefGoogle Scholar
  193. 193.
    Bergles DE, Dzubay JA, Jahr CE. 1997. Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci USA 94(26):14821–14825.PubMedCrossRefGoogle Scholar
  194. 194.
    Bergles DE, Diamond JS, Jahr CE. 1999. Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9(3):293–298.PubMedCrossRefGoogle Scholar
  195. 195.
    Martinez-Hernandez A, Bell KP, Norenberg MD. 1976. Glutamine synthetase: glial localization in brain. Science 195:1356–1358.CrossRefGoogle Scholar
  196. 196.
    Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. 1998. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95(1):316–321.PubMedCrossRefGoogle Scholar
  197. 197.
    Fox PT, Raichle ME. 1986. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83(4):1140–1144.PubMedCrossRefGoogle Scholar
  198. 198.
    Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R. 1990. In vivo magnetic resonance imaging and spectroscopy of humans with a 4 T whole-body magnet. NMR Biomed 3(1):31–45.PubMedCrossRefGoogle Scholar
  199. 199.
    Henry PG, Tkac I, Gruetter R. 2003. 1H-localized broadband 13C NMR spectroscopy of the rat brain in vivo at 9.4 T. Magn Reson Med 50(4):684–692.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Kâmil Uğurbil
    • 1
  • Gregor Adriany
    • 1
  • Can Akgün
    • 1
  • Peter Andersen
    • 1
  • Wei Chen
    • 1
  • Michael Garwood
    • 1
  • Rolf Gruetter
    • 2
  • Pierre-Gilles Henry
    • 1
  • Malgorzata Marjanska
    • 1
  • Steen Moeller
    • 1
  • Pierre-François Van de Moortele
    • 1
  • Klaas Prüssmann
    • 3
  • Ivan Tkac
    • 1
  • J. Thomas Vaughan
    • 1
  • Florian Wiesinger
    • 1
  • Essa Yacoub
    • 1
  • Xiao-Hong Zhu
    • 1
  1. 1.Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUSA
  2. 2.EPFL SB IPMC LIFMETLausanneSwitzerland
  3. 3.Institute for Biomedical EngineeringZurichSwitzerland

Personalised recommendations