Acoustic Microscopy Applied to NanoStructured Thin Film Systems

  • Chiaki Miyasaka
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 44)


The present volume is devoted to the issues of modeling and numerical simulations in electrochemistry. With the continuing development of more and more powerful computer hardware and software systems, the nature of modeling keeps evolving and expanding. Workers in industry and academia keep developing, testing, and understanding and producing new products. Those in most cases require new materials which benefit from modeling as it obviates the need to actually try every possible new material. Indeed, owing to the growth in the development of material science and technology, the requirements for high-quality, reliable materials have become more stringent. That is so especially in the nano 3D space industries. It is more often than not difficult for conventional materials to completely meet those new more stringent requirements. In this case, closer study of nanostructured materials is often called for. However, such study/search is not possible if no data for securing reliability and safety of the nanostructured materials can be assured.


Acoustic Wave Surface Acoustic Wave Spherical Aberration Acoustic Image Reflectance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



C.M. thanks M. Schlesinger for his useful advice, and E. Buakulin for developing the simulation software.


  1. 1.
    J. R. Greer, W. C. Oliver, and W. D. Nix, Acta Mater 53 (2005), 1821.CrossRefGoogle Scholar
  2. 2.
    Y. Isono, T. Namazu, and N. Terayama, J Microelectromech Syst 15(1) (2006), 169.CrossRefGoogle Scholar
  3. 3.
    J.-W. Lee, J.-C. Huang, and J.-G. Duh, Tamkang J Sci Eng 7(4) (2004), 237.Google Scholar
  4. 4.
    C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc., Phys Rev B 34 (1986), 4129.CrossRefGoogle Scholar
  5. 5.
    H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles, Phys Rev B 38 (1988), 6066.CrossRefGoogle Scholar
  6. 6.
    O. B. Wright and K. Kawashima, Phys Rev Lett 69 (1992), 1668.CrossRefGoogle Scholar
  7. 7.
    H.-N. Lin, H. J. Maris, and L. B. Freund, J Appl Phys 73(1) (1992), 37.CrossRefGoogle Scholar
  8. 8.
    B. Bonello, B. Perrin, and C. Rossignol, J Appl Phys 83(6) (1998), 3081.CrossRefGoogle Scholar
  9. 9.
    K. Yamanaka, H. Ogiso, and O. Kolosov, Appl Phys Lett 64(2) (1994), 178.CrossRefGoogle Scholar
  10. 10.
    K. Yamanaka and S. Nakano, Jpn J Appl Phys 35(5) (1996), 3787.CrossRefGoogle Scholar
  11. 11.
    G. Binnig, C. F. Quate, and Ch. Gerber, Phys Rev Lett 56(1986), 930.CrossRefGoogle Scholar
  12. 12.
    K. Yamanaka, S. Nakano, and H. Ogiso, International Symposium on Measurement Technology and Intelligent Instruments (1996), 451.Google Scholar
  13. 13.
    S. Amerio, A. V. Goldade, U. Rabe, V. Scherer, B. Bhusan, and W. Arnold, Thin Solid Films 392(2001), 75.CrossRefGoogle Scholar
  14. 14.
    B. Gauitier and V. Bornand, Thin Solid Films 515 (2006), 1592.CrossRefGoogle Scholar
  15. 15.
    A. Atalar, C. F. Quate, and H. K. Wickramasinge, Appl Phys Lett 31 (1977), 791.CrossRefGoogle Scholar
  16. 16.
    R. D. Weglein, IEEE Trans Sonics SU27(2) (1980), 82.Google Scholar
  17. 17.
    R. C. Bray, C. F. Quate, J. Calhoun, and R. Kock, Thin Solid Films 74 (1980), 295.CrossRefGoogle Scholar
  18. 18.
    R. D. Weglein, Electron Lett 18(22) (1982), 1003.CrossRefGoogle Scholar
  19. 19.
    C. C. Lee, C. S. Tsai, and X. Cheng, IEEE Trans Sonics Ultrasonics SU-32(2)(1985), 248.Google Scholar
  20. 20.
    J. Kushibiki and N. Chubachi, Electron Lett 23(12)(1987), 652.CrossRefGoogle Scholar
  21. 21.
    R. C. Addison, M. C. Somekh, J. M. Rowe, and G. A. D. Briggs, SPIE 768 Pattern recognition and acoustical imaging (ed. L. A. Ferrari) (1987), 275.Google Scholar
  22. 22.
    J. Kushibiki, T. Ishikawa, and N. Chubachi, Appl Phys Lett 57(19) (1990), 1967.CrossRefGoogle Scholar
  23. 23.
    R. D. Weglein and A. K. Mal, Surf Coat Technol 47 (1991), 667.CrossRefGoogle Scholar
  24. 24.
    A. Okada, C. Miyasaka, and T. Nomura, JIM 33(1) (1992), 73.Google Scholar
  25. 25.
    T. Kundu, J Appl Mech 59 (1992), 54.CrossRefGoogle Scholar
  26. 26.
    Y. Sasaki, T. Endo, T. Yamagishi, and M. Sakai, IEEE Trans UFFC-39(5) (1992), 638.Google Scholar
  27. 27.
    T. Endo, C. Abe, M. Sakai, and M. Ohono, Proceedings Ultrasonic International 93 Conference (1993), 45.Google Scholar
  28. 28.
    D. Achenbach, J. D. Kim, and Y. C. Lee, Advances in Acoustic Microscopy, vol. 1, Plenum, New York, (1995), 153.Google Scholar
  29. 29.
    S. Parthasarathi, B. R. Tittmann, and R. J. Ianno, Thin Solid Films 300 (1997), 42.CrossRefGoogle Scholar
  30. 30.
    A. Doghmane, Z. Hadjoub, and F. Hadjoub, Thin Solid Films 310 (1997), 203.CrossRefGoogle Scholar
  31. 31.
    D. Rats, J. von Stebut, and F. Augereau, Thin Solid Films 355–356 (1999), 347.CrossRefGoogle Scholar
  32. 32.
    Z. Guo, J. D. Achenbach, A. Madan, K. Martin, and M. E. Graham, Thin Solid Films 394 (2001), 189.CrossRefGoogle Scholar
  33. 33.
    M. J. Bamber, K. E. Cooke, A. B. Mann, and B. Derby, Thin Solid Films 398–399 (2001), 299.CrossRefGoogle Scholar
  34. 34.
    F. Zhang, S. Krishnaswarmy, D. Fei, D. A. Rebinsky, and B. Feng, Thin Solid Films 503 (2006), 250.CrossRefGoogle Scholar
  35. 35.
    B. Hadimioglu and C. F. Quate, Appl Phys Lett 43 (1983), 1006.CrossRefGoogle Scholar
  36. 36.
    K. Karaki and M. Sakai, Ultrasonic Technology 1987, Toyohashi International Conference on Ultrasonic Technology, Toyohashi, Japan, MYU Research, Tokyo (1987), 25.Google Scholar
  37. 37.
    K. Yamanaka, Y. Nagata, and T. Koda, Ultrasonics Int 89 (1989), 744.Google Scholar
  38. 38.
    Foster and D. Rugar, Appl Phys Lett 42 (1983), 869.CrossRefGoogle Scholar
  39. 39.
    M. S. Muha, A. A. Moulthrop, G. C. Kozlowski, and B. Hadimioglu, Appl Phys Lett 56 (1990), 1019.CrossRefGoogle Scholar
  40. 40.
    N. Chubachi, J. Kushibiki, T. Sannomia, and Y. Iyama, Proc IEEE Ultrasonics Symp (1979), 415.Google Scholar
  41. 41.
    D. A. Davids, P. Y. We, and D. Chizhik, Appl Phys Lett 54(17) (1989), 1639.CrossRefGoogle Scholar
  42. 42.
    A. Atalar, H. Koymen, and L.Degertekin, Proc IEEE Ultrasonics Symp (1990), 359.Google Scholar
  43. 43.
    B. T. Khuri-Yakub, C. Cinbis, and P. A. Reinholdtsen, Proc IEEE Ultrasonics Symp (1989), 805.Google Scholar
  44. 44.
    C. Miyasaka, B. R. Tittmann, and M. Ohno, Res Nondestr Eval 11(1999), 97.Google Scholar
  45. 45.
    R. D. Weglein, Appl Phys Lett 34 (1979), 179.CrossRefGoogle Scholar
  46. 46.
    W. Parmon and H. L. Bertoni, Electron Lett 15 (1979), 684.CrossRefGoogle Scholar
  47. 47.
    A. Atalar, J Appl Phys 49 (1978), 5130.CrossRefGoogle Scholar
  48. 48.
    K. Liang, G. S. Kino, and B. T. Khuri-Yakub, IEEE Trans SU-32 (1985), 213.Google Scholar
  49. 49.
    T. Endo, Y. Sasaki, T. Yamagishi, and M. Sakai, Jpn Appl Phys 31 (1992), 160.CrossRefGoogle Scholar
  50. 50.
    J. Kushibiki, K. Horii, and N. Chubachi, Electron Lett 19 (1983), 404.CrossRefGoogle Scholar
  51. 51.
    J. Kushibiki, T. Kobayashi, H. Ishiji, and N. Chubachi, Appl Phys Lett 61(18) (1992), 2164.CrossRefGoogle Scholar
  52. 52.
    J. Kushibiki, M. Miyashita, and N. Chubachi, IEEE Photonics Technol Lett 8(11) (1996), 1516.CrossRefGoogle Scholar
  53. 53.
    J. Kushibiki and M. Miyashita, Jpn J Appl Phys 36(7B) (1997), 959.CrossRefGoogle Scholar
  54. 54.
    J. Kushibiki and N. Chubachi, IEEE Trans Sonics Ultrasonics SU-32(2) (1985), 189.Google Scholar
  55. 55.
    Z. L. Li, IEEE Trans UFCC-40(6) (1993), 680.Google Scholar
  56. 56.
    J. Kushibiki and M. Arakawa, IEEE Trans UFCC-45(2) (1998), 421.Google Scholar
  57. 57.
    K. Yamanaka and Y. Enomoto, J Appl Phys 53(1982), 846.CrossRefGoogle Scholar
  58. 58.
    C. Iett, M. G. Somekh, and G. A. D. Briggs, Proc R Soc Lond A393 (1984), 171.Google Scholar
  59. 59.
    G. A. D. Briggs, P. J. Jenkins, and M. Hoppe, “How fine a surface crack can you see in a scanning acoustic microscope?,” J Microsc 159 (1990), 15–32.Google Scholar
  60. 60.
    M. Ohono, C. Miyasaka, and B. R. Tittmann, “Pupli function splitting method in calculating acoustic microscopic signals for elastic discontinuities,” J Wave Motion Sound 33 (2001), 309–320.CrossRefGoogle Scholar
  61. 61.
    C. Miyasaka, B. R. Tittmann, and S. Tanaka, “Characterization of stress at a ceramic/metal joint interface by the V(z) technique of scanning acoustic microscopy,” J Pressure Vessel Technol 124(3) (2002), 336.CrossRefGoogle Scholar
  62. 62.
    C. Miyasaka, B. R. Tittmann, and S. Tanaka, Nondestr Test Eval 18 (2002), 131.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of WindsorWindsorCanada
  2. 2.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations