Near-Field Optics for Heat-Assisted Magnetic Recording (Experiment, Theory, and Modeling)

  • William A. Challener
  • Amit V. Itagi
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 44)


One application of near-field transducers (NFT) is in heat-assisted magnetic recording (HAMR). HAMR is similar to conventional magneto-optical (MO) recording in that the data are stored in magnetic bits on a disk by heating the area of the bit with a laser beam in the presence of an external field to set the magnetic orientation of the bit as it cools. The optical head in conventional MO recording is mounted on an actuator and optical feedback signals are used to maintain a constant spacing between the head and the recording medium, which is generally on the order of tens or hundreds of nanometers. Also, for conventional MO recording the applied magnetic field is very small (approximately 0.02 T), typically generated by a large fixed external magnet, and the laser energy rather than the magnetic field is modulated with the input data stream. On the other hand, for HAMR the integrated optical–magnetic head is mounted on a slider, which flies over the surface of the recording medium at 10 nm or less. The applied field for HAMR is highly localized, very large in magnitude (up to 1 T or more), and generated by a miniature recording pole positioned within tens of nanometers of the optical spot. For HAMR the magnetic field from the pole is modulated with the input data stream, while the laser energy on the medium can remain constant.


Localize Surface Plasmon Resonance Resonance Wavelength Scattered Field Finite Difference Time Domain Poynting Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge many useful conversations with our Seagate colleagues Ed Gage, Eric Jin, Terry McDaniel, and Chubing Peng during the course of this work.


  1. 1.
    T. W. McDaniel, W. A. Challener, K. Sendur, IEEE Trans. Magn. 39 (2003) 1972.CrossRefGoogle Scholar
  2. 2.
    T. W. McDaniel, J. Phys. Cond. Matter 17 (2005) R315.CrossRefGoogle Scholar
  3. 3.
    S. M. Mansfield, G. S. Kino, Appl. Phys. Lett. 57 (1990) 2615.CrossRefGoogle Scholar
  4. 4.
    L. Wang, S. M. Uppuluri, E. X. Jin and X. Xu, Nano Lett. 6 (2006) 361.CrossRefGoogle Scholar
  5. 5.
    A. Bouhelier, M. R. Beversluis and L. Novotny, Appl. Phys. Lett. 83 (2003) 5041.CrossRefGoogle Scholar
  6. 6.
    M. Ohtsu and H. Hori, Near-Field Nano-Optics, Kluwer, New York 1999, p. 128.Google Scholar
  7. 7.
    W. A. Challener, E. Gage, A. Itagi and C. Peng, Jpn. J. Appl. Phys. 45 (2006) 6632.CrossRefGoogle Scholar
  8. 8.
    G. Mie, Ann. Phys. 25 (1908) 377.CrossRefGoogle Scholar
  9. 9.
    K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, Boca Raton, FL, 1993.Google Scholar
  10. 10.
    A. Taflove and S. Hagness, Computational Electrodynamics, Artech House, Boston, MA, 2000.Google Scholar
  11. 11.
    H. Bethe, Phys. Rev. 66 (1944) 163.CrossRefGoogle Scholar
  12. 12.
    M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chem. Phys. Lett. 26 (1974) 163.CrossRefGoogle Scholar
  13. 13.
    M. Moskovits, J. Chem Phys. 69 (1978) 4159.CrossRefGoogle Scholar
  14. 14.
    K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari and M. S. Feld, Phys. Rev. Lett. 78 (1997) 1667.CrossRefGoogle Scholar
  15. 15.
    S. Nie and S. R. Emory, Science 275 (1997) 1102.CrossRefGoogle Scholar
  16. 16.
    C. F. Boren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, 1983.Google Scholar
  17. 17.
  18. 18.
    M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford, 1975, chap. 13.Google Scholar
  19. 19.
    D. W. Lynch and W. R. Hunter, “Gold” in Handbook of Optical Constants of Solids, E. D. Palik (ed.), Academic, San Diego, 1998, 286.Google Scholar
  20. 20.
    R. A. Innes and J. R. Sambles, J. Phys. F: Met. Phys. 17 (1987) 277.CrossRefGoogle Scholar
  21. 21.
    W. A. Challener, I. K. Sendur and C. Peng, Opt. Exp. 11 (2003) 3160.CrossRefGoogle Scholar
  22. 22.
    J. Gersten and A. Nitzan, J. Chem. Phys. 73 (1980) 3023.CrossRefGoogle Scholar
  23. 23.
    P. F. Liao and A. Woakun, J. Chem. Phys. 76 (1982) 751.CrossRefGoogle Scholar
  24. 24.
    G. T. Boyd, Th. Rasing, J. R. R. Leite and Y. R. Shen, Phys. Rev. B 30 (1984) 519.CrossRefGoogle Scholar
  25. 25.
    P. F. Liao and A. Wokaun, J. Chem Phys. 76 (1982) 751.CrossRefGoogle Scholar
  26. 26.
    A. Sommerfeld, Math. Ann. 47, (1896) 317.CrossRefGoogle Scholar
  27. 27.
    B. Richards and E. Wolf, Proc. Roy Soc. London Ser. A 253 (1959) 358.CrossRefGoogle Scholar
  28. 28.
    X. Shi, L. Hesselink, and R. L. Thornton, Opt. Lett. 28 (2003) 1320.CrossRefGoogle Scholar
  29. 29.
    E. Jin, et al., Proc. IMECE’03 (2003) 1.Google Scholar
  30. 30.
    K. Sendur, W. Challener and C. Peng, J. Appl. Phys. 96 (2004) 2743.CrossRefGoogle Scholar
  31. 31.
    X. Xu, et al., Proc. SPIE 5515 (2004) 230.CrossRefGoogle Scholar
  32. 32.
    E. Jin and X. Xu, Jpn. J. Appl. Phys. 43 (2004) 407.CrossRefGoogle Scholar
  33. 33.
    E. Jin and X. Xu, Appl. Phys. Lett. 86 (2005) 111106.CrossRefGoogle Scholar
  34. 34.
    K. Sendur, C. Peng and W. Challener, Phys. Rev. Lett. 94 (2005) 043901.CrossRefGoogle Scholar
  35. 35.
    T. Matsumoto, T. Shimano, H. Saga and H. Sukeda, J. Appl. Phys. 95 (2004) 3901.CrossRefGoogle Scholar
  36. 36.
    R. D. Grober, R. J. Schoelkopf and D. E. Prober, Appl. Phys. Lett. 70 (1997) 1354.CrossRefGoogle Scholar
  37. 37.
    S. A. Schelkunoff, Bell System Tech. Jour. 15 (1936) 92.Google Scholar
  38. 38.
    A. V. Itagi and W. A. Challener, J. Opt. Soc. Am. A 22 (2005) 2847.CrossRefGoogle Scholar
  39. 39.
    Z. Chen, A. Taflove and V. Backman, Opt. Exp. 12 (2004) 1214.CrossRefGoogle Scholar
  40. 40.
    Z. Chen, A. Taflove, X. Li and V. Backman, Opt. Lett. 31 (2006) 196.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Seagate TechnologyPittsburghUSA

Personalised recommendations