Advertisement

Applications of Computer Simulations and Statistical Mechanics in Surface Electrochemistry

  • P. A. Rikvold
  • I. Abou Hamad
  • T. Juwono
  • D. T. Robb
  • M. A. Novotny
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 44)

Summary

We present a brief survey of methods that utilize computer simulations and quantum and statistical mechanics in the analysis of electrochemical systems. The methods, molecular dynamics and Monte Carlo simulations and quantum-mechanical density-functional theory, are illustrated with examples from simulations of lithium-battery charging and electrochemical adsorption of bromine on single-crystal silver electrodes.

Keywords

Monte Carlo Graphite Sheet Experimental Adsorption Isotherm Kinetic Monte Carlo Simulation Electrochemical Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by US National Science Foundation grants no. DMR-0240078 and DMR-0802288 (Florida State University) and DMR-0509104 (Clarkson University) and by ABSL Power Solutions, award no. W15P7T06CP408.

References

  1. 1.
    D. M. Kolb, Surf. Sci. 500, 722 (2002).CrossRefGoogle Scholar
  2. 2.
    T. Tansel and O. M. Magnussen, Phys. Rev. Lett. 96, 026101 (2006).CrossRefGoogle Scholar
  3. 3.
    P. Vashishta, R. K. Kalia, and A. Nakano, J. Phys. Chem. B 110, 3727 (2006).CrossRefGoogle Scholar
  4. 4.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1992).Google Scholar
  5. 5.
    J. M. Haile, Molecular Dynamics Simulation, Elementary Methods (Wiley, New York, 1992).Google Scholar
  6. 6.
    D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd ed. (Cambridge University Press, Cambridge, 2004).Google Scholar
  7. 7.
    A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997).CrossRefGoogle Scholar
  8. 8.
    A. F. Voter, J. Chem. Phys. 106, 4665 (1997).CrossRefGoogle Scholar
  9. 9.
    J. Wang, R. Wolf, J. Caldwell, P. Kollman, and D. Case, J. Comp. Chem. 25, 1157 (2004).CrossRefGoogle Scholar
  10. 10.
    J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comp. Chem. 26, 1781 (2005).CrossRefGoogle Scholar
  11. 11.
    A. D. W. Humphrey and K. Schulten, J. Mol. Graphics 14, 33 (1996).CrossRefGoogle Scholar
  12. 12.
    G. J. Martyna, D. J. Tobias, and M. L. Klein, J. Chem. Phys. 101, 4177 (1994).CrossRefGoogle Scholar
  13. 13.
    S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, J. Chem. Phys. 103, 4613 (1995).CrossRefGoogle Scholar
  14. 14.
    S. J. Mitchell, S. Wang, and P. A. Rikvold, Faraday Discuss. 121, 53 (2002).CrossRefGoogle Scholar
  15. 15.
    D. Huckaby and L. Blum, J. Chem. Phys. 92, 2646 (1990).CrossRefGoogle Scholar
  16. 16.
    L. Blum and D. A. Huckaby, J. Electroanal. Chem. 375, 69 (1994).CrossRefGoogle Scholar
  17. 17.
    L. Blum, D. A. Huckaby, and M. Legault, Electrochim. Acta 41, 2207 (1996).CrossRefGoogle Scholar
  18. 18.
    M. Gamboa-Aldeco, P. Mrozek, C. K. Rhee, A. Wieckowski, P. A. Rikvold, and Q. Wang, Surf. Sci. Lett. 297, L135 (1993).CrossRefGoogle Scholar
  19. 19.
    P. A. Rikvold, M. Gamboa-Aldeco, J. Zhang, M. Han, Q. Wang, H. L. Richards, and A. Wieckowski, Surf. Sci. 335, 389 (1995).CrossRefGoogle Scholar
  20. 20.
    J. Zhang, Y.-S. Sung, P. A. Rikvold, and A. Wieckowski, J. Chem. Phys. 104, 5699 (1996).CrossRefGoogle Scholar
  21. 21.
    T. L. Einstein, Langmuir 7, 2520 (1991).CrossRefGoogle Scholar
  22. 22.
    P. Hyldgaard and T. L. Einstein, J. Cryst. Growth 275, e1637 (2005).CrossRefGoogle Scholar
  23. 23.
    T. J. Stasevich, T. L. Einstein, and S. Stolbov, Phys. Rev. B 73, 115426 (2006).CrossRefGoogle Scholar
  24. 24.
    P. A. Rikvold, J. B. Collins, G. D. Hansen, and J. D. Gunton, Surf. Sci. 203, 500 (1988).CrossRefGoogle Scholar
  25. 25.
    J. B. Collins, P. Sacramento, P. A. Rikvold, and J. D. Gunton, Surf. Sci. 221, 277 (1989).CrossRefGoogle Scholar
  26. 26.
    W. Schmickler, Interfacial Electrochemistry (Oxford University Press, New York, 1996).Google Scholar
  27. 27.
    K. J. Vetter and J. W. Schultze, Ber. Bunsenges. Phys. Chem. 76, 920 (1972).Google Scholar
  28. 28.
    K. J. Vetter and J. W. Schultze, Ber. Bunsenges. Phys. Chem. 76, 927 (1972).Google Scholar
  29. 29.
    P. A. Rikvold, Th. Wandlowski, I. Abou Hamad, S. J. Mitchell, and G. Brown, Electrochim. Acta 52, 1932 (2007).CrossRefGoogle Scholar
  30. 30.
    I. Abou Hamad, S. J. Mitchell, Th. Wandlowski, P. A. Rikvold, and G. Brown, Electrochim. Acta 50, 5518 (2005).CrossRefGoogle Scholar
  31. 31.
    M. T. M. Koper, J. Electroanal. Chem. 450, 189 (1998).CrossRefGoogle Scholar
  32. 32.
    J. N. Glosli and M. R. Philpott, in Microscopic Models of Electrode-Electrolyte Interfaces; Electrochem. Soc. Conf. Proc. Ser. 93-5, edited by J. W. Halley and L. Blum (The Electrochemical Society, Pennington, 1993), pp. 80–89.Google Scholar
  33. 33.
    J. N. Glosli and M. R. Philpott, in Microscopic Models of Electrode-Electrolyte Interfaces; Electrochem. Soc. Conf. Proc. Ser. 93-5, edited by J. W. Halley and L. Blum (The Electrochemical Society, Pennington, 1993), pp. 90–105.Google Scholar
  34. 34.
    L. Blum, Adv. Chem. Phys. 78, 171 (1990).CrossRefGoogle Scholar
  35. 35.
    A. Ignaczak, J. A. N. F. Gomes, and S. Romanowski, J. Electroanal. Chem. 450, 175 (1998).CrossRefGoogle Scholar
  36. 36.
    G. Brown, P. A. Rikvold, S. J. Mitchell, and M. A. Novotny, in Interfacial Electrochemistry: Theory, Experiment, and Application, edited by A. Wieckowski (Marcel Dekker, New York, 1999), pp. 47–61.Google Scholar
  37. 37.
    S. J. Mitchell, G. Brown, and P. A. Rikvold, J. Electroanal. Chem. 493, 68 (2000).CrossRefGoogle Scholar
  38. 38.
    S. J. Mitchell, G. Brown, and P. A. Rikvold, Surf. Sci. 471, 125 (2001).CrossRefGoogle Scholar
  39. 39.
    I. Abou Hamad, Th. Wandlowski, G. Brown, and P. A. Rikvold, J. Electroanal. Chem. 554–555, 211 (2003).CrossRefGoogle Scholar
  40. 40.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  41. 41.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  42. 42.
    I. Abou Hamad, P. A. Rikvold, and G. Brown, Surf. Sci. 572, L355 (2004).CrossRefGoogle Scholar
  43. 43.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  44. 44.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  45. 45.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  46. 46.
    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  47. 47.
    J. P. Perdew, J. A. Chevary, S. A. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
  48. 48.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
  49. 49.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  50. 50.
    S. J. Mitchell and M. T. M. Koper, Surf. Sci. 563, 169 (2004).CrossRefGoogle Scholar
  51. 51.
    W. Kohn and K.-H. Lau, Solid State Commun. 18, 553 (1976).CrossRefGoogle Scholar
  52. 52.
    T. Juwono and P. A. Rikvold, unpublished.Google Scholar
  53. 53.
    D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 2nd Ed. (Cambridge University Press, Cambridge, 2005).Google Scholar
  54. 54.
    S. Wang, S. J. Mitchell, and P. A. Rikvold, Comp. Mater. Sci. 29, 145 (2004).CrossRefGoogle Scholar
  55. 55.
    P. A. Rikvold and M. Kolesik, J. Phys. A 35, L117 (2002).CrossRefGoogle Scholar
  56. 56.
    P. A. Rikvold and M. Kolesik, Phys. Rev. E 66, 066116 (2002).CrossRefGoogle Scholar
  57. 57.
    P. A. Rikvold and M. Kolesik, Phys. Rev. E 67, 066113 (2003).CrossRefGoogle Scholar
  58. 58.
    K. Park, P. A. Rikvold, G. M. Buendía, and M. A. Novotny, Phys. Rev. Lett. 92, 015701 (2004).CrossRefGoogle Scholar
  59. 59.
    G. M. Buendía, P. A. Rikvold, K. Park, and M. A. Novotny, J. Chem. Phys. 121, 4193 (2004).CrossRefGoogle Scholar
  60. 60.
    G. M. Buendía, P. A. Rikvold, and M. Kolesik, Phys. Rev. B 73, 045437 (2006).CrossRefGoogle Scholar
  61. 61.
    G. M. Buendía, P. A. Rikvold, and M. Kolesik, J. Mol. Struct.: THEOCHEM 769, 207 (2006).Google Scholar
  62. 62.
    G. M. Buendía, P. A. Rikvold, M. Kolesik, K. Park, and M. A. Novotny, Phys. Rev. B 76, 045422 (2007).CrossRefGoogle Scholar
  63. 63.
    S. Wang, Y. Cao, and P. A. Rikvold, Phys. Rev. B 70, 205410 (2004).CrossRefGoogle Scholar
  64. 64.
    A. Ignaczak and J. A. N. F. Gomes, J. Electroanal. Chem. 420, 71 (1997).CrossRefGoogle Scholar
  65. 65.
    S. Wang and P. A. Rikvold, Phys. Rev. B 65, 155406 (2002).CrossRefGoogle Scholar
  66. 66.
    A. Bogicevic, S. Ovesson, P. Hyldgaard, B. I. Lundquist, H. Brune, and D. R. Jennison, Phys. Rev. Lett. 85, 1910 (2000).CrossRefGoogle Scholar
  67. 67.
    H. C. Kang and W. H. Weinberg, J. Chem. Phys. 90, 2824 (1989).CrossRefGoogle Scholar
  68. 68.
    K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95, 1090 (1991).CrossRefGoogle Scholar
  69. 69.
    A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).CrossRefGoogle Scholar
  70. 70.
    G. H. Gilmer, J. Cryst. Growth 35, 15 (1976).CrossRefGoogle Scholar
  71. 71.
    S. Frank and P. A. Rikvold, Surf. Sci. 600, 2470 (2006).CrossRefGoogle Scholar
  72. 72.
    R. J. Gelten, A. P. J. Jansen, R. A. van Santen, J. J. Lukkien, J. P. L. Segers, and P. A. J. Hilbers, J. Chem. Phys. 108, 5921 (1998).CrossRefGoogle Scholar
  73. 73.
    J. J. Lukkien, J. P. L. Segers, P. A. J. Hilbers, R. J. Gelten, and A. P. J. Jansen, Phys. Rev. E 58, 2598 (1998).CrossRefGoogle Scholar
  74. 74.
    M. T. M. Koper, A. P. J. Jansen, R. A. van Santen, J. J. Lukkien, and P. A. J. Hilbers, J. Chem. Phys. 109, 6051 (1998).CrossRefGoogle Scholar
  75. 75.
    F. Nieto, C. Uebing, V. Pereyra, and R. J. Faccio, Vacuum 54, 119 (1999).CrossRefGoogle Scholar
  76. 76.
    M. A. Novotny, in Annual Reviews of Computational Physics IX, edited by D. Stauffer (World Scientific, Singapore, 2001), pp. 153–210.Google Scholar
  77. 77.
    T. Ala-Nissila, R. Ferrando, and S. C. Ying, Adv. Phys. 51, 949 (2002).CrossRefGoogle Scholar
  78. 78.
    I. D. Mayergoyz, IEEE Trans. Magn. 22, 603 (1986).CrossRefGoogle Scholar
  79. 79.
    C. R. Pike, A. P. Roberts, and K. L. Verosub, J. Appl. Phys. 85, 6660 (1999).CrossRefGoogle Scholar
  80. 80.
    C. R. Pike, Phys. Rev. B 68, 104424 (2003).CrossRefGoogle Scholar
  81. 81.
    D. T. Robb, M. A. Novotny, and P. A. Rikvold, J. Appl. Phys. 97, 10E510 (2005).CrossRefGoogle Scholar
  82. 82.
    I. Abou Hamad, D. T. Robb, and P. A. Rikvold, J. Electroanal. Chem. 607, 61 (2007).CrossRefGoogle Scholar
  83. 83.
    I. Abou Hamad, D. T. Robb, M. A. Novotny, and P. A. Rikvold, ECS Trans. 6 (19), 53 (2008).CrossRefGoogle Scholar
  84. 84.
    S. Fletcher, C. S. Halliday, D. Gates, M. Westcott, T. Lwin, and G. Nelson, J. Electroanal. Chem. 159, 267 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • P. A. Rikvold
    • 1
    • 1
  • I. Abou Hamad
    • 1
    • 2
  • T. Juwono
    • 1
  • D. T. Robb
    • 3
    • 5
  • M. A. Novotny
    • 2
    • 4
  1. 1.Center for Materials Research and Technology and Department of PhysicsFlorida State UniversityTallahasseeUSA
  2. 2.HPC2, Center for Computational SciencesMississippi State UniversityMississippi StateUSA
  3. 3.Department of PhysicsClarkson UniversityPotsdamUSA
  4. 4.Department of Physics and AstronomyMississippi State UniversityMississippi StateUSA
  5. 5.Department of PhysicsAstronomy, and Geology, Berry CollegeMount BerryUSA

Personalised recommendations