Advertisement

Adaptive Characterization and Modeling of Electrochemical Energy Storage Devices for Hybrid Electric Vehicle Applications

  • Mark W. Verbrugge
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 43)

Abstract

The control and adaptive characterization of batteries or supercapacitors, which are central to the construction of electrochemical energy storage devices operating in hybrid electric vehicles, require that the state estimator forming the basis of the control system be informed by the underlying electrochemistry. In this chapter, we overview tools and methods useful for the integration of batteries and supercapacitors into HEV systems, with a focus on the construction of state estimators. The approach discussed may be viewed as combining electroanalytical procedures with formal controls methods.

Keywords

Hybrid Electric Vehicle Lower Plot Power Capability Hysteresis Voltage Model Reference Adaptive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. W. Steffens, “Verfahren zur Schätzung der inneren Gröβen von Starterbatterien,” Ph.D. Thesis, Technical University of Aachen, Germany (1987).Google Scholar
  2. 2.
    2. H. P. Schoener, “Über die Auswertung des elektrischen Verhaltens von Bleibatterien beim Entladen und Laden”, Ph.D. Thesis, Technical University of Aachen, Germany (1988).Google Scholar
  3. 3.
    3. M. A. Dorgham, R. D. Fruechte (eds.), Application of Control Theory in the Automotive Industry, Inderscience, olneg, UK., 1983.Google Scholar
  4. 4.
    4. H. L. N. Wiegman, “Battery State Estimation and Control for Power Buffering Applications,” Ph.D. Thesis, University of Wisonsin, Madison (1999).Google Scholar
  5. 5.
    5. E. D. Tate, Jr. “Techniques for Hybrid Electric Vehicle Controller Synthesis,” Ph.D. Thesis, University of Michigan, Ann Arbor (2006).Google Scholar
  6. 6.
    M. van Walwijk, C. Saricks (eds.), Hybrid and Electric Vehicles, International Energy Agency, Implementing Agreement on Hybrid and Electric Vehicle Technologies and Programmes annual report of the Executive Committee and Anne I over 2006, February 2007. Google Scholar
  7. 7.
    7. S. Pillar, M. Perrin, A. Jossen, J. Power Sourc., 96(2001)113.CrossRefGoogle Scholar
  8. 8.
    8. A. Tenno, R. Tenno, T. Suntio, J. Power Sourc., 103(2001)42.CrossRefGoogle Scholar
  9. 9.
    O. Barbarisi, R. Canaletti, L. Glielmo, M. Gosso, F. Vasca, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, paper WeM05-5, (2002) 1739.Google Scholar
  10. 10.
    10. E. Meissner, G. Richter, J. Power Sourc., 116(2003)79.CrossRefGoogle Scholar
  11. 11.
    11. M. W. Verbrugge, E. D. Tate, J. Power Sourc., 126(2004)236.CrossRefGoogle Scholar
  12. 12.
    12. G. L. Plett, J. Power Sourc., 134(2004)252, 262, 277.CrossRefGoogle Scholar
  13. 13.
    13. G. L Plett, IEEE Trans. Veh. Technol., 53(2004)1586.CrossRefGoogle Scholar
  14. 14.
    14. M. W. Verbrugge, P. Liu, S. Soukiazian, J. Power Sourc., 141(2005)369.CrossRefGoogle Scholar
  15. 15.
    15. V. Pop, H. J. Bergveld, P. H. L. Notten, P. P. L. Regtien, Meas. Sci. Technol., 16(2005)R93.CrossRefGoogle Scholar
  16. 16.
    16. M. W. Verbrugge, D. Frisch, B. Koch, J. Electrochem. Soc., 152(2005)A333.CrossRefGoogle Scholar
  17. 17.
    H. Ashizawa, H. Nakamura, D. Yumoto, H. Asai, Y. Ochi, SAE, paper 05P-319 (2004).Google Scholar
  18. 18.
    H. Asai, H. Ashizawa, D. Yumoto, H. Nakamura, Y. Ochi, SAE, paper 2005-01-0807 (2005).Google Scholar
  19. 19.
    19. O. Barbarisi, F. Vasca, L. Glielmo, Control Eng. Practice, 14(2006)267.CrossRefGoogle Scholar
  20. 20.
    K. A. Smith, “Electrochemical Modeling, Estimation, and Control of Lithium Ion Batteries,” Ph.D. Thesis, Pennsylvania State University, (2006).Google Scholar
  21. 21.
    21. M. W. Verbrugge, B. J. Koch, J. Electrochem. Soc., 153(2006)A187.CrossRefGoogle Scholar
  22. 22.
    22. S. Santhanagopalan, R. E. White, J. Power Sourc., 161(2006)1346.CrossRefGoogle Scholar
  23. 23.
    23. M. W. Verbrugge, J. Appl. Electrochem., 37(2007)605.CrossRefGoogle Scholar
  24. 24.
    24. S. Santhanagopalan, Q. Guo, R. E. White, J. Electrochem. Soc., 154(2007) A198.CrossRefGoogle Scholar
  25. 25.
    25. H. J. Carlin, A. B. Giordano, Network Theory, Prentice-Hall, Englewood Cliffs, NJ (1964).Google Scholar
  26. 26.
    26. V. Belevitch, Classical Network Theory, Holden-Day, San Francisco, CA (1968).Google Scholar
  27. 27.
    27. J. O. Scanlan, R. Levy, Circuit Theory, Oliver and Boyd, Edinburgh, Great Britain (1970).Google Scholar
  28. 28.
    28. M. E. Van Valkenburg, Network Analysis, 3rd edition, Prentice-Hall, Englewood Cliffs, NJ (1974).Google Scholar
  29. 29.
    29. L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1975).Google Scholar
  30. 30.
    30. S. A. Tretter, Introduction to Discrete-Time Signal Processing, Wiley, New York, NY (1976).Google Scholar
  31. 31.
    31. A. Peled, B. Liu, Digital Signal Processing, Wiley, New York, NY (1976).Google Scholar
  32. 32.
    32. A. Antoniou, Digital Filters: Analysis and Design, McGraw-Hill, New York, NY (1979).Google Scholar
  33. 33.
    33. L. P. Huelsman, P. E. Allen, Introduction to the Theory and Design of Active Filters, McGraw-Hill, New York, NY (1980).Google Scholar
  34. 34.
    34. M. S. Ghausi, K. R. Laker, Modern Filter Design: Active RC and Switched Capacitor, Prentice-Hall, Englewood Cliffs, NJ (1981).Google Scholar
  35. 35.
    35. M. Bellanger, Digital Processing of Signals, Wiley, New York, NY (1984). (Originally published as Traitement Numérique Du Signal—Théorie Et Pratique by M. Bellanger, Masson, Paris, 1980).Google Scholar
  36. 36.
    36. S. Haykin, Introduction to Adaptive Filters, MacMillan, New York, NY (1984).Google Scholar
  37. 37.
    37. B. Widrow, S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1985).Google Scholar
  38. 38.
    38. M. G. Bellanger, Adaptive Digital Filters and Signal Analysis, Marcel Dekker, New York, NY (1987).Google Scholar
  39. 39.
    39. H. Baher, Analog and Digital Signal Processing, Wiley, New York, NY (1990).Google Scholar
  40. 40.
    C. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicus Solem Ambientum, Hamburg, (1809), (translation: Dover, 1963).Google Scholar
  41. 41.
    41. R. L. Plackett, Biometrika, 37(1950)149.Google Scholar
  42. 42.
    42. R. E. Kalman, Trans. ASME. J. Basic Eng., 82D(1960)35.Google Scholar
  43. 43.
    43. A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, NY (1970).Google Scholar
  44. 44.
    44. A. Gelb (ed.), Applied Optimal Estimation, edited by M.I.T. Press, Cambridge, MA (1974).Google Scholar
  45. 45.
    45. B. D. O. Anderson, J. B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ (1979).Google Scholar
  46. 46.
    46. P. S. Maybeck, Stochastic Models, Estimation and Control, volume 141–1 of Mathematics in Science and Engineering, Academic Press, UK (1979).Google Scholar
  47. 47.
    47. W. L. Brogan, Modern Control Theory, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ (1985).Google Scholar
  48. 48.
    48. L. Ljnug, T. Söderström, Theory and Practice of Recursive Identification, M.I.T Press, MA (1986).Google Scholar
  49. 49.
    49. K. J. Åström, B. Wittenmark, Adaptive Control, Addison-Wesley, MA, USA, (1989), (second edition: 1995).Google Scholar
  50. 50.
    50. R. Kulhavý, Recursive Nonlinear Estimation. A Geometric Approach, Springer, Berlin Hiedelberg New York (1996).Google Scholar
  51. 51.
    51. T. Demarco, Structured Analysis and System Specification, Prentice-Hall, Englewood Cliffs, NJ (1979).Google Scholar
  52. 52.
    52. D. H. Hatley, I. A. Pirbhai, Strategies for Real-Time System Specification, Dorset House, New York, NY (1988).Google Scholar
  53. 53.
    S. Bittanti, P. Bolzern, M. Campi, E. Coletti, Proceedings of the American Control Conference, IEEE, Austin, Texas, December 1988, pp. 1530–1531.Google Scholar
  54. 54.
    54. L. Ljung, S. Gunnarsson, Automatica, 26(1990)7.CrossRefGoogle Scholar
  55. 55.
    55. J. E. Parkum, N. K. Poulsen, J. Holst, Int. J. Control, 55(1992)109.CrossRefGoogle Scholar
  56. 56.
    56. R. Kulhavý, Int. J. Control, 58 (1993)905.CrossRefGoogle Scholar
  57. 57.
    A. Vahidi, M. Druzhinina, A. Stefanopoulou, H. Peng, Proceedings of the American Control Conference, IEEE, Denver, Colorado, June 2003, pp. 4951–4956.Google Scholar
  58. 58.
    58. Y. Zheng, Z. Lin, IEEE Trans. Circuits Syst.—II: Analog. Digital Signal Process., 50(2003)602.CrossRefGoogle Scholar
  59. 59.
    59. C. S. Ludovico, J. C. M. Bermudez, IEEE ICASSP, 2(2004) II-673.Google Scholar
  60. 60.
    60. S. Sathyanarayana, S. Venugopalan, M. L. Gopikanth, J. Appl. Electrochem., 9(1979)369.CrossRefGoogle Scholar
  61. 61.
    61. M. L. Gopikanth, S. Sathyanarayana, J. Appl. Electrochem., 9(1979)369.CrossRefGoogle Scholar
  62. 62.
    62. M. S. Suresh, S. Sathyanarayana, J. Power Sourc., 37(1992)335.CrossRefGoogle Scholar
  63. 63.
    63. S. Rodrigues, N. Munichandraiah, A. K. Shukla, J. Power Sourc., 87(2000)12.CrossRefGoogle Scholar
  64. 64.
    64. V. V. Viswanathan, A. J. Salkind, J. J. Kelley, J. B. Ockerman, J. Appl. Electrochem., 25(1995)716.CrossRefGoogle Scholar
  65. 65.
    65. V. V. Viswanathan, A. J. Salkind, J. J. Kelley, J. B. Ockerman, J. Appl. Electrochem., 25(1995)729.CrossRefGoogle Scholar
  66. 66.
    66. F. Huet, J. Power Sourc., 70(1998)59.CrossRefGoogle Scholar
  67. 67.
    67. A. K. Padhi, K. S. Najundaswamy, J. B. Goodenough, J. Electrochem. Soc., 144(1997)1188.CrossRefGoogle Scholar
  68. 68.
    68. A. K. Padhi, K. S. Najundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, J. Electrochem. Soc., 144(1997)1609.CrossRefGoogle Scholar
  69. 69.
    S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater., 1(2002) 123, (www.nature.com/naturematerials).
  70. 70.
    70. W. F. Howard, R. F. Spotnitz, J. Power Sourc., 165(2007)887.CrossRefGoogle Scholar
  71. 71.
    71. K. M. Colbow, J. R. Dahn, R. R. Haering, J. Power Sourc., 26(1989)397.CrossRefGoogle Scholar
  72. 72.
    72. T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc., 142(1995)1431.CrossRefGoogle Scholar
  73. 73.
    73. Y. H. Rho, K. Kanamura, J. Solid State Chem., 177(2004)2094.CrossRefGoogle Scholar
  74. 74.
    74. R. K. B. Gover, J. R. Tolchard, H. Tukamoto, T. Murai, J. T. S. Irvine, J. Electrochem. Soc., 146(1999)4348.CrossRefGoogle Scholar
  75. 75.
    75. Y. H. Rho, K. Kanamura, J. Solid State Chem., 177(2004)2094.CrossRefGoogle Scholar
  76. 76.
    76. I. J. Ong, J. Newman, J. Electrochem. Soc., 146(1999)4360.CrossRefGoogle Scholar
  77. 77.
    77. P. Delahay, Double Layer and Electrode Kinetics, Interscience Publishers, New York, NY (1965).Google Scholar
  78. 78.
    78. D. D. Macdonald, Transient Techniques in Electrochemistry, Plenum, New York, NY, 1977.Google Scholar
  79. 79.
    79. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, NY (1980).Google Scholar
  80. 80.
    80. B. Pillay, “Design of Electrochemical Capacitors for Energy Storage,” Ph.D. Thesis, University of California, Berkeley, CA (1996).Google Scholar
  81. 81.
    81. B. Pillay, J. Newman, J. Electrochem. Soc., 143(1996)1806.CrossRefGoogle Scholar
  82. 82.
    82. V. Srinivasan, J. W. Weidner, J. Electrochem. Soc., 146(1999)1650.CrossRefGoogle Scholar
  83. 83.
    83. D. Dunn, J. Newman, J. Electrochem. Soc., 147(2000)820.CrossRefGoogle Scholar
  84. 84.
    84. K. E. Thomas, R. M. Darling, J. Newman, “Mathematical Modeling of Lithium Batteries,” in: Advances in Lithium-Ion Batteries, W. van Schalkwaijk, B. Scrosati (eds.), Kluwer, Dordrecht (2002), Chap. 12.Google Scholar
  85. 85.
    85. C. Lin, J. A. Ritter, B. N. Popov, R. E. White, J. Electrochem. Soc., 146(1999)3168.CrossRefGoogle Scholar
  86. 86.
    86. C. Lin, B. N. Popov, H. J. Ploehn, J. Electrochem. Soc., 149(2002)A167.CrossRefGoogle Scholar
  87. 87.
    87. H. Kim, B. N. Popov, J. Electrochem. Soc., 150(2003)A1153.CrossRefGoogle Scholar
  88. 88.
    88. S. Devan, V. R. Subramanian, R. E. White, J. Electrochem. Soc., 151(2004) A905.CrossRefGoogle Scholar
  89. 89.
    89. M. W. Verbrugge, P. Liu, J. Electrochem. Soc., 152(2005)D79.CrossRefGoogle Scholar
  90. 90.
    90. M. W. Verbrugge, P. Liu, J. Electrochem. Soc., 153(2006)A1237.CrossRefGoogle Scholar
  91. 91.
    91. J. S. Dunning, “Analysis of Porous Electrodes with Sparingly Soluble Reactants,” Ph.D. Thesis, University of California, Los Angeles (1971).Google Scholar
  92. 92.
    92. J. Newman, W. Tiedemann, AIChE J., 21(1975)25.CrossRefGoogle Scholar
  93. 93.
    93. J. Newman, Electrochemical Systems, second edition, Prentice-Hall, Englewood Cliffs, NJ (1991).Google Scholar
  94. 94.
    94. M. W. Verbrugge, J. Electrostatics, 34(1995)61.CrossRefGoogle Scholar
  95. 95.
    95. M. W. Verbrugge, AIChE J., 41(1995)1550.CrossRefGoogle Scholar
  96. 96.
    96. M. W. Verbrugge, D. W. Glander, D. R. Baker, J. Cryst. Growth, 81(1995)155.Google Scholar
  97. 97.
    97. C. Y. Wang, W. B. Gu, B. Y. Liaw, J. Electrochem. Soc., 145(1998)3407.CrossRefGoogle Scholar
  98. 98.
    98. D. R. Baker, M. W. Verbrugge, J. Electrochem. Soc., 146(1999)2413.CrossRefGoogle Scholar
  99. 99.
    99. M. W. Verbrugge, P. Liu, J. Power Sourc. (Hybrid Vehicles Special Battery Issue), 174(2007)2.CrossRefGoogle Scholar
  100. 100.
    100. M. W. Verbrugge, R. Y. Ying, J. Electrochem. Soc., 154(2007)A949.CrossRefGoogle Scholar
  101. 101.
    101. M. W. Verbrugge, B. J. Koch, J. Electrochem. Soc., 146(1999)833.CrossRefGoogle Scholar
  102. 102.
    102. M. W. Verbrugge, R. S. Conell, J. Electrochem. Soc., 149(2002)A45.CrossRefGoogle Scholar
  103. 103.
    103. M. W. Verbrugge, B. J. Koch, J. Electrochem. Soc., 143(1996)600.CrossRefGoogle Scholar
  104. 104.
    104. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, Maple Tech. Newsletter, 9(1993)12.Google Scholar
  105. 105.
    105. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, Adv. Comput. Math., 5(1996)329.CrossRefGoogle Scholar
  106. 106.
    106. F. Chapeau-Blondeau, A. Monir, IEEE Trans. Signal Process., 50(2002)2160.CrossRefGoogle Scholar
  107. 107.
    107. B. Hayes, Am. Sci., 93 (2005) 104.Google Scholar
  108. 108.
    M. W. Verbrugge, “Application of a Simplified Model for the Analysis of a Novel Battery Used in General Motors' Precept Hybrid Electric Vehicle,” Proceedings Volume (CD-ROM) from the 17th International Electric Vehicle Symposium, Montreal, Canada, October 2000.Google Scholar
  109. 109.
    109. P. Milner, U. Thomas, Advanceds in Electrochemistry and Electrochemical Engineering, C. W. Tobias (ed.), Interscience Publishers, New York, NY (1967).Google Scholar
  110. 110.
    110. X. G. Yang, B. Y. Liaw, J. Electrochem. Soc., 148(2001)A1023.CrossRefGoogle Scholar
  111. 111.
    111. K. P. Ta, J. Newman, J. Electrochem. Soc., 146(1999)2769.CrossRefGoogle Scholar
  112. 112.
    112. W. B. Gu, C. Y. Wang, J. Electrochem. Soc., 147(2000)2910.CrossRefGoogle Scholar
  113. 113.
    113. V. Srinivasan, J. W. Weidner, J. Newman, J. Electrochem. Soc., 148(2001)A969.CrossRefGoogle Scholar
  114. 114.
    114. R. M. Felder, R. W. Rousseau, Elementary Principles of Chemical Processes, Wiley, New York, NY (1978), pp. 501–503.Google Scholar
  115. 115.
    115. S. D. Conte, C. de Boor, Elementary Numerical Analysis, 3rd edition, McGraw-Hill, New York, NY (1980), Chap. 6.Google Scholar
  116. 116.
    116. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, Great Britain (1989), Chap. 14.Google Scholar
  117. 117.
    117. S. Wolfram, The Mathematica Book, 3rd edition, Wolfram Media, Champaign, IL (1996).Google Scholar
  118. 118.
    118. W. H. Beyer (ed.), Standard Mathematical Tables, 24th edition, CRC Press, Cleveland, OH (1976), pp. 476–477.Google Scholar
  119. 119.
    119. D. Berndt, Maintenance-Free Batteries, Research Studies Press, Taunton, U.K., (1993).Google Scholar
  120. 120.
    120. D. M. Bernardi, M. K. Carpenter, J. Electrochem. Soc., 142(1995)2631.CrossRefGoogle Scholar
  121. 121.
    121. Y. Guo, J. Wu, L. Song, M. Perrin, H. Doering, J. Garche, J. Electrochem. Soc., 148(2001)A1287.CrossRefGoogle Scholar
  122. 122.
    H. Bode, translated by R. J. Brodd, Karl V. Kordesch, Lead-Acid Batteries, New York, Wiley (1977).Google Scholar
  123. 123.
    123. P. Leblanc, C. Jordy, B. Knosp, P. Blanchard, J. Electrochem. Soc., 145(1998)860.CrossRefGoogle Scholar
  124. 124.
    124. P. Bernard, J. Electrochem. Soc., 145(1998)456.CrossRefGoogle Scholar
  125. 125.
    125. T. R. Fortescue, L. S. Kershenbaum, B. E. Ydstie, Automatica, 17(1981)831.CrossRefGoogle Scholar
  126. 126.
    S. Bittanti, P. Bolzern, M. Campi, E. Coletti, Proceedings of the American Control Conference, IEEE, Austin, Texas, December 1988, pp. 1530–1531.Google Scholar
  127. 127.
    127. L. Ljung, S. Gunnarsson, Automatica, 26(1990)7.CrossRefGoogle Scholar
  128. 128.
    128. J. E. Parkum, N. K. Poulsen, J. Holst, Int. J. Control, 55(1992)109.CrossRefGoogle Scholar
  129. 129.
    129. R. Kulhavý, Int. J. Control, 58 (1993)905.CrossRefGoogle Scholar
  130. 130.
    A. Vahidi, M. Druzhinina, A. Stefanopoulou, H. Peng, Proceedings of the American Control Conference, IEEE, Denver, Colorado, June 2003, pp. 4951–4956.Google Scholar
  131. 131.
    131. Y. Zheng, Z. Lin, IEEE Trans. Circuits Syst.—II Analog. Digital Signal Process., 50(2003)602.CrossRefGoogle Scholar
  132. 132.
    C. Massey, A. Bekaryan, P. Liu, L. Turner, D. Frisch, T. Weber, M. Verbrugge, SAE paper O5CV-137 (2005).Google Scholar
  133. 133.
    133. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer, Dordrecht, 1999.Google Scholar
  134. 134.
    134. R. Kötz, M. Carlen, Electrochim. Acta, 45(2000)2483.CrossRefGoogle Scholar
  135. 135.
    135. A. Burke, J. Power Sourc., 91(2000)37.CrossRefGoogle Scholar
  136. 136.
    136. S. Buller, E. Karden, D. Kok, R. W. DeDoncker, IEEE Trans. Ind. Appl., 38(2002)1622.CrossRefGoogle Scholar
  137. 137.
    137. A. Chu, P. Braatz, J. Power Sourc., 112(2002)236.CrossRefGoogle Scholar
  138. 138.
    R. B. Wright, D. K. Jamison, T. Q. Duong, Abstract 237, 204th Meeting of The Electrochemical Society, Orlando, October 2003.Google Scholar
  139. 139.
    139. D. Y. Jung, Y. H. Kim, S. W. Kim, S-H. Lee, J. Power Sourc., 114(2003)366.CrossRefGoogle Scholar
  140. 140.
    M. W. Verbrugge, “Supercapacitors and Automotive Applications,” Proceedings Volume for the World Summit on Advanced Capacitors, Washington, DC, August 2003.Google Scholar
  141. 141.
    141. L. Li, “Effects of Activated Carbon Surface Chemistry and Pore Structure on the Adsorption of Trace Organic Contaminants from Aqueous Solution,” Ph.D. Dissertation, North Caroline State University, Raleigh, NC, 2002.Google Scholar
  142. 142.
    142. G. Sikha, R. E. White, B. N. Popov, J. Electrochem. Soc., 152(2005)A1682.CrossRefGoogle Scholar
  143. 143.
    143. R. S. Prabaharan, R. Vimala, Z. Zainal, J. Power Sourc., 161(2006)730.CrossRefGoogle Scholar
  144. 144.
    M. W. Verbrugge, P. Liu, “On the merits of supercapacitors for vehicle propulsion systems and open questions,” Proceedings from the Advanced Capacitors World Summit, San Diego, CA, USA, July 17–19, 2006.Google Scholar
  145. 145.
    145. L. Wang, M. Fujita, M. Inagaki, Electrochim. Acta, 51(2006)4096.CrossRefGoogle Scholar
  146. 146.
    146. J. R. Miller, Electrochim. Acta, 52(2006)1703.CrossRefGoogle Scholar
  147. 147.
    147. M. Sevilla, S. Álvarez, T. A. Centeno, A. B. Fuertes, F. Stoeckli, Electrochim. Acta, 52(2007)3207.CrossRefGoogle Scholar
  148. 148.
    148. X. Wang, J. P. Zhenga, J. Electrochem. Soc., 151(2004)A1683.CrossRefGoogle Scholar
  149. 149.
    149. S. A. Kazaryan, S. N. Razumov, S. V. Litvinenko, G. G. Kharisov, V. I. Koganb, J. Electrochem. Soc., 153(2006)A1655.CrossRefGoogle Scholar
  150. 150.
    Part 2 of “Well-to-Wheel Energy Use and Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems – North American Analysis, Executive Summary Report”, Argonne National Laboratory, Center of Transportation Research, 2001. (Posted at http://www.transportation.anl.gov/publications/index.html.)
  151. 151.
    T. Weber, “Vehicle System Modeling in the Automotive Industry,” ARO/ERC Engine Modeling Symposium, University of Wisconsin, Madison, June 2003.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Mark W. Verbrugge
    • 1
  1. 1.General Motors Research and DevelopmentWarrenUSA

Personalised recommendations