Monte Carlo Simulations of the Underpotential Deposition of Metal Layers on Metallic Substrates: Phase Transitions and Critical Phenomena

  • M. Cecilia Giménez
  • Ezequiel P. M. Leiva
  • Ezequiel Albano
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 44)


The underpotential deposition (UPD) of metal submonolayers and monolayers on metal substrates for the systems Ag/Au(100), Au/Ag(100), Ag/Pt(100), Pt/Ag(100), Au/Pt(100), Pt/Au(100), Au/Pd(100), and Pd/Au(100) is studied by means of lattice Monte Carlo simulations. Interaction energies among different metal atoms are evaluated by using the embedded-atom method. A wide variety of physical situations are found and discussed, including systems exhibiting the sequential adsorption of atoms on kink and step sites, prior to the completion of the monolayer. On the other hand, for other systems, we observe the formation of 2D alloys between substrate and adsorbate atoms, and our predictions are compared with available experimental data. The adsorption isotherms determined for most of the systems studied exhibit sharp transitions in the coverage when the chemical potential is finely tuned. In particular, on the basis of the fact that the UPD of Ag atoms on the Au(100) surface exhibits a sharp first-order phase transition, at a well-defined value of the (coexistence) chemical potential, we also performed extensive simulations aimed at investigating the hysteretic dynamic behavior of the system close to coexistence upon the application of a periodic potential signal.


Adsorption Isotherm Adsorption Energy Adsorbate Atom Monte Carlo Step Coverage Degree 



This work was financially supported by CONICET, UNLP, SecyT(UNC), and Agencia Nacional de Promoción Científica y Tecnológica(Argentina), PAE nos. 22711, PICT06-00036, and PICT 06-12485.


  1. 1.
    M. Acharyya, Phys. Rev. E 56 (1997) 1234.CrossRefGoogle Scholar
  2. 2.
    M. Acharyya, Phys. Rev. E 56 (1997) 2407.CrossRefGoogle Scholar
  3. 3.
    M. Acharyya, Int. J. Mod. Phys. C 16 (2005) 1631.CrossRefGoogle Scholar
  4. 4.
    E. V. Albano, Appl. Phys. A 55 (1992) 226.CrossRefGoogle Scholar
  5. 5.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.Google Scholar
  6. 6.
    A. Aramata, Underpotential deposition on single-crystal metals, in Modern Aspects of Electrochemistry, Vol 31, pp 181–250, J. O’M. Bockris, Ralphe E. White and B. E. Conway (eds), Springer,New York, 2002.Google Scholar
  7. 7.
    K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, Springer, Berlin, 1988.Google Scholar
  8. 8.
    E. Budevski, G. Staikov and W. J. Lorenz, Electrochemical Phase Formation and Growth, VCH, Weinheim, 1996.CrossRefGoogle Scholar
  9. 9.
    B. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71 (1999) 847.CrossRefGoogle Scholar
  10. 10.
    K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95 (1991) 1090; Phys. Rev. Lett. 68 (1992) 604.Google Scholar
  11. 11.
    S. M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B 33 (1986) 7983.CrossRefGoogle Scholar
  12. 12.
    H. Fujisaka, H. Tutu and P. A. Rikvold, Phys. Rev. E 63 (2001) 016120; 63 (2001) 059903(E).Google Scholar
  13. 13.
    S. G. García, D. Salinas, C. Mayer, E. Schmidt, G. Staikov, W. J. Lorenz, Electrochim. Acta 43(1998) 3007.CrossRefGoogle Scholar
  14. 14.
    H. Gerischer, D. M. Kolb and M. Przasnyski, Surf. Sci. 43 (1974) 662.CrossRefGoogle Scholar
  15. 15.
    M. C. Giménez, M. G. del Pópolo and E. P. M. Leiva, Electrochim. Acta 45 (1999) 699–712.CrossRefGoogle Scholar
  16. 16.
    M. C. Giménez and E. P. M. Leiva, Langmuir 19 (2003) 10538–10549.CrossRefGoogle Scholar
  17. 17.
    M. C. Giménez and E. V. Albano, J. Phys. Chem. C 111 (2007) 1809–1815.CrossRefGoogle Scholar
  18. 18.
    W. Herzog and D. W. M. Arrigan, Trends Anal. Chem. 24(3) (2005) 208–217.CrossRefGoogle Scholar
  19. 19.
    T. Hill, Nano Lett. 1 (2001) 273–275.CrossRefGoogle Scholar
  20. 20.
    H. Jang and J. Grimson, Phys. Rev. E 63 (2001) 066119.CrossRefGoogle Scholar
  21. 21.
    H. Jang, J. Grimson and C. K. Hall, Phys. Rev. B 67 (2003) 094411; Phys. Rev. E 68 (2003) 046115.Google Scholar
  22. 22.
    L. A. Kibler, M. Kleinert and D. M. Kolb, Surf. Sci. 461 (2000) 155.CrossRefGoogle Scholar
  23. 23.
    D. M. Kolb in Advances in Electrochemistry and Electrochemical Engineering, Vol 11, p. 125, H. Gerischer and C. W. Tobias (eds), Wiley, New York, 1978.Google Scholar
  24. 24.
    D. M. Kolb, M. Przasnyski and H. Gerischer, J. Electroanal. Chem. 54 (1974) 25.CrossRefGoogle Scholar
  25. 25.
    G. Korniss, P. A. Rikvold and M. A. Novotny, Phys. Rev. E 66 (2002) 056127.CrossRefGoogle Scholar
  26. 26.
    G. Korniss, C. J. White, P. A. Rikvold and M. A. Novotny, Phys. Rev. E 63 (2000) 016120.CrossRefGoogle Scholar
  27. 27.
    E. Leiva, J. Electroanal. Chem. 350 (1993) 1.CrossRefGoogle Scholar
  28. 28.
    E. Leiva and W. Schmickler, Chem. Phys. Lett. 160 (1989) 75.CrossRefGoogle Scholar
  29. 29.
    E. Leiva and W. Schmickler, Electrochim. Acta 39 (1994) 1015; Electrochim. Acta 40 (1995) 37.Google Scholar
  30. 30.
    A. C. Lopez and E. V. Albano, J. Chem. Phys. 112 (2000) 3890.CrossRefGoogle Scholar
  31. 31.
    E. Loscar and E. V. Albano, Rep. Prog. Phys. 66 (2003) 1343.CrossRefGoogle Scholar
  32. 32.
    E. Machado, G. Buendía, P. Rikvold and R. Ziff, Phys. Rev. E 71 (2005) 016120.CrossRefGoogle Scholar
  33. 33.
    E. Machado, G. Buendía and P. Rikvold, Phys. Rev. E 71 (2005) 031603.CrossRefGoogle Scholar
  34. 34.
    O. A. Oviedo, E. P. M. Leiva and M. I. Rojas, Electrochim. Acta 51 (2006) 3526–3536.CrossRefGoogle Scholar
  35. 35.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in FORTRAN, The Art of Scientific Computing, Second Edition, Cambridge University Press, Cambridge, 1992.Google Scholar
  36. 36.
    P. A. Rikvold and B. M. Gorman, in Annual Reviews of Computational Physics I, D. Stauffer (ed), World Scientific, Singapore, 1994.Google Scholar
  37. 37.
    P. A. Rikvold, H. Tomita, S. Miyashita and S. W. Sides, Phys. Rev. E 49 (1994) 5080.CrossRefGoogle Scholar
  38. 38.
    M. Rojas, Surf. Sci. 569 (2004) 76.CrossRefGoogle Scholar
  39. 39.
    M. I. Rojas, M. G. Del Pópolo and E. P. M. Leiva, Langmuir 16 (2000) 9539–9546.CrossRefGoogle Scholar
  40. 40.
    M. G. Samant, M. F. Toney, G. L. Borges, L. Blum and O. R. Melroy, J. Phys. Chem. 92 (1998) 220.CrossRefGoogle Scholar
  41. 41.
    C. Sánchez and E. P. M. Leiva, Handbook of fuel cell technology, in Catalysis by upd Metals, Chapter 5, Vol 2, Part 1, pp 47–61, W. Vielstich, A. Lamm and H. Gasteiger (eds), Wiley, Chichester, 2003.Google Scholar
  42. 42.
    C. G. Sánchez, E. P. M. Leiva and J. Kohanoff, Langmuir 17 (2001) 2219–2227.CrossRefGoogle Scholar
  43. 43.
    S. W. Sides, P. A. Rikvold and M. A. Novotny, Phys. Rev. Lett. 81 (1998) 834; Phys. Rev. E 59 (1999) 2710.Google Scholar
  44. 44.
    H. Siegenthaler, K. Jüttner, E. Schmidt and W. J. Lorenz, Electrochim. Acta 23 (1978) 1009.CrossRefGoogle Scholar
  45. 45.
    T. Tomé and M. J. de Oliveira, Phys. Rev. A 41 (1990) 4251.CrossRefGoogle Scholar
  46. 46.
    S. Trasatti, Z. Phys. Chem. N. F. 98 (1975).Google Scholar
  47. 47.
    H. F. Waibel, M. Kleinert, L. A. Kibler and D. M. Kolb, Electrochim. Acta 47 (2002) 1461.CrossRefGoogle Scholar
  48. 48.
    T. Yasui, H. Tutu, M. Yamamoto and H. Fujisaka, Phys. Rev. E 66 (2002) 036123; 67 (2003) 019901(E).Google Scholar
  49. 49.
    R. Ziff, E. Gulari and Y. Barshad, Phys. Rev. Lett. 56 (1986) 2553.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Cecilia Giménez
    • 1
  • Ezequiel P. M. Leiva
    • 2
  • Ezequiel Albano
    • 3
  1. 1.Physics DepartmentSan Luis UniversitySan LuisArgentina
  2. 2.INFIQC, Chemical Sciences FacultyCórdoba National UniversityCórdobaArgentina
  3. 3.INIFTA, CCT-La PlataCONICET, UNLPLa PlataArgentina

Personalised recommendations