# Topics in the Mathematical Modeling of Localized Corrosion

• Kurt R. Hebert
• Bernard Tribollet
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 44)

## Abstract

Localized corrosion describes dissolution processes concentrated at specific areas on the surfaces of metals. In some types of localized corrosion, enhanced dissolution rates arise from partial or complete destruction of the protection normally afforded by the passive oxide film covering the metal surface. Oxide breakdown can be due to mechanical rupture (stress corrosion cracking), the chemical action of aggressive anions such as chloride (pitting corrosion), the impaction of solid particles on the surface (erosion corrosion), or the concentration of corrosion products within small solution-filled gaps (crevice corrosion). Other localized corrosion processes are initiated at metal compositional inhomogeneities such as grain boundaries in alloys (intergranular corrosion), or interfaces between dissimilar metals (galvanic corrosion). The economic impact of all forms of localized corrosion is severe. For example, pitting and stress corrosion cracking together account for about one fourth of equipment failures in the chemical process industries.

Metal dissolution rates during localized corrosion are high enough so that large concentration or potential gradients are typically found near the dissolving metal surface. Characterization of these gradients is a necessary precursor for understanding the mechanisms controlling the corrosion rate. Thus, experimental research on localized corrosion has always been closely coupled to quantitative analysis of mass transport processes by mathematical modeling. In this chapter, three examples are presented which illustrate the range of models applied to localized corrosion processes, reflecting the particular interests of the authors. Section II, written by Hebert, is a review of recent work on the modeling of pitting corrosion. The remainder of the chapter communicates results of recent work by Tribollet on galvanic corrosion (Sect. III) and on the simulation of the impedance in crevice-type geometries.

## Keywords

Crevice Corrosion Electrolyte Film Diffusion Impedance Transmission Line Model Repassivation Potential
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
J.A. Collins and M.L. Monack, Mater. Prot. Perform. 12 (1973) 11.Google Scholar
2. 2.
G. Engelhardt and D.D. Macdonald, Corrosion 54 (1998) 469.
3. 3.
G. Engelhardt and D.D. Macdonald, Corros. Sci. 46 (2004) 2755.
4. 4.
D.D. Macdonald, C. Liu, M. Urquidi-Macdonald, G.H. Stickford, B. Hindin, A.K. Agrawal and K. Krist, Corrosion 50 (1994) 761.
5. 5.
A. Turnbull, L.N. McCartney and S. Zhou, Corros. Sci. 48 (2006) 2084.
6. 6.
A. Anderko, N. Sridhar and D.S. Dunn, Corros. Sci. 46 (2004) 1583.
7. 7.
D.S. Dunn, G.A. Cragnolino and N. Sridhar, Corrosion 56 (2000) 90.
8. 8.
N. Sridhar and G.A. Cragnolino, Corrosion 49 (1993) 885.
9. 9.
T.T. Lunt, J.R. Scully, V. Brusamarello, A.S. Mikhailov and J.L. Hudson, J. Electrochem. Soc. 149 (2002) B163.
10. 10.
C. Punckt, M. Bolscher, H.H. Rotermund, A.S. Mikhailov, L. Organ, N. Budiansky, J.R. Scully and J.L. Hudson, Science 305 (2004) 1133.
11. 11.
J. Newman and K.E. Thomas-Alyea, Electrochemical Systems, Third ed., Wiley, Hoboken, NJ, 2004.Google Scholar
12. 12.
S.M. Sharland, Corros. Sci. 27 (1987) 289.
13. 13.
A. Turnbull, Br. Corros. J. 28 (1993) 297.Google Scholar
14. 14.
S.M. Sharland, C.P. Jackson and A.J. Diver, Corros. Sci. 29 (1989) 1149.
15. 15.
S.M. Sharland and P.W. Tasker, Corros. Sci. 28 (1988) 603.
16. 16.
A. Turnbull and M.K. Gardner, Corros. Sci. 22 (1982) 661.
17. 17.
J.N. Harb and R.C. Alkire, J. Electrochem. Soc. 138 (1991) 3568.
18. 18.
J.N. Harb and R.C. Alkire, Corros. Sci. 29 (1989) 31.
19. 19.
M.L. Kronenberg, J.C. Banter, E. Yeager and F. Hovorka, J. Electrochem. Soc. 110 (1963) 1007.
20. 20.
J.N. Harb and R.C. Alkire, J. Electrochem. Soc. 138 (1991) 2594.
21. 21.
M.W. Verbrugge, D.R. Baker and J. Newman, J. Electrochem. Soc. 140 (1993) 2530.
22. 22.
G. Engelhardt and H.H. Strehblow, Corros. Sci. 36 (1994) 1711.
23. 23.
H.K. Kuiken, J.J. Kelly and P.H.L. Notten, J. Electrochem. Soc. 133 (1986) 1217.
24. 24.
G. Engelhardt, M. Urquidi-Macdonald and D.D. Macdonald, Corros. Sci. 39 (1997) 419.
25. 25.
G. Engelhardt and D.D. Macdonald, Corros. Sci. 46 (2004) 1159.
26. 26.
M. Verhoff and R. Alkire, J. Electrochem. Soc. 147 (2000) 1349.
27. 27.
M. Verhoff and R. Alkire, J. Electrochem. Soc. 147 (2000) 1359.
28. 28.
E.G. Webb and R.C. Alkire, J. Electrochem. Soc. 149 (2002) B286.
29. 29.
M. Kamrunnahar, R.D. Braatz and R.C. Alkire, J. Electrochem. Soc. 151 (2004) B90.
30. 30.
J.R. Gray, C. Homescu, L.R. Petzold and R.C. Alkire, J. Electrochem. Soc. 152 (2005) B277.
31. 31.
N.J. Laycock and S.P. White, J. Electrochem. Soc. 148 (2001) B264.
32. 32.
N.J. Laycock, S.P. White, J.S. Noh, P.T. Wilson and R.C. Newman, J. Electrochem. Soc. 145 (1998) 1101.
33. 33.
T. Hakkarainen, Mater. Sci. Forum 8 (1986) 81.
34. 34.
G.T. Gaudet, W.T. Mo, T.A. Hatton, J.W. Tester, J. Tilly, H.S. Isaacs and R.C. Newman, AlChE J. 32 (1986) 949.
35. 35.
T. Hakkarainen, in: A. Turnbull (Ed.), Corrosion Chemistry within Pits, Crevices and Cracks, Her Majesty’s Stationery Office, London, 1987, p. 17.Google Scholar
36. 36.
P.C. Pistorius and G.T. Burstein, Philos. Trans. R. Soc. Lond., Ser. A 341 (1992) 531.Google Scholar
37. 37.
U. Steinsmo and H.S. Isaacs, J. Electrochem. Soc. 140 (1993) 643.
38. 38.
R.S. Alwitt, H. Uchi, T.R. Beck and R.C. Alkire, J. Electrochem. Soc. 131 (1984) 13.
39. 39.
D. Goad, J. Electrochem. Soc. 144 (1997) 1965.
40. 40.
K.R. Hebert, J. Electrochem. Soc. 148 (2001) B236.
41. 41.
Y.S. Tak and K.R. Hebert, J. Electrochem. Soc. 141 (1994) 1453.
42. 42.
Y.S. Tak, E.R. Henderson and K.R. Hebert, J. Electrochem. Soc. 141 (1994) 1446.
43. 43.
N. Sinha and K.R. Hebert, J. Electrochem. Soc. 147 (2000) 4111.
44. 44.
Y. Tak, N. Sinha and K.R. Hebert, J. Electrochem. Soc. 147 (2000) 4103.
45. 45.
K. Hebert and R. Alkire, J. Electrochem. Soc. 135 (1988) 2146.
46. 46.
Y. Zhou and K.R. Hebert, J. Electrochem. Soc. 145 (1998) 3100.
47. 47.
J.R. Galvele, J. Electrochem. Soc. 123 (1976) 464.
48. 48.
K. Hebert and R. Alkire, J. Electrochem. Soc. 135 (1988) 2447.
49. 49.
J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, Plenum, New York, 1977.Google Scholar
50. 50.
K.R. Hebert, Proc. – Electrochem. Soc. 99–14 (1999) 54.Google Scholar
51. 51.
R.A. Robinson and R.H. Stokes, Electrolyte Solutions; The Measurement and Interpretation of Conductance, Chemical Potential, and Diffusion in Solutions of Simple Electrolytes, 2nd ed., Butterworths, London, 1959.Google Scholar
52. 52.
R.H. Perry and C.H. Chilton (Eds.), Perry’s Chemical Engineers’ Handbook, 5th ed., McGraw-Hill, New York, 1973.Google Scholar
53. 53.
J. Newman, J. Electrochem. Soc. 113 (1966) 1235.
54. 54.
J. Newman, J. Electrochem. Soc. 113 (1966) 501.
55. 55.
J.B. Jorcin, C. Blanc, N. Pebere, B. Tribollet and V. Vivier, J. Electrochem. Soc. 155 (2008) C46.
56. 56.
N. Dimitrov, J.A. Mann and K. Sieradzki, J. Electrochem. Soc. 146 (1999) 98.
57. 57.
M.B. Vukmirovic, N. Dimitrov and K. Sieradzki, J. Electrochem. Soc. 149 (2002) B428.
58. 58.
C.R. Christensen and F.C. Anson, Anal. Chem. 35 (1963) 205.
59. 59.
A.T. Hubbard and F.C. Anson, Anal. Chem. 36 (1964) 723.
60. 60.
A.T. Hubbard and F.C. Anson, Anal. Chem. 38 (1966) 58.
61. 61.
A.T. Hubbard and F.C. Anson, in: A.J. Bard (Ed.), Electroanalytical Chemistry, Marcel Dekker, New York, 1970, pp. 129.Google Scholar
62. 62.
C. Fiaud, M. Keddam, A. Kadri and H. Takenouti, Electrochim. Acta 32 (1987) 445.
63. 63.
E. Remita, E. Sutter, B. Tribollet, F. Ropital, X. Longaygue, C. Taravel-Condat and N. Desamais, Electrochim. Acta 52 (2007) 7715.
64. 64.
K. Micka, K. Kratochvilova and J. Klima, Electrochim. Acta 42 (1997) 1005.
65. 65.
T. Jacobsen and K. West, Electrochim. Acta 40 (1995) 255.
66. 66.
R. de Levie, in: P. Delahay (Ed.), Advances in Electrochemistry and Electrochemical Engineering, New York, Interscience, 1967, pp. 329.Google Scholar
67. 67.
C. Gabrielli, M. Keddam, N. Portail, P. Rousseau, H. Takenouti and V. Vivier, J. Phys. Chem. B 110 (2006) 20478.Google Scholar