Advertisement

Modeling Water Management in Polymer-Electrolyte Fuel Cells

  • Adam Z. Weber
  • Ryan Balliet
  • Haluna P. Gunterman
  • John Newman
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 43)

Abstract

Fuel cells may become the energy-delivery devices of the twenty-first century with realization of a carbon-neutral energy economy. Althoughtherearemanytypesoffuel cells, polymer-electrolyte fuel cells (PEFCs) are receiving themost attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat.

Keywords

Fuel Cell Power Source Liquid Water Cold Start Bipolar Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. A. Prasanna, H. Y. Ha, E. A. Cho, S. A. Hong and I. H. Oh, J. Power Sources 137 (2004) 1.Google Scholar
  2. 2.
    2. A. Z. Weber and J. Newman, Chem. Rev. 104 (2004) 4679.Google Scholar
  3. 3.
    3. C. Y. Wang, Chem. Rev. 104 (2004) 4727.Google Scholar
  4. 4.
    4. P. Costamagna and S. Srinivasan, J. Power Sources 102 (2001) 242.Google Scholar
  5. 5.
    5. P. Costamagna and S. Srinivasan, J. Power Sources 102 (2001) 253.Google Scholar
  6. 6.
    6. T. Okada, J. New Mater. Electrochem. Syst. 4 (2001) 209.Google Scholar
  7. 7.
    7. M. A. J. Cropper, S. Geiger and D. M. Jollie, J. Power Sources 131 (2004) 57.Google Scholar
  8. 8.
    8. W. Q. Tao, C. H. Min, X. L. Liu, Y. L. He, B. H. Yin and W. Jiang, J. Power Sources 160 (2006) 359.Google Scholar
  9. 9.
    9. N. Djilali, Energy 32 (2007) 269.Google Scholar
  10. 10.
    10. S. Tsushima, K. Teranishi and S. Hirai, Electrochem. Solid State Lett. 7 (2004) A269.Google Scholar
  11. 11.
    11. S. Tsushima, K. Teranishi and S. Hirai, Energy 30 (2005) 235.Google Scholar
  12. 12.
    12. K. R. Minard, V. V. Viswanathan, P. D. Majors, L. Q. Wang and P. C. Rieke, J. Power Sources 161 (2006) 856.Google Scholar
  13. 13.
    13. K. W. Feindel, S. H. Bergens and R. E. Wasylishen, Chemphyschem 7 (2006) 67.Google Scholar
  14. 14.
    14. J. St-Pierre, J. Electrochem. Soc. 154 (2007) B88.Google Scholar
  15. 15.
    15. M. A. Hickner, N. P. Siegel, K. S. Chen, D. N. McBrayer, D. S. Hussey, D. L. Jacobson and M. Arif, J. Electrochem. Soc. 153 (2006) A902.Google Scholar
  16. 16.
    16. R. Satija, D. L. Jacobson, M. Arif and S. A. Werner, J. Power Sources 129 (2004) 238.Google Scholar
  17. 17.
    17. A. Turhan, K. Heller, J. S. Brenizer and M. M. Mench, J. Power Sources 160 (2006) 1195.Google Scholar
  18. 18.
    18. J. J. Kowal, A. Turhan, K. Heller, J. Brenizer and M. M. Mench, J. Electrochem. Soc. 153 (2006) A1971.Google Scholar
  19. 19.
    19. F. Y. Zhang, X. G. Yang and C. Y. Wang, J. Electrochem. Soc. 153 (2006) A225.Google Scholar
  20. 20.
    20. X. Liu, H. Guo, F. Ye and C. F. Ma, Electrochim. Acta 52 (2007) 3607.Google Scholar
  21. 21.
    21. K. Tuber, D. Pocza and C. Hebling, J. Power Sources 124 (2003) 403.Google Scholar
  22. 22.
    22. X. G. Yang, F. Y. Zhang, A. L. Lubawy and C. Y. Wang, Electrochem. Solid State Lett. 7 (2004) A408.Google Scholar
  23. 23.
    23. S. Litster, D. Sinton and N. Djilali, J. Power Sources 154 (2006) 95.Google Scholar
  24. 24.
    24. P. K. Sinha, P. Halleck and C. Y. Wang, Electrochem. Solid State Lett. 9 (2006) A344.Google Scholar
  25. 25.
    25. I. Manke, C. Hartnig, M. Grunerbel, W. Lehnert, N. Kardjilov, A. Haibel, A. Hilger, J. Banhart and H. Riesemeier, Appl. Phys. Lett. 90 (2007) 3.Google Scholar
  26. 26.
    26. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, Wiley, New York, 2004.Google Scholar
  27. 27.
    27. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001.Google Scholar
  28. 28.
    28. D. M. Bernardi, E. Pawlikowski and J. Newman, J. Electrochem. Soc. 132 (1985) 5.Google Scholar
  29. 29.
    29. L. Rao and J. Newman, J. Electrochem. Soc. 144 (1997) 2697.Google Scholar
  30. 30.
    30. K. C. Neyerlin, W. B. Gu, J. Jorne and H. A. Gasteiger, J. Electrochem. Soc. 153 (2006) A1955.Google Scholar
  31. 31.
    31. J. X. Wang, T. E. Springer and R. R. Adzic, J. Electrochem. Soc. 153 (2006) A1732.Google Scholar
  32. 32.
    32. A. J. Appleby, J. Electrochem. Soc. 117 (1970) 328.Google Scholar
  33. 33.
    33. K. Kinoshita, Electrochemical Oxygen Technology, Wiley, New York, 1992.Google Scholar
  34. 34.
    34. A. Parthasarathy, B. Dave, S. Srinivasan, A. J. Appleby and C. R. Martin, J. Electrochem. Soc. 139 (1992) 1634.Google Scholar
  35. 35.
    35. P. D. Beattie, V. I. Basura and S. Holdcroft, J. Electronanal. Chem. 468 (1999) 180.Google Scholar
  36. 36.
    36. A. Parthasarathy, S. Srinivasan, A. J. Appleby and C. R. Martin, J. Electrochem. Soc. 139 (1992) 2530.Google Scholar
  37. 37.
    37. A. Parthasarathy, S. Srinivasan, A. J. Appleby and C. R. Martin, J. Electrochem. Soc. 139 (1992) 2856.Google Scholar
  38. 38.
    38. Y. W. Rho, O. A. Velev and S. Srinivasan, J. Electrochem. Soc. 141 (1994) 2084.Google Scholar
  39. 39.
    39. A. Parthasarathy, S. Srinivasan, A. J. Appleby and C. R. Martin, J. Electronanal. Chem. 339 (1992) 101.Google Scholar
  40. 40.
    40. J. Perez, E. R. Gonzalez and E. A. Ticianelli, Electrochim. Acta 44 (1998) 1329.Google Scholar
  41. 41.
    41. F. A. Uribe, T. E. Springer and S. Gottesfeld, J. Electrochem. Soc. 139 (1992) 765.Google Scholar
  42. 42.
    42. K. C. Neyerlin, H. A. Gasteiger, C. K. Mittelsteadt, J. Jorne and W. B. Gu, J. Electrochem. Soc. 152 (2005) A1073.Google Scholar
  43. 43.
    43. W. Liu and D. Zuckerbrod, J. Electrochem. Soc. 152 (2005) A1165.Google Scholar
  44. 44.
    44. U. A. Paulus, T. J. Schmidt, H. A. Gasteiger and R. J. Behm, J. Electronanal. Chem. 495 (2001) 134.Google Scholar
  45. 45.
    45. S. F. Burlatsky, V. Atrazhev, N. Cipollini, D. Condit and N. Erikhman, ECS Trans. 1 (2006) 239.Google Scholar
  46. 46.
    46. R. M. Darling and J. P. Meyers, J. Electrochem. Soc. 150 (2003) A1523.Google Scholar
  47. 47.
    47. R. M. Darling and J. P. Meyers, J. Electrochem. Soc. 152 (2005) A242.Google Scholar
  48. 48.
    48. C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. L. Yang, M. L. Perry and T. D. Jarvi, Electrochem. Solid State Lett. 8 (2005) A273.Google Scholar
  49. 49.
    49. J. P. Meyers and R. M. Darling, J. Electrochem. Soc. 153 (2006) A1432.Google Scholar
  50. 50.
    50. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 2002.Google Scholar
  51. 51.
    51. J. J. Hwang, C. H. Chao, C. L. Chang, W. Y. Ho and D. Y. Wang, Int. J. Hydrog. Energy 32 (2007) 405.Google Scholar
  52. 52.
    52. A. Z. Weber and J. Newman, J. Electrochem. Soc. 153 (2006) A2205.Google Scholar
  53. 53.
    53. L. M. Onishi, J. M. Prausnitz and J. Newman, J. Phys. Chem. B 111 (2007) 10166.Google Scholar
  54. 54.
    54. A. Z. Weber and J. Newman, J. Electrochem. Soc. 150 (2003) A1008.Google Scholar
  55. 55.
    55. R. B. Moore and C. R. Martin, Macromolecules 21 (1988) 1334.Google Scholar
  56. 56.
    56. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath, Chem. Rev. 104 (2004) 4587.Google Scholar
  57. 57.
    57. K. D. Kreuer, S. J. Paddison, E. Spohr and M. Schuster, Chem. Rev. 104 (2004) 4637.Google Scholar
  58. 58.
    58. A. Z. Weber and J. Newman, in Advances in Fuel Cells, Vol. 1, T. S. Zhao, K.-D. Kreuer and T. V. Nguyen Editors, Elsevier, Amsterdam (2007).Google Scholar
  59. 59.
    59. J. Fimrite, H. Struchtrup and N. Djilali, J. Electrochem. Soc. 152 (2005) A1804.Google Scholar
  60. 60.
    60. B. Carnes and N. Djilali, Electrochem. Acta 52 (2006) 1038.Google Scholar
  61. 61.
    61. J. Fimrite, B. Carnes, H. Struchtrup and N. Djilali, J. Electrochem. Soc. 152 (2005) A1815.Google Scholar
  62. 62.
    62. T. Thampan, S. Malhotra, H. Tang and R. Datta, J. Electrochem. Soc. 147 (2000) 3242.Google Scholar
  63. 63.
    63. M. Wohr, K. Bolwin, W. Schnurnberger, M. Fischer, W. Neubrand and G. Eigenberger, Int. J. Hydrog. Energy 23 (1998) 213.Google Scholar
  64. 64.
    64. A. Z. Weber and J. Newman, J. Electrochem. Soc. 151 (2004) A311.Google Scholar
  65. 65.
    65. P. N. Pintauro and D. N. Bennion, Ind. Eng. Chem. Fundam. 23 (1984) 230.Google Scholar
  66. 66.
    66. T. F. Fuller, Solid-polymer-electrolyte Fuel Cells, University of California, Berkeley, CA (1992).Google Scholar
  67. 67.
    67. B. S. Pivovar, Polymer 47 (2006) 4194.Google Scholar
  68. 68.
    68. M. W. Verbrugge and R. F. Hill, J. Electrochem. Soc. 137 (1990) 886.Google Scholar
  69. 69.
    69. R. Schlögl, Zeitschrift für physikalische Chemie, Neue Folge 3 (1955) 73.Google Scholar
  70. 70.
    70. T. Okada, J. Electronanal. Chem. 465 (1999) 1.Google Scholar
  71. 71.
    71. T. Okada, G. Xie and M. Meeg, Electrochim. Acta 43 (1998) 2141.Google Scholar
  72. 72.
    72. J. Divisek, M. Eikerling, V. Mazin, H. Schmitz, U. Stimming and Y. M. Volfkovich, J. Electrochem. Soc. 145 (1998) 2677.Google Scholar
  73. 73.
    73. M. Eikerling, A. A. Kornyshev and U. Stimming, J. Phys. Chem. B 101 (1997) 10807.Google Scholar
  74. 74.
    74. P. Choi, N. H. Jalani and R. Datta, J. Electrochem. Soc. 152 (2005) A1548.Google Scholar
  75. 75.
    75. P. Choi, N. H. Jalani and R. Datta, J. Electrochem. Soc. 152 (2005) E84.Google Scholar
  76. 76.
    76. A. Z. Weber and J. Newman, AIChE J. 50 (2004) 3215.Google Scholar
  77. 77.
    77. I. Nazarov and K. Promislow, J. Electrochem. Soc. 154 (2007) B623.Google Scholar
  78. 78.
    78. A. Z. Weber and J. Newman, J. Electrochem. Soc. 154 (2007) B405.Google Scholar
  79. 79.
    79. S. S. Kocha, J. D. L. Yang and J. S. Yi, AIChE J. 52 (2006) 1916.Google Scholar
  80. 80.
    80. A. Taniguchi, T. Akita, K. Yasuda and Y. Miyazaki, J. Power Sources 130 (2004) 42.Google Scholar
  81. 81.
    81. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. J. Zhang, D. T. Song, Z. S. Liu, H. J. Wang and J. Shen, J. Power Sources 165 (2007) 739.Google Scholar
  82. 82.
    82. M. S. Mikkola, T. Rockward, F. A. Uribe and B. S. Pivovar, Fuel Cells 7 (2007) 153.Google Scholar
  83. 83.
    83. R. C. Makkus, A. H. H. Janssen, F. A. de Bruijn and R. Mallant, J. Power Sources 86 (2000) 274.Google Scholar
  84. 84.
    84. K. Promislow, J. Stockie and B. Wetton, Proc. R. Soc. London, A 462 (2006) 789.Google Scholar
  85. 85.
    85. A. Z. Weber, R. M. Darling and J. Newman, J. Electrochem. Soc. 151 (2004) A1715.Google Scholar
  86. 86.
    86. J. H. Nam and M. Kaviany, Int. J. Heat Mass Transfer 46 (2003) 4595.Google Scholar
  87. 87.
    87. J. T. Gostick, M. W. Fowler, M. A. Ioannidis, M. D. Pritzker, Y. M. Volfkovich and A. Sakars, J. Power Sources 156 (2006) 375.Google Scholar
  88. 88.
    88. J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan and J. Itescu, J. Membr. Sci. 261 (2005) 98.Google Scholar
  89. 89.
    89. J. J. Hwang, J. Electrochem. Soc. 153 (2006) A216.Google Scholar
  90. 90.
    90. A. Z. Weber and J. Newman, ECS Trans. 1 (16) (2005) 61.Google Scholar
  91. 91.
    91. R. E. De La Rue and C. W. Tobias, J. Electrochem. Soc. 106 (1959) 827.Google Scholar
  92. 92.
    92. D. A. G. Bruggeman, Ann. Physik. 24 (1935) 636.Google Scholar
  93. 93.
    93. G. Li and P. P. Pickup, J. Electrochem. Soc. 150 (2003) C745.Google Scholar
  94. 94.
    94. D. M. Bernardi, Mathematical Modeling of Lithium(alloy) IronSulfide Cells and the Electrochemical Precipitation of Nickel Hydroxide, University of California, Berkeley (1986).Google Scholar
  95. 95.
    95. M. Knudsen, The Kinetic Theory of Gases, Methuen, London, 1934.Google Scholar
  96. 96.
    96. L. B. Rothfeld, AIChE J. 9 (1963) 19.Google Scholar
  97. 97.
    97. A. Z. Weber and J. Newman, Int. Commun. Heat Mass Transfer 32 (2005) 855.Google Scholar
  98. 98.
    98. E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media: The Dusty-Gas Model, Elsevier, Amsterdam, 1983.Google Scholar
  99. 99.
    99. C. T. Miller, G. Christakos, P. T. Imhoff, J. F. McBride, J. A. Pedit and J. A. Trangenstein, Adv. Water Resour. 21 (1998) 77.Google Scholar
  100. 100.
    100. F. A. L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, 1992.Google Scholar
  101. 101.
    101. J. Bear, Dynamics of Fluids in Porous Media, Dover, New York, 1988.Google Scholar
  102. 102.
    102. W. O. Smith, Physics 4 (1933) 425.Google Scholar
  103. 103.
    103. M. C. Leverett, Pet. Div. Trans. Am. Inst. Min. Metall. Engineers 142 (1941) 152.Google Scholar
  104. 104.
    104. C. Y. Wang and P. Cheng, Adv. Heat Trans. 30 (1997) 93.Google Scholar
  105. 105.
    105. C. Y. Wang and P. Cheng, Int. J. Heat Mass Transfer 39 (1996) 3607.Google Scholar
  106. 106.
    106. Z. H. Wang, C. Y. Wang and K. S. Chen, J. Power Sources 94 (2001) 40.Google Scholar
  107. 107.
    107. S. A. Freunberger, M. Santis, I. A. Schneider, A. Wokaun and F. N. Buchi, J. Electrochem. Soc. 153 (2006) A396.Google Scholar
  108. 108.
    108. F. N. Buchi, A. B. Geiger and R. P. Neto, J. Power Sources 145 (2005) 62.Google Scholar
  109. 109.
    109. H. Meng and C. Y. Wang, J. Electrochem. Soc. 151 (2004) A358.Google Scholar
  110. 110.
    110. A. Fischer, J. Jindra and H. Wendt, J. Appl. Electrochem. 28 (1998) 277.Google Scholar
  111. 111.
    111. E. A. Ticianelli, J. G. Beery and S. Srinivasan, J. Appl. Electrochem. 21 (1991) 597.Google Scholar
  112. 112.
    112. X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao and J. Yu, J. Power Sources 79 (1999) 75.Google Scholar
  113. 113.
    113. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti and L. Giorgi, Electrochim. Acta 46 (2001) 799.Google Scholar
  114. 114.
    114. M. Uchida, Y. Aoyama, N. Eda and A. Ohta, J. Electrochem. Soc. 142 (1995) 4143.Google Scholar
  115. 115.
    115. P. Berg, A. Novruzi and K. Promislow, Chem. Eng. Sci. 61 (2006) 4316.Google Scholar
  116. 116.
    116. G. Y. Lin, W. S. He and T. Van Nguyen, J. Electrochem. Soc. 151 (2004) A1999.Google Scholar
  117. 117.
    117. W. Sun, B. A. Peppley and K. Karan, Electrochim. Acta 50 (2005) 3359.Google Scholar
  118. 118.
    118. K. M. Yin, J. Electrochem. Soc. 152 (2005) A583.Google Scholar
  119. 119.
    119. G. Q. Wang, P. P. Mukherjee and C. Y. Wang, Electrochim. Acta 51 (2006) 3139.Google Scholar
  120. 120.
    120. G. Q. Wang, P. P. Mukherjee and C. Y. Wang, Electrochim. Acta 51 (2006) 3151.Google Scholar
  121. 121.
    121. Z. N. Farhat, J. Power Sources 138 (2004) 68.Google Scholar
  122. 122.
    122. J. Xie, D. L. Wood, K. L. More, P. Atanassov and R. L. Borup, J. Electrochem. Soc. 152 (2005) A1011.Google Scholar
  123. 123.
    123. Y. Bultel, P. Ozil and R. Durand, J. Appl. Electrochem. 30 (2000) 1369.Google Scholar
  124. 124.
    124. Y. Bultel, P. Ozil and R. Durand, Electrochim. Acta 43 (1998) 1077.Google Scholar
  125. 125.
    125. Y. Bultel, P. Ozil and R. Durand, J. Appl. Electrochem. 28 (1998) 269.Google Scholar
  126. 126.
    126. Y. Bultel, P. Ozil and R. Durand, J. Appl. Electrochem. 29 (1999) 1025.Google Scholar
  127. 127.
    127. O. Antoine, Y. Bultel, R. Durand and P. Ozil, Electrochim. Acta 43 (1998) 3681.Google Scholar
  128. 128.
    128. J. Euler and W. Nonnenmacher, Electrochim. Acta 2 (1960) 268.Google Scholar
  129. 129.
    129. J. Newman and C. W. Tobias, J. Electrochem. Soc. 109 (1962) 1183.Google Scholar
  130. 130.
    130. J. Newman and W. Tiedemann, AIChE J. 21 (1975) 25.Google Scholar
  131. 131.
    131. J. O. M. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York, 1969.Google Scholar
  132. 132.
    132. P. DeVidts and R. E. White, J. Electrochem. Soc. 144 (1997) 1343.Google Scholar
  133. 133.
    133. A. A. Shah, G. S. Kim, W. Gervais, A. Young, K. Promislow, J. Li and S. Ye, J. Power Sources 160 (2006) 1251.Google Scholar
  134. 134.
    134. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice-Hall, Upper Saddle River, NJ, 1992.Google Scholar
  135. 135.
    135. E. W. Thiele, Ind. Eng. Chem. 31 (1939) 916.Google Scholar
  136. 136.
    136. M. Eikerling, A. S. Ioselevich and A. A. Kornyshev, Fuel Cells 4 (2004) 131.Google Scholar
  137. 137.
    137. M. Secanell, K. Karan, A. Suleman and N. Djilali, Electrochim. Acta 52 (2007) 6318.Google Scholar
  138. 138.
    138. Q. P. Wang, M. Eikerling, D. T. Song, Z. S. Liu, T. Navessin, Z. Xie and S. Holdcroft, J. Electrochem. Soc. 151 (2004) A950.Google Scholar
  139. 139.
    139. D. T. Song, Q. P. Wang, Z. S. Liu, M. Eikerling, Z. Xie, T. Navessin and S. Holdcroft, Electrochim. Acta 50 (2005) 3347.Google Scholar
  140. 140.
    140. M. Eikerling, J. Electrochem. Soc. 153 (2006) E58.Google Scholar
  141. 141.
    141. C. Y. Du, T. Yang, R. F. Shi, G. R. Yin and X. Q. Cheng, Electrochim. Acta 51 (2006) 4934.Google Scholar
  142. 142.
    142. M. Eikerling and A. A. Kornyshev, J. Electronanal. Chem. 475 (1999) 107.Google Scholar
  143. 143.
    143. N. Wagner, J. Appl. Electrochem. 32 (2002) 859.Google Scholar
  144. 144.
    144. C. Y. Yuh and J. R. Selman, AIChE J. 34 (1988) 1949.Google Scholar
  145. 145.
    145. I. D. Raistrick, Electrochim. Acta 35 (1990) 1579.Google Scholar
  146. 146.
    146. R. Makharia, M. F. Mathias and D. R. Baker, J. Electrochem. Soc. 152 (2005) A970.Google Scholar
  147. 147.
    147. O. Himanen and T. Hottinen, Electrochim. Acta 52 (2006) 581.Google Scholar
  148. 148.
    148. J. M. Le Canut, R. M. Abouatallah and D. A. Harrington, J. Electrochem. Soc. 153 (2006) A857.Google Scholar
  149. 149.
    149. M. Schulze, N. Wagner, T. Kaz and K. A. Friedrich, Electrochim. Acta 52 (2007) 2328.Google Scholar
  150. 150.
    150. F. Jaouen and G. Lindbergh, J. Electrochem. Soc. 150 (2003) A1699.Google Scholar
  151. 151.
    151. T. E. Springer, T. A. Zawodzinski, M. S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 143 (1996) 587.Google Scholar
  152. 152.
    152. Q. Z. Guo and R. E. White, J. Electrochem. Soc. 151 (2004) E133.Google Scholar
  153. 153.
    153. K. Wiezell, P. Gode and G. Lindbergh, J. Electrochem. Soc. 153 (2006) A749.Google Scholar
  154. 154.
    154. T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.Google Scholar
  155. 155.
    155. S. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington, DC, 1980.Google Scholar
  156. 156.
    156. K. S. Udell, Int. J. Heat Mass Transfer 28 (1985) 485.Google Scholar
  157. 157.
    157. J. P. Feser, A. K. Prasad and S. G. Advani, J. Power Sources 162 (2006) 1226.Google Scholar
  158. 158.
    158. E. C. Kumbur, K. V. Sharp and M. M. Mench, J. Power Sources 168 (2007) 356.Google Scholar
  159. 159.
    159. U. Pasaogullari and C. Y. Wang, J. Electrochem. Soc. 152 (2005) A380.Google Scholar
  160. 160.
    160. C. H. Chao and A. J. J. Hwang, J. Power Sources 160 (2006) 1122.Google Scholar
  161. 161.
    161. V. Gurau, M. J. Bluemle, E. S. De Castro, Y. M. Tsou, T. A. Zawodzinski and J. A. Mann, J. Power Sources 165 (2007) 793.Google Scholar
  162. 162.
    162. X. W. Shan and H. D. Chen, Phys. Rev. E 47 (1993) 1815.Google Scholar
  163. 163.
    163. X. W. Shan and H. D. Chen, Phys. Rev. E 49 (1994) 2941.Google Scholar
  164. 164.
    C. Pan, M. Hilpert and C. T. Miller, Water Resour. Res. 40 (2004).Google Scholar
  165. 165.
    165. C. R. Ethier, AIChE J. 37 (1991) 1227.Google Scholar
  166. 166.
    166. K. E. Thompson, AIChE J. 48 (2002) 1369.Google Scholar
  167. 167.
    167. H. J. Vogel, J. Tolke, V. P. Schulz, M. Krafczyk and K. Roth, Vadose Zone J. 4 (2005) 380.Google Scholar
  168. 168.
    168. V. P. Schulz, J. Becker, A. Wiegmann, P. P. Mukherjee and C. Y. Wang, J. Electrochem. Soc. 154 (2007) B419.Google Scholar
  169. 169.
    169. P. K. Sinha and C. Y. Wang, ECS Trans. 3 (2006) 387.Google Scholar
  170. 170.
    170. M. S. Valavanides and A. C. Payatakes, Adv. Water Resour. 24 (2001) 385.Google Scholar
  171. 171.
    171. M. Prat, Int. J. Heat Mass Transfer 50 (2007) 1455.Google Scholar
  172. 172.
    B. Markicevic and N. Djilali, Phys. Fluids 18 (2006).Google Scholar
  173. 173.
    173. R. D. Hazlett, Transp Porous Media 20 (1995) 21.Google Scholar
  174. 174.
    V. Sygouni, C. D. Tsakiroglou and A. C. Payatakes, Phys. Fluids 18 (2006).Google Scholar
  175. 175.
    175. Y. Shi, J. S. Xiao, M. Pan and R. Z. Yuan, J. Power Sources 160 (2006) 277.Google Scholar
  176. 176.
    176. G. L. He, Z. C. Zhao, P. W. Ming, A. Abuliti and C. Y. Yin, J. Power Sources 163 (2007) 846.Google Scholar
  177. 177.
    177. U. Pasaogullari, C. Y. Wang and K. S. Chen, J. Electrochem. Soc. 152 (2005) A1574.Google Scholar
  178. 178.
    178. A. T. Corey, Producer's Mon. 18 (1954) 38.Google Scholar
  179. 179.
    179. R. H. Brooks and A. T. Corey, in Hydrology Papers, Colorado State University, Fort Collins (1964).Google Scholar
  180. 180.
    180. M. T. Vangenuchten, Soil Sci. Soc. Am. J. 44 (1980) 892.Google Scholar
  181. 181.
    181. A. Z. Weber and J. Newman, J. Electrochem. Soc. 151 (2004) A311.Google Scholar
  182. 182.
    182. D. Natarajan and T. V. Nguyen, J. Electrochem. Soc. 148 (2001) A1324.Google Scholar
  183. 183.
    183. X. L. Wang, H. M. Zhang, J. L. Zhang, H. F. Xu, Z. Q. Tian, J. Chen, H. X. Zhong, Y. M. Liang and B. L. Yi, Electrochim. Acta 51 (2006) 4909.Google Scholar
  184. 184.
    184. M. S. Wilson, J. A. Valerio and S. Gottesfeld, Electrochim. Acta 40 (1995) 355.Google Scholar
  185. 185.
    185. N. Hara, K. Tsurumi and M. Watanabe, J. Electronanal. Chem. 413 (1996) 81.Google Scholar
  186. 186.
    186. E. Passalacqua, G. Squadrito, F. Lufrano, A. Patti and L. Giorgi, J. Appl. Electrochem. 31 (2001) 449.Google Scholar
  187. 187.
    187. K. Karan, H. Atiyeh, A. Phoenix, E. Halliop, J. Pharoah and B. Peppley, Electrochem. Solid State Lett. 10 (2007) B34.Google Scholar
  188. 188.
    188. Z. G. Qi and A. Kaufman, J. Power Sources 109 (2002) 38.CrossRefGoogle Scholar
  189. 189.
    189. Z. G. Zhan, J. S. Xiao, D. Y. Li, M. Pan and R. Z. Yuan, J. Power Sources 160 (2006) 1041.Google Scholar
  190. 190.
    190. G. J. M. Janssen and M. L. J. Overvelde, J. Power Sources 101 (2001) 117.Google Scholar
  191. 191.
    191. V. A. Paganin, E. A. Ticianelli and E. R. Gonzalez, J. Appl. Electrochem. 26 (1996) 297.Google Scholar
  192. 192.
    192. C. S. Kong, D.-Y. Kim, H.-K. Lee, Y.-G. Shul and T.-H. Lee, J. Power Sources 108 (2002) 185.Google Scholar
  193. 193.
    193. A. A. Shah, G. S. Kim, P. C. Sui and D. Harvey, J. Power Sources 163 (2007) 793.Google Scholar
  194. 194.
    194. S. Shimpalee, U. Beuscher and J. W. Van Zee, J. Power Sources 163 (2006) 480.Google Scholar
  195. 195.
    195. J. Chen, T. Matsuura and M. Hori, J. Power Sources 131 (2004) 155.Google Scholar
  196. 196.
    196. U. Pasaogullari and C. Y. Wang, Electrochim. Acta 49 (2004) 4359.Google Scholar
  197. 197.
    197. A. Z. Weber and J. Newman, J. Electrochem. Soc. 152 (2005) A677.Google Scholar
  198. 198.
    198. E. Birgersson, M. Noponen and M. Vynnycky, J. Electrochem. Soc. 152 (2005) A1021.Google Scholar
  199. 199.
    199. J. Ramousse, J. Deseure, O. Lottin, S. Didierjean and D. Maillet, J. Power Sources 145 (2005) 416.Google Scholar
  200. 200.
    200. Y. Y. Shan and S. Y. Choe, J. Power Sources 145 (2005) 30.Google Scholar
  201. 201.
    201. H. Ju, H. Meng and C. Y. Wang, Int. J. Heat Mass Transfer 48 (2005) 1303.Google Scholar
  202. 202.
    202. G. L. Hu and J. R. Fan, Energy Fuels 20 (2006) 738.Google Scholar
  203. 203.
    203. H. C. Ju, C. Y. Wang, S. Cleghorn and U. Beuscher, J. Electrochem. Soc. 153 (2006) A249.Google Scholar
  204. 204.
    204. Y. Wang and C. Y. Wang, J. Electrochem. Soc. 153 (2006) A1193.Google Scholar
  205. 205.
    205. O. N. Scholes, S. A. Clayton, A. F. A. Hoadley and C. Tiu, Transp. in Porous Media 68 (2007) 365.Google Scholar
  206. 206.
    206. J. G. Pharoah, K. Karan and W. Sun, J. Power Sources 161 (2006) 214.Google Scholar
  207. 207.
    207. U. Pasaogullari, P. P. Mukherjee, C. Y. Wang and K. S. Chen, J. Electrochem. Soc. 154 (2007) B823.Google Scholar
  208. 208.
    208. M. M. Tomadakis and S. V. Sotirchos, AIChE J. 37 (1991) 74.Google Scholar
  209. 209.
    209. J. T. Gostick, M. W. Fowler, M. D. Pritzker, M. A. Ioannidis and L. M. Behra, J. Power Sources 162 (2006) 228.Google Scholar
  210. 210.
    T. I. I. Toray, Carbon Fiber Paper “TGP-H” Property Sheet, in.Google Scholar
  211. 211.
    211. H. Meng, J. Power Sources 161 (2006) 466.Google Scholar
  212. 212.
    212. M. Khandelwal and M. M. Mench, J. Power Sources 161 (2006) 1106.Google Scholar
  213. 213.
    213. J. T. Gostick, M. W. Fowler, M. D. Pritzker, M. A. Ioannidis and L. M. Behra, J. Power Sources 162 (2006) 228.Google Scholar
  214. 214.
    214. G. W. Jackson and D. F. James, Can. J. Chem. Eng. 64 (1986) 364.Google Scholar
  215. 215.
    215. J. G. Pharoah, J. Power Sources 144 (2005) 77.Google Scholar
  216. 216.
    216. M. V. Williams, H. R. Kunz and J. M. Fenton, J. Electrochem. Soc. 151 (2004) A1617.Google Scholar
  217. 217.
    217. W. K. Lee, C. H. Ho, J. W. Van Zee and M. Murthy, J. Power Sources 84 (1999) 45.Google Scholar
  218. 218.
    218. J. Ihonen, M. Mikkola and G. Lindbergh, J. Electrochem. Soc. 151 (2004) A1152.Google Scholar
  219. 219.
    219. P. Zhou, C. W. Wu and G. J. Ma, J. Power Sources 163 (2007) 874.Google Scholar
  220. 220.
    220. P. Zhou and C. W. Wu, J. Power Sources 170 (2007) 93.Google Scholar
  221. 221.
    221. P. C. Sui and N. Djilali, J. Power Sources 161 (2006) 294.Google Scholar
  222. 222.
    222. J. B. Ge, A. Higier and H. T. Liu, J. Power Sources 159 (2006) 922.Google Scholar
  223. 223.
    223. W. R. Chang, J. J. Hwang, F. B. Weng and S. H. Chan, J. Power Sources 166 (2007) 149.Google Scholar
  224. 224.
    224. T. Hottinen and O. Himanen, Electrochem. Commun. 9 (2007) 1047.Google Scholar
  225. 225. W. Vielstich,
    225. M. Mathias, J. Roth, J. Fleming and W. Lehnert, in Handbook of Fuel Cells: Fundamentals, Technology, and Applications, Vol. 3, W. Vielstich, A. Lamm and H. A. Gasteiger Editors, Wiley, New York (2003).Google Scholar
  226. 226.
    226. Y. L. Tang, A. M. Karlsson, M. H. Santare, M. Gilbert, S. Cleghorn and W. B. Johnson, Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process. 425 (2006) 297.Google Scholar
  227. 227.
    227. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Butterworth-Heinemann, Oxford, UK, 2000.Google Scholar
  228. 228.
    228. A. Bazylak, D. Sinton, Z. S. Liu and N. Djilali, J. Power Sources 163 (2007) 784.Google Scholar
  229. 229.
    229. E. Endoh, S. Terazono, H. Widjaja and Y. Takimoto, Electrochem. Solid State Lett. 7 (2004) A209.Google Scholar
  230. 230.
    230. G. H. Guvelioglu and H. G. Stenger, J. Power Sources 147 (2005) 95.Google Scholar
  231. 231.
    231. G. H. Guvelioglu and H. G. Stenger, J. Power Sources 163 (2007) 882.Google Scholar
  232. 232.
    232. W. Huang, B. Zhou and A. Sobiesiak, J. Electrochem. Soc. 153 (2006) A1945.Google Scholar
  233. 233.
    233. H. Meng and C. Y. Wang, Chem. Eng. Sci. 59 (2004) 3331.Google Scholar
  234. 234.
    234. P. T. Nguyen, T. Berning and N. Djilali, J. Power Sources 130 (2004) 149.Google Scholar
  235. 235.
    235. H. C. Ju, C. Y. Wang, S. Cleghorn and U. Beuscher, J. Electrochem. Soc. 152 (2005) A1645.Google Scholar
  236. 236.
    236. H. Ju, G. Luo and C. Y. Wang, J. Electrochem. Soc. 154 (2007) B218.Google Scholar
  237. 237.
    237. S. Shimpalee, S. Greenway, D. Spuckler and J. W. Van Zee, J. Power Sources 135 (2004) 79.Google Scholar
  238. 238.
    238. S. A. Freunberger, A. Wokaun and F. N. Buchi, J. Electrochem. Soc. 153 (2006) A909.Google Scholar
  239. 239.
    239. Y. Wang and C. Y. Wang, J. Power Sources 153 (2006) 130.Google Scholar
  240. 240.
    240. T. W. Patterson and R. M. Darling, Electrochem. Solid State Lett. 9 (2006) A183.Google Scholar
  241. 241.
    241. P. W. Li, L. Schaefer, Q. M. Wang, T. Zhang and M. K. Chyu, J. Power Sources 115 (2003) 90.Google Scholar
  242. 242.
    242. Y. Zong, B. Zhou and A. Sobiesiak, J. Power Sources 161 (2006) 143.Google Scholar
  243. 243.
    243. C. I. Lee and H. S. Chu, J. Power Sources 161 (2006) 949.Google Scholar
  244. 244.
    244. J. S. Yi, J. D. L. Yang and C. King, AIChE J. 50 (2004) 2594.Google Scholar
  245. 245.
    245. E. C. Kumbur, K. V. Sharp and M. M. Mench, J. Power Sources 161 (2006) 333.Google Scholar
  246. 246.
    246. Z. G. Zhan, J. S. Xiao, M. Pan and R. Z. Yuan, J. Power Sources 160 (2006) 1.Google Scholar
  247. 247.
    247. K. Jiao, B. Zhou and P. Quan, J. Power Sources 154 (2006) 124.Google Scholar
  248. 248.
    248. P. Quan and M. C. Lai, J. Power Sources 164 (2007) 222.Google Scholar
  249. 249.
    249. H. Meng and C. Y. Wang, J. Electrochem. Soc. 152 (2005) A1733.Google Scholar
  250. 250.
    250. K. S. Chen, M. A. Hickner and D. R. Noble, Int. J. Energy Res. 29 (2005) 1113.Google Scholar
  251. 251.
    251. G. L. He, P. W. Ming, Z. C. Zhao, A. Abudula and Y. Xiao, J. Power Sources 163 (2007) 864.Google Scholar
  252. 252.
    252. D. P. Wilkinson and J. St-Pierre, J. Power Sources 113 (2003) 101.Google Scholar
  253. 253.
    253. P. Berg, K. Promislow, J. St Pierre, J. Stumper and B. Wetton, J. Electrochem. Soc. 151 (2004) A341.Google Scholar
  254. 254.
    254. E. Birgersson and M. Vynnycky, J. Power Sources 153 (2006) 76.Google Scholar
  255. 255.
    255. S. Um and C. Y. Wang, J. Power Sources 156 (2006) 211.Google Scholar
  256. 256.
    256. Y. Wang and C. Y. Wang, J. Power Sources 147 (2005) 148.Google Scholar
  257. 257.
    M. S. Wilson, Fuel cell with interdigitated porous flow-field, The Regents of the University of California Office of Technology Transfer, U.S. (1995).Google Scholar
  258. 258.
    258. W. He, J. S. Yi and T. V. Nguyen, AIChE J. 46 (2000) 2053.Google Scholar
  259. 259.
    259. J. S. Yi and T. V. Nguyen, J. Electrochem. Soc. 146 (1999) 38.Google Scholar
  260. 260.
    260. J. P. Feser, A. K. Prasad and S. G. Advani, J. Power Sources 161 (2006) 404.Google Scholar
  261. 261.
    261. J. Park and X. G. Li, J. Power Sources 163 (2007) 853.Google Scholar
  262. 262.
    262. L. Wang and H. T. Liu, J. Power Sources 134 (2004) 185.Google Scholar
  263. 263.
    263. W. M. Yan, H. Y. Li and W. C. Tsai, J. Electrochem. Soc. 153 (2006) A1984.Google Scholar
  264. 264.
    264. J. J. Hwang, C. H. Chao, W. Y. Ho, C. L. Chang and D. Y. Wang, J. Power Sources 157 (2006) 85.Google Scholar
  265. 265.
    265. S. Um and C. Y. Wang, J. Power Sources 125 (2004) 40.Google Scholar
  266. 266.
    266. H. Yamada, T. Hatanaka, H. Murata and Y. Morimoto, J. Electrochem. Soc. 153 (2006) A1748.Google Scholar
  267. 267.
    267. J. Zou, X. F. Peng and W. M. Yan, J. Power Sources 159 (2006) 514.Google Scholar
  268. 268.
    268. E. Arato, M. Pinna and P. Costa, J. Power Sources 158 (2006) 206.Google Scholar
  269. 269.
    269. E. Arato and P. Costa, J. Power Sources 158 (2006) 200.Google Scholar
  270. 270.
    270. G. Inoue, Y. Matsukuma and M. Minemoto, J. Power Sources 157 (2006) 136.Google Scholar
  271. 271.
    271. K. V. Zhukovsky, AIChE J. 49 (2003) 3029.Google Scholar
  272. 272.
    272. A. Kazim, H. T. Liu and P. Forges, J. Appl. Electrochem. 29 (1999) 1409.Google Scholar
  273. 273.
    273. C. Reiser, Ion Exchange Membrane Fuel Cell Power Plant with Water Managament Pressure Differentials, UTC Fuel Cells, United States (1997).Google Scholar
  274. 274.
    274. A. Z. Weber and R. M. Darling, J. Power Sources 168 (2007) 191.Google Scholar
  275. 275.
    275. D. L. Wood, Y. S. Yi and T. V. Nguyen, Electrochim. Acta 43 (1998) 3795.Google Scholar
  276. 276.
    276. T. Yang and P. Shi, J. Electrochem. Soc. 153 (2006) A1518.Google Scholar
  277. 277.
    277. S. H. Ge, X. G. Li and I. M. Hsing, J. Electrochem. Soc. 151 (2004) B523.Google Scholar
  278. 278.
    278. S. H. Ge, X. G. Li and I. M. Hsing, Electrochim. Acta 50 (2005) 1909.Google Scholar
  279. 279.
    279. C. R. Buie, J. D. Posner, T. Fabian, C. A. Suk-Won, D. Kim, F. B. Prinz, J. K. Eaton and J. G. Santiago, J. Power Sources 161 (2006) 191.Google Scholar
  280. 280.
    280. J. P. Meyers, R. M. Darling, C. Evans, R. Balliet and M. L. Perry, ECS Trans. 3 (2006) 1207.Google Scholar
  281. 281.
    281. S. Litster, J. G. Pharoah, G. McLean and N. Djilali, J. Power Sources 156 (2006) 334.Google Scholar
  282. 282.
    282. J. J. Hwang, S. D. Wu, R. G. Pen, P. Y. Chen and C. H. Chao, J. Power Sources 160 (2006) 18.Google Scholar
  283. 283.
    283. S. Litster and N. Djilali, Electrochim. Acta 52 (2007) 3849.Google Scholar
  284. 284.
    Hydrogen, fuel cells & infrastructure technologies program; multi-year research, development and demonstration plan, Tables 3.4.2 and 3.4.3., p. 14, U.S. Department of Energy (2007).Google Scholar
  285. 285.
    285. F. Mueller, J. Brouwer, S. G. Kang, H. S. Kim and K. D. Min, J. Power Sources 163 (2007) 814.Google Scholar
  286. 286.
    286. W. S. He, G. Y. Lin and T. V. Nguyen, AIChE J. 49 (2003) 3221.Google Scholar
  287. 287.
    287. R. Mosdale, G. Gebel and M. Pineri, J. Membr. Sci. 118 (1996) 269.Google Scholar
  288. 288.
    288. A. Haddad, R. Bouyekhf, A. El Moudni and M. Wack, J. Power Sources 163 (2006) 420.Google Scholar
  289. 289.
    289. W. Friede, S. Rael and B. Davat, IEEE Trans. Power Electron. 19 (2004) 1234.Google Scholar
  290. 290.
    290. H. M. Yu and C. Ziegler, J. Electrochem. Soc. 153 (2006) A570.Google Scholar
  291. 291.
    291. F. L. Chen, M. H. Chang and C. F. Fang, J. Power Sources 164 (2007) 649.Google Scholar
  292. 292.
    292. A. Vorobev, O. Zikanov and T. Shamim, J. Power Sources 166 (2007) 92.Google Scholar
  293. 293.
    293. I. Nazarov and K. Promislow, Chem. Eng. Sci. 61 (2006) 3198.Google Scholar
  294. 294.
    294. J. Benziger, E. Chia, J. F. Moxley and I. G. Kevrekidis, Chem. Eng. Sci. 60 (2005) 1743.Google Scholar
  295. 295.
    295. R. M. Rao and R. Rengaswamy, Chem. Eng. Sci. 61 (2006) 7393.Google Scholar
  296. 296.
    296. W. M. Yan, C. Y. Soong, F. L. Chen and H. S. Chu, J. Power Sources 143 (2005) 48.Google Scholar
  297. 297.
    297. S. Shimpalee, W. K. Lee, J. W. Van Zee and H. Naseri-Neshat, J. Power Sources 156 (2006) 355.Google Scholar
  298. 298.
    298. Y. Wang and C. Y. Wang, Electrochim. Acta 50 (2005) 1307.Google Scholar
  299. 299.
    299. Y. Wang and C. Y. Wang, Electrochim. Acta 51 (2006) 3924.Google Scholar
  300. 300.
    300. J. C. Amphlett, R. F. Mann, B. A. Peppley, P. R. Roberge and A. Rodrigues, J. Power Sources 61 (1996) 183.Google Scholar
  301. 301.
    301. F. L. Chen, Y. G. Su, C. Y. Soong, W. M. Yan and H. S. Chu, J. Electronanal. Chem. 566 (2004) 85.Google Scholar
  302. 302.
    302. Y. Shan and S. Y. Choe, J. Power Sources 158 (2006) 274.Google Scholar
  303. 303.
    303. H. Wu, P. Berg and X. G. Li, J. Power Sources 165 (2007) 232.Google Scholar
  304. 304.
    304. T. F. Fuller and J. Newman, J. Electrochem. Soc. 140 (1993) 1218.Google Scholar
  305. 305.
    305. Y. Wang and C. Y. Wang, J. Electrochem. Soc. 153 (2006) A1193.Google Scholar
  306. 306.
    306. Y. Y. Shan, S. Y. Choe and S. H. Choi, J. Power Sources 165 (2007) 196.Google Scholar
  307. 307.
    307. D. Natarajan and T. V. Nguyen, J. Power Sources 115 (2003) 66.Google Scholar
  308. 308.
    308. C. Ziegler, H. M. Yu and J. O. Schumacher, J. Electrochem. Soc. 152 (2005) A1555.Google Scholar
  309. 309.
    309. S. M. Chang and H. S. Chu, J. Power Sources 161 (2006) 1161.Google Scholar
  310. 310.
    310. D. T. Song, Q. P. Wang, Z. S. Liu and C. Huang, J. Power Sources 159 (2006) 928.Google Scholar
  311. 311.
    311. H. Guilin and F. Jianren, J. Power Sources 165 (2007) 171.Google Scholar
  312. 312.
    312. S. Shimpalee, D. Spuckler and J. W. Van Zee, J. Power Sources 167 (2007) 130.Google Scholar
  313. 313.
    Hydrogen, fuel cells & infrastructure technologies program; multi-year research, development and demonstration plan, Tables 3.4.2 and 3.4.3., in, p. 14, U.S. Department of Energy (2007).Google Scholar
  314. 314.
    A. A. Pesaran, G.-H. Kim and J. D. Gonder, NREL MP-540-38760 (2005).Google Scholar
  315. 315.
    315. M. F. Mathias, R. Makharia, H. A. Gasteiger, Jason J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan and P. T. Yu, Electrochem. Soc. Interface 14 (2005) 24.Google Scholar
  316. 316.
    316. R. Bradean, H. Haas, K. Eggen, C. Richards and T. Vrba, ECS Trans. 3 (2006) 1159.Google Scholar
  317. 317.
    317. M. Modell and R. C. Reid, Thermodynamics and its Applications, Prentice-Hall, Englewood Cliffs, NJ 1974.Google Scholar
  318. 318.
    318. S. Taber, J. Geol. 38 (1930) 303.Google Scholar
  319. 319.
    319. J. D. Sage and M. Porebska, J. Cold Reg. Eng. 7 (1993) 99.Google Scholar
  320. 320.
    R. D. Miller, Proceedings of the Third International Conference on Permafrost (1978) 707. Google Scholar
  321. 321.
    321. J. P. G. Loch, Soil Science 126 (1978) 77.Google Scholar
  322. 322.
    322. A. W. Rempel, J. S. Wettlaufer and M. G. Worster, J. Fluid Mech. 498 (2004) 227.Google Scholar
  323. 323.
    K. S. Henry, A review of the thermodynamics of frost heave, in, H. US Army Cold Regions Research and Engineering Laboratory, NH, Report TR-00-16 Editor, p. 1 (2000).Google Scholar
  324. 324.
    324. S. H. He and M. M. Mench, J. Electrochem. Soc. 153 (2006) A1724.Google Scholar
  325. 325.
    325. S. He and M. M. Mench, ECS Trans. 3 (2006) 897.Google Scholar
  326. 326.
    326. E. L. Thompson, T. W. Capehart, T. J. Fuller and J. Jorne, J. Electrochem. Soc. 153 (2006) A2351.Google Scholar
  327. 327.
    327. E. L. Thompson, J. Jorne and H. A. Gasteiger, J. Electrochem. Soc. 154 (2007) B783.Google Scholar
  328. 328.
    328. M. De Francesco and E. Arato, J. Power Sources 108 (2002) 41.Google Scholar
  329. 329.
    329. M. Sundaresan and R. M. Moore, Fuel Cells 5 (2005) 476.Google Scholar
  330. 330.
    330. M. Sundaresan and R. M. Moore, J. Power Sources 145 (2005) 534.Google Scholar
  331. 331.
    331. M. Oszcipok, A. Hakenjos, D. Riemann and C. Hebling, Fuel Cells 7 (2007) 135.Google Scholar
  332. 332.
    332. Y. Hishinuma, T. Chikahisa, F. Kagami and T. Ogawa, Jsme Int. J. Ser. B-Fluids and Thermal Eng. 47 (2004) 235.Google Scholar
  333. 333.
    333. L. Mao and C. Y. Wang, J. Electrochem. Soc. 154 (2007) B139.Google Scholar
  334. 334.
    334. L. Mao and C. Y. Wang, J. Electrochem. Soc. 154 (2007) B341.Google Scholar
  335. 335.
    335. H. A. Gasteiger and M. F. Mathias, in Proton Conducting Membrane Fuel Cells III, J. W. Van Zee, T. F. Fuller, S. Gottesfeld and M. Murthy Editors, The Electrochemical Society Proceeding Series, Pennington, NJ (2002).Google Scholar
  336. 336.
    336. J. L. Zhang, Z. Xie, J. J. Zhang, Y. H. Tanga, C. J. Song, T. Navessin, Z. Q. Shi, D. T. Song, H. J. Wang, D. P. Wilkinson, Z. S. Liu and S. Holdcroft, J. Power Sources 160 (2006) 872.Google Scholar
  337. 337.
    337. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger and A. B. Bocarsly, J. Power Sources 103 (2001) 1.Google Scholar
  338. 338.
    338. Y. Y. Shao, G. P. Yin, Z. B. Wang and Y. Z. Gao, J. Power Sources 167 (2007) 235.Google Scholar
  339. 339.
    339. T. M. Thampan, N. H. Jalani, P. Choi and R. Datta, J. Electrochem. Soc. 152 (2005) A316.Google Scholar
  340. 340.
    340. F. A. de Bruijn, R. C. Makkus, R. K. A. M. Mallant and G. J. M. Janssen, in Advances in Fuel Cells, Vol. 1, T. S. Zhao, K.-D. Kreuer and T. V. Nguyen Editors, Elsevier, Amsterdam (2007).Google Scholar
  341. 341.
    341. R. C. Jiang, H. R. Kunz and J. M. Fenton, J. Electrochem. Soc. 152 (2005) A1329.Google Scholar
  342. 342.
    342. J. Peng and S. J. Lee, J. Power Sources 162 (2006) 1182.Google Scholar
  343. 343.
    343. D. F. Cheddie and N. D. H. Munroe, J. Power Sources 160 (2006) 215.Google Scholar
  344. 344.
    344. D. F. Cheddie and N. D. H. Munroe, Int. J. Hydrog. Energy 32 (2007) 832.Google Scholar
  345. 345.
    345. J. W. Hu, H. M. Zhang, Y. F. Zhai, G. Liu, J. Hu and B. L. Yi, Electrochim. Acta 52 (2006) 394.Google Scholar
  346. 346.
    346. P. K. Sinha, C. Y. Wang and U. Beuscher, J. Electrochem. Soc. 154 (2007) B106.Google Scholar
  347. 347.
    347. P. K. Sinha, C. Y. Wang and A. Su, Int. J. Hydrog. Energy 32 (2007) 886.Google Scholar
  348. 348.
    348. J. L. Zhang, Y. H. Tang, C. J. Song, X. A. Cheng, J. J. Zhang and H. J. Wang, Electrochim. Acta 52 (2007) 5095.Google Scholar
  349. 349.
    349. H. Xu, H. R. Kunz and J. M. Fenton, Electrochim. Acta 52 (2007) 3525.Google Scholar
  350. 350.
    350. Y. Song, J. M. Fenton, H. R. Kunz, L. J. Bonville and M. V. Williams, J. Electrochem. Soc. 152 (2005) A539.Google Scholar
  351. 351.
    351. Y. H. Tang, J. J. Zhang, C. J. Song, H. Liu, J. L. Zhang, H. J. Wang, S. Mackinnon, T. Peckham, J. Li, S. McDermid and P. Kozak, J. Electrochem. Soc. 153 (2006) A2036.Google Scholar
  352. 352.
    352. J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell and M. Litt, J. Electrochem. Soc. 142 (1995) L121.Google Scholar
  353. 353.
    353. S. von Kraemer, M. Puchner, P. Jannasch, A. Lundblad and G. Lindbergh, J. Electrochem. Soc. 153 (2006) A2077.Google Scholar
  354. 354.
    354. L. J. Bonville, H. R. Kunz, Y. Song, A. Mientek, M. Williams, A. Ching and J. M. Fenton, J. Power Sources 144 (2005) 107.Google Scholar
  355. 355.
    355. K. C. Neyerlin, H. A. Gasteiger, C. K. Mittelsteadt, J. Jorne and W. B. Gu, J. Electrochem. Soc. 152 (2005) A1073.Google Scholar
  356. 356.
    356. B. S. Pivovar and Y. S. Kim, J. Electrochem. Soc. 154 (2007) B739.Google Scholar
  357. 357.
    357. H. Xu, Y. Song, H. R. Kunz and J. M. Fenton, J. Electrochem. Soc. 152 (2005) A1828.Google Scholar
  358. 358.
    358. C. J. Song, Y. H. Tang, J. L. Zhang, J. J. Zhang, H. J. Wang, J. Shen, S. McDermid, J. Li and P. Kozak, Electrochim. Acta 52 (2007) 2552.Google Scholar
  359. 359.
    359. L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu and B. C. Benicewicz, Fuel Cells 5 (2005) 287.Google Scholar
  360. 360.
    360. S. Srinivasan, Fuel Cells. From Fundamentals to Applications, Springer, New York, Berlin, Heidelberg, 2006.Google Scholar
  361. 361.
    361. P. Zhou, C. W. Wu and G. J. Ma, J. Power Sources 163 (2007) 874.Google Scholar
  362. 362.
    362. R. Bradean, H. Haas, K. Eggen, C. Richards and T. Vrba, ECS Trans. 3 (2006) 1159.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Adam Z. Weber
    • 2
  • Ryan Balliet
    • 2
  • Haluna P. Gunterman
    • 2
  • John Newman
    • 1
    • 2
  1. 1.Environmental Energy Technologies DivisonLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations