Skip to main content

Ultra High Field Magnetic Resonance Imaging: A Historical Perspective

  • Chapter
Ultra High Field Magnetic Resonance Imaging

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 26))

Abstract

As one recalls the 1970s and some of the first steps in magnetic resonance imaging [1]–[4], it is easy to discern the great strides that have been made in this discipline over the past 30 years [5]–[7]. Early coarse and grainy results [4] have given way to exquisite anatomical and functional images [5]–[7]. The availability of MRI is now synonymous with quality of medical care, even within the rural hospital setting, and the 1.5 Tesla scanner has become a workhorse of the modern radiological exam. With the exception of CT, and this primarily in the abdomen, no other radiological modality can compete with MRI, not only in terms of the breadth of exams currently possible, but also in the future promise of the technique. Indeed, it seems that every year new clinical applications join the arsenal of MRI exams. Soon, it is anticipated that MRI will be able to fully scan the entire body [8] in great detail, including the most difficult thoracic [9]–[17] and abdominal locations [18]–[22]. Technical advancements forged and tested in the research laboratories of the world [23]–[40] continue to add to the versatility and power of MRI scanners. Nonetheless, what is perhaps most fascinating relative to the evolution of MRI is the seemingly untapped potential that remains. The spawning of new techniques may well open up tremendous venues for MRI in the coming decades. Thus, the clinical horizon is imperceptible. One is left only with the realization that future progress may well surpass all contributions to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  1. Lauterbur PC. 1973. Image formation by induced local interactions: example employing nuclear magnetic resonance. Nature 242:190–191.

    CAS  Google Scholar 

  2. Mansfield P, Maudsley AA. 1977. Medical imaging by NMR. Br J Radiol 50:188.

    PubMed  CAS  Google Scholar 

  3. Mansfield P. 1977. Multi-plane image formation using NMR spin echoes. J Phys C 10:L55.

    CAS  Google Scholar 

  4. Mansfield P, Morris PG. 1982. NMR imaging in biomedicine. New York: Academic Press.

    Google Scholar 

  5. Stark D, Bradley WG. 1999. Magnetic resonance imaging. St. Louis: Mosby.

    Google Scholar 

  6. Runge VM, Nitz WR, Schmeets SH, Faulkner WH, Desai NK. 2005. The physics of clinical MR taught through images. New York: Thieme Medical Publishers.

    Google Scholar 

  7. Buxton, Richard B. 2002. Introduction to functional magnetic resonance imaging: principles and techniques. Cambridge: Cambridge UP.

    Google Scholar 

  8. Lauenstein TC, Gochde SC, Herborn CU, Goyen M, Oberhoff C, Debatin JF, Ruehm SG, Barkhausen J. 2004. Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148.

    PubMed  Google Scholar 

  9. Leiner T, Katsimaglis G, Yeh EN, Kissinger KV, van Yperen G, Eggers H, Manning WJ, Botnar RM. 2005. Correction for heart rate variability improves coronary magnetic resonance angiography. J Magn Reson Imaging 22:577–582.

    PubMed  Google Scholar 

  10. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ. 2001. Coronary magnetic resonance angiography for the detection of coronary stenosis. N Engl J Med 345:1863–1869.

    PubMed  CAS  Google Scholar 

  11. Weber OM, Martin AJ, Higgins CB. 2003. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228.

    PubMed  Google Scholar 

  12. Katoh M, Stuber M, Buecker A, Gunther RW, Spuentrup E. 2005. Spin-labeling coronary MR angiography with steady state free precession and radial k-space sampling: initial results in healthy volunteers. Radiology 236:1047–1052.

    PubMed  Google Scholar 

  13. Sakuma H, Ichikawa Y, Suzawa N, Hirano T, Makino K, Koyama N, van Cauteren M, Takeda K. 2005. Assessment of coronary arteries with total study time of less than 30 minutes by whole heart coronary MR angiography. Radiology 237:316–321.

    PubMed  Google Scholar 

  14. Deitrich O, Losert C, Attendberger U, Fasol U, Peller M, Nikolaou K, Reiser MF, Schoenberg SO. 2005. Fast oxygen-enhanced multislice imaging of the lung using parallel acquisition techniques. Magn Reson Med 53:1317–1325.

    Google Scholar 

  15. Wild JM, Fichele S, Woodhouse N, Paley MNJ, Kasuboski L, van Beek EJR. 2005. 3D volume-localized pO2 measurement in the human lung with 3He MRI. Magn Reson Med 53:1055–1064.

    PubMed  Google Scholar 

  16. Moeller HE, Chen XJ, Saan B, Hagspiel KD, Johnson GA, Altes TA, de Lange EE, Kauczor HU. 2002. MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 47:1029–1051.

    Google Scholar 

  17. Finck C, Puderback M, Bock M, Lodemann KP, Zuna I, Schmahl A, Delorme S, Kauczor HU. 2004. Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231(1):175–184.

    Google Scholar 

  18. Ryeom HK, Che BH, Kim JY, Kwon S, Ko CW, Kim HM, Lee SB, Kang DS. 2005. Biliary afresia: feasibility of mangafodipir trisodium-enhanced MR cholangiography for evaluation. Radiology 235:250–258.

    PubMed  Google Scholar 

  19. Ward J, Sheridan MB, Guthrie JA, Davies MH, Millson CE, Lodge JPA, Pollard SG, Prasad KR, Toogood GJ, Robinson PJ. 2004. Bile duct structures after hepatobiliary surgery: assessment with MR cholangiography. Radiology 231:101–108.

    PubMed  Google Scholar 

  20. Zuo CS, Seoane PR, Hu J, Harnish PP, Rofsky NM. 2004. MR imaging of the stomach: Potential use for mangafodipir trisodium: a study in swine. Radiology 232:160–163.

    PubMed  Google Scholar 

  21. Bielen DJLE, Bosmans HTC, DeWever LLI, Maes F, Tejpar S, Vanbeckevoort D, Marchal GJF. 2005. Clinical validation of high resolution fast spin-echo MR colonography after colon distention with air. J Magn Reson Imaging 22:400–405.

    PubMed  Google Scholar 

  22. Ajaj W, Debatin JF, Lauenstein T. 2003. Dark lumen magnetic resonance colonography: comparison with conventional colonoscopy for the detection of colorectal pathology. Gut 52:1738–1743.

    PubMed  CAS  Google Scholar 

  23. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Meuller OM. 1990. The NMR phased array. Magn Reson Med 16:192–225.

    PubMed  CAS  Google Scholar 

  24. Kelton JR, Magin RL, Wright SM. 1989. An algorithm for rapid image acquisition using multiple receiver coils. Proc Soc Magn Reson Med 1172.

    Google Scholar 

  25. Ra JB, Rim CY. 1993. Fast imaging using subencoding data sets from multiple detectors. Magn Reson Med 30:142–145.

    PubMed  CAS  Google Scholar 

  26. Carlson JW, Minemura T. 1993. Image time reduction through multiple receiver coil data acquisition and image reconstruction. Magn Reson Med 29:681–687.

    PubMed  CAS  Google Scholar 

  27. McDougall MP, Wright SM. 2005. 64-channel array coil for single echo acquisition magnetic resonance imaging. Magn Reson Med 54:386–392.

    PubMed  Google Scholar 

  28. Hayes CE, Edlestein WA, Schenck JR, Mueller OM, Eash M. 1985. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson 63:6222–628.

    Google Scholar 

  29. Roemer PB, Edelstein WA. 1986. Shelf-shielder gradient coils. Proc Soc Magn Reson Med 1067.

    Google Scholar 

  30. Mansfield P, Chapman B. 1986. Active magnetic screening of coils for static and time dependent magnetic field generation in NMR imaging. J Phys E: Sci Instrum 19:541–546.

    Google Scholar 

  31. Stehling MK, Turner R, Mansfield P. 1991. Echo planar imaging: magnetic resonance imaging in a fraction of a second. Science 254: 43–50.

    PubMed  CAS  Google Scholar 

  32. Henning J, Nauerth A, Friedburg H. 1986. Rare imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833.

    Google Scholar 

  33. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. 1986. FLASH imaging: rapid NMR imaging using low flip angles. J Magn Reson 67:258–266.

    CAS  Google Scholar 

  34. Sodickson DK, Manning WJ. 1997. Simultaneous acquisition of spatial harmonics [SMASH]: fast imaging with radiofrequency coils arrays. Magn Reson Med 38:591–603.

    PubMed  CAS  Google Scholar 

  35. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.

    PubMed  CAS  Google Scholar 

  36. Basser PJ, Mattiello J, LeBihan D. 1994. Estimation of the effective self diffusion tensor from the NMR spin-echo. J Magn Reson B 103:247–254.

    PubMed  CAS  Google Scholar 

  37. Basser PJ, Mattiello J, LeBihan D. 1994. MR diffusion tensor spectroscopy and imaging. Biophys J 66: 259–267.

    PubMed  CAS  Google Scholar 

  38. Vangelderen P, Devleeschouwer MHM, Despres D, Pekar J, VanZijl PCM, Moonen CTW. 1994. Water diffusion and acute stroke. Magn Reson Med 31(2):154–163.

    CAS  Google Scholar 

  39. Lebihan D. 2003. Looking into the functional architecture of the brain with diffusion MRI. Nature Rev Neurosci 4(6):469–480.

    CAS  Google Scholar 

  40. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl P, Mori S. 2004. Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87.

    PubMed  Google Scholar 

  41. Jolesz FA. 2005. Future perspective for intraoperational MRI. Neurosurg Clin North Am 16(1):201.

    Google Scholar 

  42. Nimsky C, Ganslandt O, von Keller B, Romstock J, Fahlbush D. 2004. Intraoperative high-field strength MR imaging: implementation and experience in 200 patients. Radiology 233:67–78.

    PubMed  Google Scholar 

  43. Bradley WG. 2002. Achieving gross total resection of brain tumors: intraoperative MR can make a big difference. Am J Neuroradiol 23:348–349.

    PubMed  Google Scholar 

  44. JS Levine. 1999. Interventional MR imaging: concepts, systems, and applications in neuroradiology. Am J Neuroradiol 20:735–748.

    Google Scholar 

  45. Gallez B, Swartz H. 2004. In vivo EPR: when, how and why? NMR Biomed 17(5):223–225.

    PubMed  CAS  Google Scholar 

  46. Tseng CH, Wong GP, Pomeroy VP, Mair RW, Hinton DP, Hoffman D, Stoner RE, Hersman FW, Cory DG, Walsworth RL. 1998. Low-field MRI of laser polarized noble gas. Phys Rev Let 81(17):3785–3788.

    CAS  Google Scholar 

  47. Bhattacharya P, Harris K, Lin A, Mansson M, Norton VA, Perman WH, Weitekamp DP, Ross BD. 2005. Ultra fast steady state free precession imaging of hyperpolarized 13C in-vivo. MAGMA 5(5). In press.

    Google Scholar 

  48. Gilles RJ. 2002. In vivo molecular imaging. J Cell Biochem 39(Suppl):231–238.

    Google Scholar 

  49. Herschman HR. 2003. Molecular imaging: looking at problems, seeing solutions. Science 302:605–608.

    PubMed  CAS  Google Scholar 

  50. Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G, Robertson JD, Wickline SA, Lanza GM. 2005. Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627.

    PubMed  CAS  Google Scholar 

  51. Butte JW, Ben-Hur T, Miller BR, Mizrachi-Kol R, Einstein O, Reinhartz E, Zywicke HA, Douglas T, Frank JA. 2003. MR microscopy of magnetically labeled neurospheres transplanted in the Lewis EAE rat brain. Magn Reson Med 50:201–205.

    Google Scholar 

  52. Weissleder R, Moore A, Mahood U, Bhorade R, Benveniste H, Chiocca AE, Basilion JP. 2000. In-vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355.

    PubMed  CAS  Google Scholar 

  53. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ. 2000. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325.

    PubMed  CAS  Google Scholar 

  54. Natanzon A, Aletras AH, Hsu Ly, Arai AE. 2005. Determining canine myocardial area at risk with manganese-enhanced MR imaging. Radiology 236:859–866.

    PubMed  Google Scholar 

  55. Ward J, Robinson PJ, Guthrie A, Downing S, Wilson D, Lodge JPA, Prasad KR, Toogood GJ, Wyatt JI. 2005. Liver metastases in candidates for hepatic resection: comparison of helical CT and gadolinium and SIPO-enhanced MR imaging. Radiology 237:170–180.

    PubMed  Google Scholar 

  56. Li W, Tutton S, Vu AT, Pierchal L, Li BSY, Lewis JM, Pravad PV, Edelman RR. 2005. First pass contrast enhanced magnetic resonance angiography in humans using ferumoxytol, a novel Ultrasmall Superparamagnetic Iron Oxide [USPIO]-based blood pool agent. J Magn Reson Imaging 21:46–52.

    PubMed  Google Scholar 

  57. Warner R, Pittard S, Feenan PJ, Goldi F, Abduljalil AM and Robitaille PML. 1998. Design and manufacture of the world’s first whole body MRI magnet operating at a field strength above 7.0 Tesla: initial findings. Proc Int Soc Magn Reson Med 254.

    Google Scholar 

  58. Robitaille PML, Abduljalil AM, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres DM, Spigos D. 1998. Human magnetic resonance imaging at eight tesla. NMR Biomed 11:263–265.

    PubMed  CAS  Google Scholar 

  59. Robitaille PML, Warner R, Jagadeesh J, Abduljalil AM, Kangarlu A, Burgess RE, Yu Y, Yang L, Zhu H, Jiang Z, Bailey RE, Chung W, Somawiharja Y, Feynan P, Rayner D. 1999. Design and assembly of an 8 tesla whole body MRI scanner. J Comput Assist Tomog 23:808–820.

    CAS  Google Scholar 

  60. Yacoub, E, Shmuel A, Pfeuffer J, Van de Moortele PF, Adriany G, Anderson P, Vaughan JT, Merkle H, Ugurbil K, Hu X. 2001. Imaging human brain function in humans at 7 Tesla. Magn Reson Med 45(4):588–94.

    PubMed  CAS  Google Scholar 

  61. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Anderson P, Merkle H, Goebel R, Smith MB, Ugurbil K. 2001. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30.

    PubMed  CAS  Google Scholar 

  62. Hoult DI, Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving humans. J Magn Reson 34:425–33.

    CAS  Google Scholar 

  63. Roschmann P. 1987. Radiofrequency penetration and absorption in the human body — limitations to high field in whole-body nuclear magnetic resonance imaging. Med Phys 14(6):922–931.

    PubMed  CAS  Google Scholar 

  64. Bottomley PA, Edelstein WA. 1981. Power deposition in whole-body NMR imaging. Med Phys 8:510–512.

    PubMed  CAS  Google Scholar 

  65. Wen H, Denison TJ, Singerman RW, Balaban RS. 1997. The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3 and 4T. J Magn Reson 125(1):65–71.

    PubMed  CAS  Google Scholar 

  66. Chen CN, Sank VJ, Cohen SM, Hoult DI. 1986. The field dependence of NMR imaging, I: laboratory assessment of signal to noise ratio and power deposition. Magn Reson Med 3:722–9.

    PubMed  CAS  Google Scholar 

  67. Hoult DI, Chen CN, Sank VJ. 1986. The field dependence of NMR imaging, II: arguments concerning an optimal field strength. Magn Reson Med 3:730–46.

    PubMed  CAS  Google Scholar 

  68. Bomsdorf H, Helzel T, Kunz D, Roschmann P, Tschendel O, Wieland J. 1988. Spectroscopy and imaging with a 4 Telsa whole-body MR system. NMR Biomed 1:151–158.

    PubMed  CAS  Google Scholar 

  69. Toft PS. 1994. Standing waves in uniform water samples. J Magn Reson B104:143–147.

    Google Scholar 

  70. Barfuss H, Fisher H, Hentschel D, Ladebeck R, Vetter J. 1988. Whole-body MR imaging and spectroscopy with a 4T system. Radiology 169:811–816.

    PubMed  CAS  Google Scholar 

  71. Barfuss H, Fischer H, Hentschel D. 1990. In-vivo magnetic resonance of human with a 4T whole-body magnet. NMR Biomed 1:31–45.

    Google Scholar 

  72. Bomsdorf H, Roschmann P, Wieland J. 1991. Sensitivity enhancement in whole-body natural abundance C-13 spectroscopy using C-13/H-1 double resonance techniques at 4 Tesla. Magn Reson Med 22(1):10–22.

    PubMed  CAS  Google Scholar 

  73. Wen H, Chesnick AS, Balaban RS. 1994. The design and test of a new volume coil for high field imaging. Magn Reson Med 32(4):492–498.

    PubMed  CAS  Google Scholar 

  74. Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim SG, Menon R, Merkle H, Ogawa S, Salmi R. 1993. Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9(4):259–277.

    PubMed  CAS  Google Scholar 

  75. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. 1992. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5955.

    PubMed  CAS  Google Scholar 

  76. Menon RS, Hendrich K, Hu X, Ugurbil K. 1992. 31P NMR spectroscopy of the human heart at 4 T: detection of substantially uncontaminated cardiac spectra and differentiation of subepicardium and subendocardium. Magn Reson Med 26(2):368–376.

    PubMed  CAS  Google Scholar 

  77. Gruetter R, Garwood M, Ugurbil K, Seaquist ER. 1996. Observation of resolved glucose signals in 1H NMR spectra of the human brain at 4 Tesla. Magn Reson Med 36(1):1–6.

    PubMed  CAS  Google Scholar 

  78. Roschmann PKH. 1988. High-frequency coil system for a magnetic resonance imaging apparatus. US Patent 4,746,866.

    Google Scholar 

  79. Vaughan JT, Hetherington HP, Otu J, Pan JW, Pohost GM. 1994. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 32:206–218.

    PubMed  CAS  Google Scholar 

  80. Vaughan J, Hetherington HP, Harrison J, Otu J, Pan J, Noa P, Pohost G. 1994. High frequency coils for clinical nuclear magnetic resonance imaging and spectroscopy. Phys Med 9:147–153.

    Google Scholar 

  81. Twieg DB, Hetherington HP, Ponder SL, den Hollander JA, Pohost GM. 1994. Spatial resolution in 31P metabolite imaging of the human brain at 4.1 T. J Magn Reson B 104:53.

    Google Scholar 

  82. Chu W-J, Hetherington HP, Kuzniecky RI, Vaughan JT, Twieg DB, Hugg JW, Elgavish GA. 1996. Is the intracellular pH different from normal in the epileptic focus of temporal lobe epilepsy patients? A 31P NMR study. Neurology 47:756–760.

    PubMed  CAS  Google Scholar 

  83. Pan JW, Mason GF, Vaughan JT, Chu W-J, Zhang YT, Hetherington HP. 1997. 13C editing of human brain glutamate by J-refocused coherence transfer spectroscopy at 4.1 T. Magn Reson Med 37:355–358.

    PubMed  CAS  Google Scholar 

  84. Hetherington HP, Pan JW, Mason GF, Ponder SL, Twieg DB, Deutsch G, Mountz J, Pohost G. 1994. 2D spectroscopic imaging of the human brain at 4T. Magn Reson Med 32:530–534.

    PubMed  CAS  Google Scholar 

  85. Hetherington HP, Mason GF, Pan JW, Pohost GM. 1994. Evaluation of cerebral gray and white matter metabolite differences by spectroscoic imaging at 4.1 T. Magn Reson Med 32:565–571.

    PubMed  CAS  Google Scholar 

  86. Mason G, Pan JW, Ponder SL, Twieg DB, Pohost GM, Hetherington HP. 1994. Detection of brain glutamate and glutamine in spectroscopic images at 4.1 T. Magn Reson Med 32:142–145.

    PubMed  CAS  Google Scholar 

  87. Pan JW, Mason GF, Pohost GM, Hetherington HP. 1996. Spectroscopic imaging of human brain glutamate by water suppressed J-refocused coherence transfer at 4.1 T. Magn Reson Med 36:7–12.

    PubMed  CAS  Google Scholar 

  88. Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn JM, Twieg DB, Pohost GM. 1996. Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36:21–29.

    PubMed  CAS  Google Scholar 

  89. Hetherington HP, Kuzniecky R, JW Pan, JT Vaughan, DB Twieg, GM Pohost. 1995. Application of high field spectroscopic imaging in the evaluation of temporal lobe epilepsy at 4.1 T. Magn Reson Imag 13:1175–1180.

    CAS  Google Scholar 

  90. Hetherington HP, Kuzniecky R, Pan JW, Mason GF, Vaughan JT, Harris C, Morawetz H, Pohost GM. 1995. 1H spectroscopic imaging in temporal lobe epilepsy at 4.1 T. Ann Neurol 38:396–404.

    PubMed  CAS  Google Scholar 

  91. Kuzniecky RI, Hetherington HP, Pan JW, Hugg JW, Palmer C, Gilliam F, Faught E, Morawetz R. 1997. Proton spectroscopic imaging in patients with malformations of cortical development and epilepsy. Neurology 48:1018–1024.

    PubMed  CAS  Google Scholar 

  92. Hugg JW, Kuzniecky RI, Gilliam FG, Morawetz RB, Faught RE, Hetherington HP. 1996. Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H MRSI. Ann Neurol 40:236–239.

    PubMed  CAS  Google Scholar 

  93. Robitaille PML. 1999. Black-body and transverse electromagnetic [TEM] resonators operating at 340 MHz: volume RF coils for UHFMRI. J Comput Assist Tomog 23:879–890.

    CAS  Google Scholar 

  94. Lee S-P, Silva AC, Ugurbil K, Kim SG. 1999. Diffusion weighted spin echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 42(5):919–928.

    PubMed  CAS  Google Scholar 

  95. Duong TQ, Kim DS, Ugurbil K, Kim SG. 2001. Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 98(19):10904–10909.

    PubMed  CAS  Google Scholar 

  96. Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K. 2004. Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52(4):851–859.

    PubMed  CAS  Google Scholar 

  97. Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K. 2002. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6):1195–1210.

    PubMed  CAS  Google Scholar 

  98. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R. 2003. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40(4):859–869.

    PubMed  CAS  Google Scholar 

  99. Olman C, Ronen I, Ugurbil K, Kim DS. 2003. Retinotopic mapping in cat visual cortex using high-field functional magnetic resonance imaging. J Neurosci Methods 131(1–2):161–170.

    PubMed  Google Scholar 

  100. Olman CA, Ugurbil K, Schrater P, Kersten D. 2004. BOLD fMRI and psychophysical measurements of contrast response to broadband images. Vision Res 44(7):669–683.

    PubMed  Google Scholar 

  101. Mason GF, Chu W-J, Vaughan JT, Ponder SL, Twieg DB, Adams D, Hetherington HP. 1998. Evaluation of 31P Metabolite differences in human cerebral gray and white matter. Magn Reson Med 39:346–353.

    PubMed  CAS  Google Scholar 

  102. Pan JW, Twieg DB, Hetherington HP. 1998. Quantitative spectroscopic imaging of the human brain at 4.1 T. Magn Reson Med 40:363–369.

    PubMed  CAS  Google Scholar 

  103. Kuzniecky RI, Hugg JW, Hetherington HP, Butterworth E, Bilir E, Faught E, Gilliam F. 1998. Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology 51(1):66–71.

    PubMed  CAS  Google Scholar 

  104. Chu WJ, Kuzniecky RI, Hugg JW, Khalil BA, Gilliam F, Faught E, Hetherington HP. 2000. Evaluation of temporal lobe epilepsy using 1H spectroscopic imaging segmentation at 4.1 T. Magn Reson Med 43:359–367.

    PubMed  CAS  Google Scholar 

  105. Gruetter R, Weisdorf SA, Rajanayagan V, Terpstra M, Merkle H, Truwit CL, Garwood M, Nyberg SL, Ugurbil K. 1998. Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 135(1):260–264.

    PubMed  CAS  Google Scholar 

  106. Cho YK, Merkle H, Zhang J, Tsekos NV, Bache RJ, Ugurbil K. 2001. Noninvasive measurements of transmural myocardial metabolites using 3D 31P NMR spectroscopy. Am J Physiol 280(1):H489–497.

    CAS  Google Scholar 

  107. Chu WJ, Hetherington HP, Kuzniecky RI, Simor T, Mason GF, Elgavish GA. 1998. Lateralization of human temporal lobe epilepsy by 31P NMR spectroscopic imaging at 4.1 T. Neurology 51:472–479.

    PubMed  CAS  Google Scholar 

  108. LeRoy-Willig A. 1999. Does RF brain heating decrease at 8 T? NMR Biomed 12(2):115.

    PubMed  CAS  Google Scholar 

  109. Roschmann P. 1999. Comments on “Human magnetic resonance imaging at 8 tesla”. NMR Biomed 12(5):315–317.

    PubMed  CAS  Google Scholar 

  110. Robitaille PML. 1999. Response to “Does RF brain heating decrease at 8 T”. NMR Biomed 12:256.

    PubMed  CAS  Google Scholar 

  111. Robitaille PML. 1999. On RF power and dielectric resonances in UHFMRI. NMR Biomed 12:318–319.

    PubMed  Google Scholar 

  112. Burgess RE, Yu Y, Abduljalil AM, Kangarlu A, Robitaille P-ML. 1999. High signal to noise FLASH imaging at 8 Tesla. Magn Reson Imag 17:1099–1103.

    CAS  Google Scholar 

  113. Kangarlu A, Abduljalil AM, Norris DG, Schwartzbauer C, Robitaille P-ML. 1999. Human rapid acquisition with relaxation enhancement imaging at 8 T without specific absorption rate violation. MAGMA 9:81–84.

    PubMed  CAS  Google Scholar 

  114. Norris DG, Kangarlu A, Schwartzbauer C, Abduljalil AM, Christoforidis G, Robitaille P-ML. 1999. MDEFT Imaging of the human brain at 8 Tesla. MAGMA 9:92–96.

    PubMed  CAS  Google Scholar 

  115. Abduljalil AM, Robitaille P-ML. 1999. Macroscopic susceptibility in ultra high field MRI. J Comput Assist Tomog 23:832–841.

    CAS  Google Scholar 

  116. Abduljalil AM, Kangarlu A, Yu Y, Robitaille P-ML. 1999. Macroscopic susceptibility in ultra high field MRI, II: acquisition of spin echo images from the human head. J Comput Assist Tomog 23:842–844.

    CAS  Google Scholar 

  117. Robitaille P-ML, Kangarlu A, Abduljalil AM. 1999. RF penetration in ultra high field magnetic resonance imagning [UHF MRI]: challenges in visualizing details within the center of the human brain. J Comput Assist Tomog 23:845–849.

    CAS  Google Scholar 

  118. Burgess RE, Yu Y, Christoforidis GA, Bourekas EC, Chakeres DW, Spigos DG, Kangarlu A, Abduljalil AM, Robitaille P-ML. 1999. Human leptomeningeal and cortical vascular anatomy of the cerebral cortex at 8 Tesla. J Comput Assist Tomogr 23:850–856.

    PubMed  CAS  Google Scholar 

  119. Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DW, Chakeres DW, Robitaille P-ML. 1999. High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility based enhancement of the venous structures. J Comput Assist Tomogr 23:857–866.

    PubMed  CAS  Google Scholar 

  120. Bourekas EC, Christoforidis GA, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille P-ML. 1999. High resolution MRI of the deep gray nuclei at 8 Tesla. J Comput Assist Tomogr 23:867–874.

    PubMed  CAS  Google Scholar 

  121. Kangarlu A, Abduljalil AM, Robitaille P-ML. 1999. T1 and T2 weighted imaging at 8 tesla. J Comput Assist Tomogr 23:875–878.

    PubMed  CAS  Google Scholar 

  122. Robitaille P-ML, Abduljalil AM, Kangarlu A. 2000. Ultra high resolution imaging of the human head at 8 tesla: 2K × 2K for Y2K. J Comp Assist Tomogr 24:2–7.

    CAS  Google Scholar 

  123. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X. 2001. Imaging brain function in humans at 7 Tesla. Magn Reson Med 45(4):588–594.

    PubMed  CAS  Google Scholar 

  124. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, Hu X. 2001. Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14(7–8):408–412.

    PubMed  CAS  Google Scholar 

  125. Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Vaughan JT, Merkle H, Kim SG. 2002. High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48(4):589–593.

    PubMed  Google Scholar 

  126. Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele PF, Hu X, Ugurbil K. 2002. Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 47(5):903–911.

    PubMed  Google Scholar 

  127. Pfeuffer J, van de Moortele PF, Yacoub E, Shmuel A, Adriany G, Andersen P, Merkle H, Garwood M, Ugurbil K, Hu X. 2002. Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17(1):272–286.

    PubMed  Google Scholar 

  128. Yacoub E, Van De Moortele PF, Shmuel A, Ugurbil K. 2005. Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage 24(3):738–750.

    PubMed  Google Scholar 

  129. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. 2005. Comparison of physiological noise at 1.5 T, 3T and 7T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250.

    PubMed  CAS  Google Scholar 

  130. Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PML. 1999. Dielectric resonance phenomena in ultra high field magnetic resonance imaging. J Comput Assist Tomogr 23:821–831.

    PubMed  CAS  Google Scholar 

  131. Ibrahim TS, Lee R, Abduljalil AM, Baertlein BA, Robitaille PML. 2001. Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magn Reson Imag 19:219–226.

    CAS  Google Scholar 

  132. Collins CM, Liu WZ, Schreiber W, Yang QX, Smith MB. 2005. Central brightening due to constructive interference, with, without and despite dielectric resonances. J Magn Reson Imaging 21(2):192–196.

    PubMed  Google Scholar 

  133. Ibrahim TS, Lee R, Baertlein BA, Robitaille PML. 2001. On the frequency dependence of electromagnetic power deposition in the human head: MRI from 3 to 11 T. 42nd Exp Nucl Magn Reson Conf, 220.

    Google Scholar 

  134. Ibrahim TS. 2004. A numerical analysis of radio-frequency power requirements in magnetic resonance imaging experiment. IEEE Trans Micro Theor Tech 52(8):1999–2003.

    Google Scholar 

  135. Planck M. 1901. Ueber das gesetz der energieverteilung in normalspectrum. Ann Phys 4:553–563.

    Google Scholar 

  136. Robitaille PML. 2003. On the validity of Kirchhoff’s law of thermal emission. IEEE Trans Plasma Sci 31(6):1263–1267.

    CAS  Google Scholar 

  137. Robitaille PML. 2004. The reverse of the Planckian experiment. Proc Am Phys Soc, March Meeting pp. Y35–12. http://www.aps.org/meet/MAR04/baps/abs/S9150012.html.

  138. Ibrahim TS, Abduljalil AM, Lee R, Baertlein BA, Robitaille P-ML. 2001. Analysis of B1 field profiles and SAR values for multi-strut transverse electromagnetic RF coils in high field MRI applications. Phys Med Biol 46:2545–2555.

    PubMed  CAS  Google Scholar 

  139. Ibrahim TS, Lee R, Robitaille P-ML. 2001. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imag 19:1339–1347.

    CAS  Google Scholar 

  140. Van de Moortele P-F, Adriany G, Akgun C, Moeller S, Ritter J, Vaughan JT, Ugurbil K. 2005. B1 Phase spatial patterns at 7 tesla: impact on B1 inhomogeneities with a head transceive transmission line array coil. Proc Int Soc Magn Reson Med 13:2748.

    Google Scholar 

  141. Van de Moortele P-F, Adriany G, Akgun C, Moeller S, Ritter J, Collin C, Smith MB, Vaughan JT, Ugurbil K. 2005. B1 phase spatial patterns at 7 tesla. Magn Reson Med. In press.

    Google Scholar 

  142. Vaughan JT, DelaBarre L, Snyder C, Adriany G, Collins CM, Van de Moortele P-F, Moeller S, Ritter J, Strupp J, Andersen P, Tian J, Smith MB, Ugurbil K. 2005. RF image optimization at 7 and 9.4 T. Proc Int Soc Magn Reson Med 13:953.

    Google Scholar 

  143. Wiggins GC, Potthast A, Triantafyllou C, Wiggins CJ, Wald LL. 2005. Eight-channel phased array coil and detunable TEM volume coil for 7 T brain imaging. Magn Reson Med 54(1):235–240.

    PubMed  CAS  Google Scholar 

  144. Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K. 2005. Transmit and receive transmission line arrays for 7 tesla parallel imaging. Magn Reson Med 53(2):434–445.

    PubMed  Google Scholar 

  145. Adriany G, Ritter J, Van de Moortele P-F, Moeller S, Snyder C, Voje B, Vaughan T, Ugurbil K. 2005. A geometrically adjustable 16 channel transceive transmission line array for 7 tesla. In press.

    Google Scholar 

  146. Wald LL, Wiggins GC, Potthast A, Wiggins CJ, Triantafyllou C. 2005. Design considerations and coil comparisons for 7 T brain imaging. Appl Magn Reson 29(1):19–37.

    Google Scholar 

  147. Kangarlu A, Robitaille P-ML. 2000. Biological effects and health implications in magnetic resonance imaging. Concepts Magn Reson 12(5):321–359.

    Google Scholar 

  148. Kangarlu A, Burgess RE, Zhu H, Nakayama T, Hamlin RL, Abduljalil AM, Robitaille P-ML. 1999. Cognitive, cardiac and physiological safety studies in ultra high field magnetic resonance imaging. J Magn Reson Imaging 17:1407–1416.

    CAS  Google Scholar 

  149. Schenck JF. 2000. Safety of strong, static magnetic fields. J Magn Reson Imaging 12:2–19.

    PubMed  CAS  Google Scholar 

  150. Chakeres DW, Bornstein R, Kangarlu A. 2003. Radomized comparison of congnitive function in humans at 0 and 8 Tesla. J Magn Reson Imaging 18(3):342–345.

    PubMed  Google Scholar 

  151. Shellock FG, Cruz JV. 2004. MR proceedures: biological effects, safety and patient care. Radiology 232:635–652.

    PubMed  Google Scholar 

  152. Denegre JM, Valles JM, Lin K, Jordan WB, Mowry KL. 1998. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci USA 95:14729–14732.

    PubMed  CAS  Google Scholar 

  153. High WB, Sikora J, Ugurbil K, Garwood M. 2000. Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats. J Magn Reson Imaging 12(1):122–139.

    PubMed  CAS  Google Scholar 

  154. Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D. 2005. Cellular disorders induced by high magnetic fields. J Magn Reson Imaging 22:334–335.

    PubMed  Google Scholar 

  155. Chan S. 2002. The clinical relevance and scientific potential of ultra high field strength MR Imaging. J Am Neuroradiol 23(9):1441–1442.

    Google Scholar 

  156. Novak P, Novak V, Kangarlu A, Abduljalil AM, Chakeres DW, Robitaille P-ML. 2001. High resolution MRI of the brainstem at 8 T. J Comput Assist Tomogr 25(2):242–246.

    PubMed  CAS  Google Scholar 

  157. Novak V, Abduljalil A, Kangarlu A, Slivka A, Bourekas E, Novak P, Chakeres D, Robitaille P-ML. 2001. Intracranial ossifications and microangiopathy at 8 Tesla MRI. Magn Reson Imag 19(8):1133–1139.

    CAS  Google Scholar 

  158. Novak V, Kangarlu A, Abduljalil A, Novak P, Slivka A, Chakeres D, Robitaille P-ML. 2001. Ultra high field MRI at 8 tesla of subacute hemorrhagic stroke. J Comput Assist Tomogr 25(3):431–436.

    PubMed  CAS  Google Scholar 

  159. Novak V, Abduljalil AM, Novak P, Robitaille P-ML. 2005. High resolution ultra high field MRI of stroke. Magn Reson Imaging 23(4):539–548.

    PubMed  Google Scholar 

  160. Christoforidis GA, Grecula JC, Newton HB, Kangarlu A, Abduljalil AM, Schmalbrock P, Chakeres DW. 2002. Visualization of microvascularity in glioblastoma multiforme with 8T high-spatial-resolution MR imaging. Am J Neuroradiol 23(9):1553–1556.

    PubMed  Google Scholar 

  161. Christoforidis GA, Kangarlu A, Abduljalil AM, Schmalbrock P, Chaudry A, Yates A, Chakeres DW. 2004. Susceptibility based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and Postmortem Pathology. Am J Neuroradiol 25(5): 756–760.

    PubMed  Google Scholar 

  162. Augustinack JC, van der Kouwe AJW, Blackwell ML, Salat DH, Wiggins CJ, Frosch MP, Wiggins GC, Potthast A, Wald LL, Fischl BR. 2005. Detection of entorhinal layer II using 7 tesla magnetic resonance imaging. Ann Neurol 57(4):489–494.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Robitaille, PM.L. (2006). Ultra High Field Magnetic Resonance Imaging: A Historical Perspective. In: Ultra High Field Magnetic Resonance Imaging. Biological Magnetic Resonance, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49648-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49648-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34231-3

  • Online ISBN: 978-0-387-49648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics