Advertisement

Density-Functional Theory in External Electric and Magnetic Fields

  • Ednilsom Orestes
  • Henrique J. P. Freire
  • Klaus Capelle
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 44)

Abstract

Density-functional theory (DFT) is one of the most widely used quantum mechanical approaches for calculating the structure and properties of matter on an atomic scale. It is nowadays routinely applied for calculating physical and chemical properties of molecules that are too large to be treatable by wave-function-based methods. The problem of determining the many-body wave function of a real system rapidly becomes prohibitively complex (1). Methods such as configuration interaction (CI) expansions, coupled cluster (CC) techniques or Møller–Plesset (MP) perturbation theory thus become harder and harder to apply. Computational complexity here is related to questions such as how many atoms there are in the molecule, how many electrons each atom contributes, how many basis functions are required to adequately describe these electrons, how many competing minima there are in the potential-energy surface determining the molecular geometry, and whether any additional external fields are present. The description of the many-body wave function in CI, CC and MP techniques depends sensitively on these questions, and becomes very difficult for systems with more than a few electrons.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Correlation Energy Orbital Magnetization Sham Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported financially by FAPESP and CNPq. We thank Daniel Vieira for providing the original version of Fig. 1 and the Brazilian Journal of Physics for permission to use Fig. 1 and Table 1, which were originally published in Ref. [23].

References

  1. 1.
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).Google Scholar
  2. 2.
    M. T. M. Koper, in Modern aspects of electrochemistry, edited by C. G. Vayenas, B. E. Conway, and R. E. White, vol. 36, chap. 2 (Kluwer/Plenum, New York, 2003). Google Scholar
  3. 3.
    G. Maroulis, ed., Atoms, Molecules and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizability (Imperial College Press, London, 2006).Google Scholar
  4. 4.
    W. Schmickler, Annu. Rep. Prog. Chem., Sect. C 95, 117 (1999).Google Scholar
  5. 5.
    M. Jacoby, Chem. Eng. News 82, 25 (2004).Google Scholar
  6. 6.
    Z. Shia, J. Zhanga, Z.-S. Liua, H. Wanga, and D. P. Wilkinson, Electrochim. Acta 51, 1905 (2006).Google Scholar
  7. 7.
    R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, 1990).Google Scholar
  8. 8.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989).Google Scholar
  9. 9.
    W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley, New York, 2001).Google Scholar
  10. 10.
    R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).Google Scholar
  11. 11.
    J. M. Seminario, ed., Recent Developments and Applications of Modern DFT (Elsevier, Amsterdam, 1996).Google Scholar
  12. 12.
    R. F. Nalewajski, ed., Density functional theory I–IV, Topics in Current Chemistry, vols. 180–183 (Springer, Berlin, 1996).Google Scholar
  13. 13.
    V. I. Anisimov, ed., Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation (Gordon & Breach, Amsterdam, 1999).Google Scholar
  14. 14.
    N. H. March, Electron Density Theory of Atoms and Molecules (Academic, London, 1992).Google Scholar
  15. 15.
    B. B. Laird, R. B. Ross, and T. Ziegler, eds., Chemical Applications of Density Functional Theory (American Chemical Society, Washington, 1996).Google Scholar
  16. 16.
    D. P. Chong, ed., Recent Advances in Density Functional Methods (World Scientific, Singapore, 1995).Google Scholar
  17. 17.
    D. Joulbert, ed., Density functionals: theory and applications, Lecture Notes in Physics, vol. 500 (Springer, Berlin, 1998).Google Scholar
  18. 18.
    C. Fiolhais, F. Nogueira, and M. Marques, eds., A primer in density functional theory, Lecture Notes in Physics, vol. 620 (Springer, Berlin, 2003).Google Scholar
  19. 19.
    J. F. Dobson, G. Vignale, and M. P. Das, eds., Density Functional Theory: Recent Progress and New Directions (Plenum, New York, 1998).Google Scholar
  20. 20.
    H. Eschrig, The Fundamentals of Density Functional Theory (Teubner, Leipzig, 1996).Google Scholar
  21. 21.
    E. K. U. Gross and R. M. Dreizler, eds., Density Functional Theory (Plenum, New York, 1995).Google Scholar
  22. 22.
    N. Argaman and G. Makov, Am. J. Phys. 68, 69 (2000).Google Scholar
  23. 23.
    K. Capelle, Braz. J. Phys. 36, 1318 (2006), also available from arXiv:cond-mat/0211443.Google Scholar
  24. 24.
    T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001).Google Scholar
  25. 25.
    A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973).Google Scholar
  26. 26.
    A. H. MacDonald and S. H. Vosko, J. Phys. C 12, 2977 (1979).Google Scholar
  27. 27.
    P. Strange, Relativistic Quantum Mechanics with Applications in Condensed Matter and Atomic Physics (Cambridge University Press, Cambridge, 1998).Google Scholar
  28. 28.
    J. A. Pople, Rev. Mod. Phys. 71, 1267 (1999).Google Scholar
  29. 29.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).Google Scholar
  30. 30.
    E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).Google Scholar
  31. 31.
    M. Levy, Phys. Rev. A 26, 1200 (1982).Google Scholar
  32. 32.
    E. H. Lieb, in Density functional methods in physics, edited by R. M. Dreizler and J. da Providencia (Plenum, New York, 1985).Google Scholar
  33. 33.
    E. Schrödinger, Ann. Phys. 79, 361, 489, 734 (1926); 80, 437 (1926); 81, 109 (1926).Google Scholar
  34. 34.
    K. Capelle, C. A. Ullrich, and G. Vignale, Phys. Rev. A 76, 012508 (2007).Google Scholar
  35. 35.
    H. Eschrig and W. E. Pickett, Solid State Commun. 118, 123 (2001).Google Scholar
  36. 36.
    K. Capelle and G. Vignale, Phys. Rev. Lett. 86, 5546 (2001).Google Scholar
  37. 37.
    K. Capelle and G. Vignale, Phys. Rev. B 65, 113106 (2002).Google Scholar
  38. 38.
    O. Gritsenko and E. J. Baerends, J. Chem. Phys. 120, 8364 (2004).Google Scholar
  39. 39.
    N. Argaman and G. Makov, Phys. Rev. B 66, 052413 (2002).Google Scholar
  40. 40.
    N. Gidopolous, in The fundamentals of density matrix and density functional theory in atoms, molecules and solids, edited by N. Gidopoulos and S. Wilson (Kluwer, Boston, 2003), Progress in Theoretical Chemistry and Physics.Google Scholar
  41. 41.
    W. Kohn, A. Savin, and C. A. Ullrich, Int. J. Quantum Chem. 100, 20 (2004).Google Scholar
  42. 42.
    C. A. Ullrich, Phys. Rev. B 72, 073102 (2005).Google Scholar
  43. 43.
    T. Gál, Phys. Rev. B 75, 235119 (2007).Google Scholar
  44. 44.
    N. I. Gidopoulos, Phys. Rev. B 75, 134408 (2007).Google Scholar
  45. 45.
    W. E. Pickett and H. Eschrig, J. Phys. Condens. Matter 19, 315203 (2007).Google Scholar
  46. 46.
    T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).Google Scholar
  47. 47.
    J. E. Harriman, Phys. Rev. A 24, 680 (1981).Google Scholar
  48. 48.
    J. T. Chayes, L. Chayes, and M. B. Ruskai, J. Stat. Phys. 38, 497 (1985).Google Scholar
  49. 49.
    C. A. Ullrich and W. Kohn, Phys. Rev. Lett. 89, 156401 (2002); 87, 093001 (2001).Google Scholar
  50. 50.
    P. E. Lammert, J. Chem. Phys. 125, 074114 (2006).Google Scholar
  51. 51.
    A. P. Favaro, J. V. B. Ferreira, and K. Capelle, Phys. Rev. B 73, 045133 (2006).Google Scholar
  52. 52.
    N. H. March, Self-consistent Fields in Atoms (Pergamon, Oxford, 1975).Google Scholar
  53. 53.
    L. W. Wang and M. P. Teter, Phys. Rev. B 45, 13196 (1992).Google Scholar
  54. 54.
    M. Foley and P. A. Madden, Phys. Rev. B 53, 10589 (1996).Google Scholar
  55. 55.
    B. J. Zhou, V. L. Ligneres, and E. A. Carter, J. Chem. Phys. 122, 044103 (2005).Google Scholar
  56. 56.
    E. K. U. Gross, E. Runge, and O. Heinonen, Many Particle Theory (Adam Hilger, Bristol, 1991).Google Scholar
  57. 57.
    A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989).Google Scholar
  58. 58.
    E. K. U. Gross, M. Petersilka, and T. Grabo, in Chemical applications of density-functional theory, edited by B. B. Laird, R. B. Ross, and T. Ziegler (American Chemical Society, Washington, 1996a), ACS Symposium Series.Google Scholar
  59. 59.
    M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).Google Scholar
  60. 60.
    E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).Google Scholar
  61. 61.
    G. K.-L. Chan and N. C. Handy, Phys. Rev. A 59, 3075 (1999).Google Scholar
  62. 62.
    M. M. Odashima, K. Capelle, and S. B. Trickey, J. Chem. Theory Comput. 5, 798 (2009).Google Scholar
  63. 63.
    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).Google Scholar
  64. 64.
    S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).Google Scholar
  65. 65.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).Google Scholar
  66. 66.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); 78, 1396(E) (1997).Google Scholar
  67. 67.
    J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).Google Scholar
  68. 68.
    J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).Google Scholar
  69. 69.
    J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999).Google Scholar
  70. 70.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).Google Scholar
  71. 71.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).Google Scholar
  72. 72.
    Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).Google Scholar
  73. 73.
    A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 124108 (2007).Google Scholar
  74. 74.
    L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).Google Scholar
  75. 75.
    J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).Google Scholar
  76. 76.
    J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).Google Scholar
  77. 77.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
  78. 78.
    W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).Google Scholar
  79. 79.
    C. O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985).Google Scholar
  80. 80.
    M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984).Google Scholar
  81. 81.
    J. Chen, J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 54, 3939 (1996).Google Scholar
  82. 82.
    M. Lüders, A. Ernst, W. M. Temmerman, Z. Szotek, and P. J. Durham, J. Phys. Condens. Matter 13, 8587 (2001).Google Scholar
  83. 83.
    J. Muskat, A. Wander, and N. M. Harrison, Chem. Phys. Lett. 342, 397 (2001).Google Scholar
  84. 84.
    A. Savin, C. J. Umrigar, and X. Gonze, Chem. Phys. Lett. 288, 391 (1998).Google Scholar
  85. 85.
    O. Gunnarsson and B. Lundqvist, Phys. Rev. B 13, 4274 (1976).Google Scholar
  86. 86.
    U. von Barth, Phys. Rev. A 20, 1693 (1979).Google Scholar
  87. 87.
    A. Görling, Phys. Rev. Lett. 85, 4229 (2000).Google Scholar
  88. 88.
    J. P. Perdew and M. Levy, Phys. Rev. B 31, 6264 (1985).Google Scholar
  89. 89.
    H. J. P. Freire and J. C. Egues, Phys. Rev. Lett. 99, 026801 (2007).Google Scholar
  90. 90.
    A. Görling, Phys. Rev. A 54, 3912 (1996); 59, 3359 (1999).Google Scholar
  91. 91.
    M. Levy and A. Nagy, Phys. Rev. Lett. 83, 4361 (1999).Google Scholar
  92. 92.
    P. Samal and M. K. Harbola, J. Phys. B 39, 4065 (2006).Google Scholar
  93. 93.
    A. K. Theophilou, J. Phys. C 12, 5419 (1979).Google Scholar
  94. 94.
    E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988); 37, 2809 (1988); 37, 2821 (1988).Google Scholar
  95. 95.
    Á. Nagy, Phys. Rev. A 49, 3074 (1994); 42, 4388 (1990).Google Scholar
  96. 96.
    N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U. Gross, Phys. Rev. Lett. 88, 033003 (2002).Google Scholar
  97. 97.
    R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999).Google Scholar
  98. 98.
    E. K. U. Gross, J. F. Dobson, and M. Petersilka in Ref. [(12)]; K. Burke and E. K. U. Gross in Ref. [(17)]Google Scholar
  99. 99.
    M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996). See also T. Grabo, M. Petersilka, and E. K. U. Gross, J. Mol. Struct. (Theochem) 501, 353 (2000).Google Scholar
  100. 100.
    M. E. Casida, in Ref. [(16)]; J. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys. 104, 5134 (1996).Google Scholar
  101. 101.
    S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends, Comput. Phys. Commun. 118, 119 (1999).Google Scholar
  102. 102.
    R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998).Google Scholar
  103. 103.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).Google Scholar
  104. 104.
    W. G. Aulbur, L. Jönsson, and J. W. Wilkins, Solid State Phys. 54, 1 (1999).Google Scholar
  105. 105.
    F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).Google Scholar
  106. 106.
    A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990); 72, 1248 (1994).Google Scholar
  107. 107.
    Z. Szotek, W. M. Temmermann, and H. Winter, Phys. Rev. Lett. 72, 1244 (1994).Google Scholar
  108. 108.
    P. Strange, A. Svane, W. M. Temmermann, Z. Szotek, and H. Winter, Nature 399, 756 (1999).Google Scholar
  109. 109.
    U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).Google Scholar
  110. 110.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).Google Scholar
  111. 111.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
  112. 112.
    C. Filippi, C. J. Umrigar, and M. Taut, J. Chem. Phys. 100, 1290 (1994).Google Scholar
  113. 113.
    P. Ziesche, S. Kurth, and J. P. Perdew, Comp. Mat. Sci. 11, 122 (1998).Google Scholar
  114. 114.
    P. J. Stephens, F. Devlin, C. Chabalowski, and M. Frisch, J. Phys. Chem 98, 11623 (1994).Google Scholar
  115. 115.
    A. D. Becke, J. Chem. Phys. 107, 8554 (1997). See also A. D. Becke, J. Comp. Chem. 20, 63 (1999).Google Scholar
  116. 116.
    D. J. Tozer and N. C. Handy, J. Chem. Phys. 108, 2545 (1998).Google Scholar
  117. 117.
    T. van Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998).Google Scholar
  118. 118.
    J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 120, 6898 (2004); Phys. Rev. B 69, 075102 (2004).Google Scholar
  119. 119.
    V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129 (2003).Google Scholar
  120. 120.
    A. D. Becke, J. Chem. Phys. 104, 1040 (1996).Google Scholar
  121. 121.
    J. Tao and J. P. Perdew, J. Chem. Phys. 122, 114102 (2005).Google Scholar
  122. 122.
    Y.-H. Kim, I.-H. Lee, S. Nagaraja, J.-P. Leburton, R. Q. Hood, and R. M. Martin, Phys. Rev. B 61, 5202 (2000).Google Scholar
  123. 123.
    S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem. 75, 889 (1999).Google Scholar
  124. 124.
    C. Adamo, M. Ernzerhof, and G. E. Scuseria, J. Chem. Phys. 112, 2643 (2000).Google Scholar
  125. 125.
    O. A. Vydrow and G. E. Scuseria, J. Chem. Phys. 121, 8187 (2004).Google Scholar
  126. 126.
    J. Gräfenstein, E. Kraka, and D. Cremer, J. Chem. Phys. 120, 524 (2004).Google Scholar
  127. 127.
    S. Patchkovskii and T. Ziegler, J. Chem. Phys. 116, 7806 (2002).Google Scholar
  128. 128.
    S. Goedecker and C. J. Umrigar, Phys. Rev. A 55, 1765 (1997).Google Scholar
  129. 129.
    B. G. Johnson, C. A. Gonzales, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 221, 100 (1994).Google Scholar
  130. 130.
    G. I. Csonka and B. G. Johnson, Theor. Chem. Acc. 99, 158 (1998).Google Scholar
  131. 131.
    U. Lundin and O. Eriksson, Int. J. Quantum Chem. 81, 247 (2001).Google Scholar
  132. 132.
    C. Legrand, E. Suraud, and P.-G. Reinhard, J. Phys. B 35, 1115 (2002).Google Scholar
  133. 133.
    J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 45, 101 (1992); 46, 5453 (1992); 47, 165 (1993).Google Scholar
  134. 134.
    E. Engel and S. H. Vosko, Phys. Rev. A 47, 2800 (1993).Google Scholar
  135. 135.
    T. Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, in Ref. [(13)]Google Scholar
  136. 136.
    T. Grabo and E. K. U. Gross, Int. J. Quantum Chem. 64, 95 (1997); Chem. Phys. Lett. 240, 141 (1995).Google Scholar
  137. 137.
    T. Kotani, Phys. Rev. Lett. 74, 2989 (1995).Google Scholar
  138. 138.
    M. Stadele, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev. Lett. 79, 2089 (1997); M. Stadele, M. Moukara, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev. B 59, 10031 (1999); Y.-H. Kim, M. Stadele, and R. M. Martin, Phys. Rev. A 60, 3633 (1999).Google Scholar
  139. 139.
    S. Kümmel and J. P. Perdew, Phys. Rev. B 68, 035103 (2003).Google Scholar
  140. 140.
    W. Yang and Q. Qu, Phys. Rev. Lett. 89, 143002 (2002).Google Scholar
  141. 141.
    V. N. Staroverov, G. E. Scuseria, and E. R. Davidson, J. Chem. Phys. 125, 081104 (2006).Google Scholar
  142. 142.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).Google Scholar
  143. 143.
    M. Cafiero and C. Gonzalez, Phys. Rev. A 71, 042505 (2005).Google Scholar
  144. 144.
    M. P. Lima, L. S. Pedroza, A. J. R. da Silva, A. Fazzio, D. Vieira, H. J. P. Freire, and K. Capelle, J. Chem. Phys. 126, 144107 (2007).Google Scholar
  145. 145.
    O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Phys. Rev. B 20, 3136 (1979).Google Scholar
  146. 146.
    A. Cancio, M. Y. Chou, and R. O. Hood, Phys. Rev. B 64, 115112 (2002).Google Scholar
  147. 147.
    P. García-González, Phys. Rev. B 62, 2321 (2000).Google Scholar
  148. 148.
    N. Rösch and S. B. Trickey, J. Chem. Phys. 106, 8940 (1997).Google Scholar
  149. 149.
    P. Schwerdtfeger, in Ref. [(3)]Google Scholar
  150. 150.
    P. Fuentealba, in Ref. [(3)]Google Scholar
  151. 151.
    C. Pouchana, D. Y. Zhang, and D. Begue, in Ref. [(3)]Google Scholar
  152. 152.
    D. C. Patton and M. R. Pederson, Phys. Rev. A 56, 2495 (1997).Google Scholar
  153. 153.
    W. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. Lett. 80, 4153 (1998).Google Scholar
  154. 154.
    M. Lein, J. F. Dobson, and E. K. U. Gross, J. Comp. Chem. 20, 12 (1999).Google Scholar
  155. 155.
    J. F. Dobson and B. P. Dinte, Phys. Rev. Lett. 76, 1780 (1996).Google Scholar
  156. 156.
    Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).Google Scholar
  157. 157.
    E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101 (2005).Google Scholar
  158. 158.
    A. D. Becke and E. R. Johnson, J. Chem. Phys. 123, 154101 (2005).Google Scholar
  159. 159.
    A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007).Google Scholar
  160. 160.
    M. J. Frisch et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.Google Scholar
  161. 161.
    J. Olsen, P. Jørgensen, H. Koch, A. Balkova, and R. J. Bartlett, J. Chem. Phys. 104, 8007 (1996).Google Scholar
  162. 162.
    F. D. Giacomo, F. A. Gianturco, F. Raganelli, and F. Schneider, J. Chem. Phys. 101, 3952 (1994).Google Scholar
  163. 163.
    J. M. L. Martin, Spectrochim. Acta A 57, 875 (2001).Google Scholar
  164. 164.
    E. K. U. Gross, J. F. Dobson, and M. Petersilka, in Density functional theory I–IV, edited by R. F. Nalewajski, Topics in Current Chemistry, vols. 180–183 (Springer, Berlin, 1996).Google Scholar
  165. 165.
    K. Burke and E. K. U. Gross, in Density functionals: theory and applications, edited by D. Joulbert, Lecture Notes in Physics, vol. 500 (Springer, Berlin, 1998).Google Scholar
  166. 166.
    M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. K. U. Gross, eds., Time-dependent density functional theory, Lecture Notes in Physics, vol. 706 (Springer, Berlin, 2006).Google Scholar
  167. 167.
    G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979).Google Scholar
  168. 168.
    K. Capelle and V. L. Libero, Int. J. Quantum Chem. 105, 679 (2005).Google Scholar
  169. 169.
    L. M. Sandratskii, Adv. Phys. 47, 91 (1998).Google Scholar
  170. 170.
    L. Nordström and D. Singh, Phys. Rev. Lett. 76, 4420 (1996).Google Scholar
  171. 171.
    K. Capelle and L. N. Oliveira, Phys. Rev. B 61, 15228 (2000).Google Scholar
  172. 172.
    E. Engel, T. Auth, and R. M. Dreizler, Phys. Rev. B 64, 235126 (2001).Google Scholar
  173. 173.
    A. Trellakis, Phys. Rev. Lett. 91, 056405 (2003).Google Scholar
  174. 174.
    W. Cai and G. Galli, Phys. Rev. Lett. 92, 186402 (2004).Google Scholar
  175. 175.
    R. M. Dickson and T. Ziegler, J. Phys. Chem. 100, 5286 (1996).Google Scholar
  176. 176.
    G. Schreckenbach and T. Ziegler, J. Phys. Chem. 99, 606 (1995).Google Scholar
  177. 177.
    G. Magyarfalvi and P. Pulay, J. Chem. Phys. 119, 1350 (2003).Google Scholar
  178. 178.
    S. N. Maximoff and G. E. Scuseria, Chem. Phys. Lett. 390, 408 (2004).Google Scholar
  179. 179.
    V. G. Malkin, O. L. Malkina, and D. R. Salahub, Chem. Phys. Lett. 204, 80 (1993).Google Scholar
  180. 180.
    P. Pyykkö, Adv. Quantum Chem. 11, 353 (1978).Google Scholar
  181. 181.
    O. Eriksson and J. Wills, in The augmented spherical wave method: a comprehensive treatment, edited by H. Dreyssé, Lecture Notes in Physics, vol. 535, pp. 247–285 (Springer, Berlin/Heidelberg, 1999).Google Scholar
  182. 182.
    M. Eisenbach, B. L. Györffy, G. M. Stocks, and B. Újfalussy, Phys. Rev. B 65, 144424 (2002).Google Scholar
  183. 183.
    H. Ebert, Rep. Prog. Phys. 59, 1665 (1996).Google Scholar
  184. 184.
    K. Capelle, E. K. U. Gross, and B. L. Györffy, Phys. Rev. Lett. 78, 3753 (1997).Google Scholar
  185. 185.
    G. Vignale and M. Rasolt, Phys. Rev. B 37, 10685 (1988).Google Scholar
  186. 186.
    M. Rasolt and F. Perrot, Phys. Rev. Lett. 69, 2563 (1992).Google Scholar
  187. 187.
    G. Vignale and M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987).Google Scholar
  188. 188.
    E. Orestes, T. Marcasso, and K. Capelle, Phys. Rev. A 68, 022105 (2003).Google Scholar
  189. 189.
    E. Orestes, A. B. F. da Silva, and K. Capelle, Int. J. Quantum Chem. 103, 516 (2005).Google Scholar
  190. 190.
    J. Tao and J. P. Perdew, Phys. Rev. Lett. 95, 196403 (2005).Google Scholar
  191. 191.
    M. Ferconi and G. Vignale, Phys. Rev. B 50, 14722 (1994).Google Scholar
  192. 192.
    O. Steffens, U. Rössler, and M. Suhrke, Europhys. Lett. 42, 529 (1998).Google Scholar
  193. 193.
    M. Pi, M. Barranco, A. Emperador, E. Lipparini, and L. Serra, Phys. Rev. B 57, 14783 (1998).Google Scholar
  194. 194.
    S. M. Colwell and N. C. Handy, Chem. Phys. Lett. 217, 271 (1994).Google Scholar
  195. 195.
    A. M. Lee, S. M. Colwell, and N. C. Handy, Chem. Phys. Lett. 229, 225 (1994).Google Scholar
  196. 196.
    H. Ebert, M. Battocletti, and E. K. U. Gross, Europhys. Lett. 40, 545 (1997).Google Scholar
  197. 197.
    G. Vignale, Phys. Rev. B 47, 10105 (1993).Google Scholar
  198. 198.
    S. Sharma, S. Pittalis, S. Kurth, S. Shallcross, J. K. Dewhurst, and E. K. U. Gross, Phys. Rev. B 76, 100401 (2007).Google Scholar
  199. 199.
    C. J. Grayce and R. A. Harris, Phys. Rev. A 50, 3089 (1994).Google Scholar
  200. 200.
    F. R. Salsbury, Jr and R. A. Harris, J. Chem. Phys. 108, 6102 (1998).Google Scholar
  201. 201.
    K. Capelle, Phys. Rev. A 60, R733 (1999).Google Scholar
  202. 202.
    R. W. Danz and M. L. Glasser, Phys. Rev. B 4, 94 (1971).Google Scholar
  203. 203.
    P. Skudlarski and G. Vignale, Phys. Rev. B 48, 8547 (1993).Google Scholar
  204. 204.
    Y. Takada and H. Goto, J. Phys. Condens. Matter 10, 11315 (1998).Google Scholar
  205. 205.
    G. Vignale, M. Rasolt, and D. J. W. Geldart, Phys. Rev. B 37, 2502 (1988).Google Scholar
  206. 206.
    G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett. 79, 4878 (1997).Google Scholar
  207. 207.
    R. Resta, Rev. Mod. Phys. 66, 899 (1994).Google Scholar
  208. 208.
    G. Nenciu, Rev. Mod. Phys. 63, 91 (1991).Google Scholar
  209. 209.
    R. W. Nunes and D. Vanderbilt, Phys. Rev. Lett. 73, 712 (1994).Google Scholar
  210. 210.
    X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett. 74, 4035 (1995).Google Scholar
  211. 211.
    P. Umari and A. Pasquarello, Int. J. Quantum Chem. 101, 666 (2005).Google Scholar
  212. 212.
    D. Vanderbilt, Phys. Rev. Lett. 79, 3966 (1997).Google Scholar
  213. 213.
    R. Resta, Phys. Rev. Lett. 77, 2265 (1996).Google Scholar
  214. 214.
    X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett. 78, 294 (1997).Google Scholar
  215. 215.
    R. M. Martin and G. Ortiz, Phys. Rev. B 56, 1124 (1997).Google Scholar
  216. 216.
    F. Kootstra, P. L. de Boeij, and J. G. Snijders, J. Chem. Phys. 112, 6517 (2000).Google Scholar
  217. 217.
    G. F. Bertsch, J.-I. Iwata, A. Rubio, and K. Yabana, Phys. Rev. B 62, 7998 (2000).Google Scholar
  218. 218.
    M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger, and J. G. Snijders, J. Chem. Phys. 118, 1044 (2003).Google Scholar
  219. 219.
    D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett. 95, 137204 (2005).Google Scholar
  220. 220.
    J. Shi, G. Vignale, D. Xiao, and Q. Niu, Phys. Rev. Lett. 99, 197202 (2007).Google Scholar
  221. 221.
    T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Phys. Rev. Lett. 95, 137205 (2005).Google Scholar
  222. 222.
    D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta, Phys. Rev. B 74, 024408 (2006).Google Scholar
  223. 223.
    A. M. Lee, N. C. Handy, and S. M. Colwell, J. Chem. Phys. 103, 10095 (1995).Google Scholar
  224. 224.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986).Google Scholar
  225. 225.
    N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle, Phys. Rev. Lett. 90, 146402 (2003). N. A. Lima, L. N. Oliveira, and K. Capelle, Europhys. Lett. 60, 601 (2002). M. F. Silva, N. A. Lima, A. L. Malvezzi, and K. Capelle, Phys. Rev. B 71, 125130 (2005).Google Scholar
  226. 226.
    R. J. Magyar and K. Burke, Phys. Rev. A 70, 032508 (2004).Google Scholar
  227. 227.
    V. L. Líbero and K. Capelle, Phys. Rev. B 68, 024423 (2003). P. E. G. Assis, V. L. Libero, and K. Capelle, Phys. Rev. B 71, 052402 (2005). See also Ref. [(168)]Google Scholar
  228. 228.
    V. L. Libero and K. Capelle, cond-mat/0506206.Google Scholar
  229. 229.
    H. Chermette, J. Comp. Chem. 20, 129 (1999).Google Scholar
  230. 230.
    F. D. Proft and P. Geerlings, Chem. Rev. 101, 1451 (2001).Google Scholar
  231. 231.
    Veillard and Clementi, J. Chem. Phys. 49, 2415 (1968).Google Scholar
  232. 232.
    E. Orestes, A. B. F. da Silva, and K. Capelle, Physical Chemistry – Chemical Physics, accepted (2009). Available in electronic form as arXiv:0712.1586.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ednilsom Orestes
    • 1
    • 2
  • Henrique J. P. Freire
    • 2
  • Klaus Capelle
    • 2
  1. 1.Departamento de Química e Física Molecular, Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Departamento de Física e Informática, Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations