Advertisement

Electrochemical Materials for PEM Fuel Cells: Insights from Physical Theory and Simulation

  • Michael H. Eikerling
  • Kourosh Malek
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 43)

Abstract

This chapter focuses on the role of physical theory, molecular simulation, and computational electrochemistry for fundamental understanding, diagnostics, and design of Polymer Electrolyte Fuel Cells (PEFCs). Development of stable and inexpensive materials is the most important technological hurdle that PEFC developers are currently facing. A profound insight based on theory and modeling of the pertinent materials will advise us how fuel cell components with optimal specifications could be made and how they can be integrated into operating cells. This chapter highlights major challenges and perspectives in research on electrochemical materials for fuel cells, arising at scales from Ångstrom to meters. Topics include proton conduction, nanoparticle electrocatalysis, self-organization in complex media, effective properties of random heterogeneous media, role of water in various components and at various scales and effectiveness of catalyst utilization.

Keywords

Fuel Cell Critical Current Density Catalyst Layer Proton Transport Polymer Electrolyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Handbook of Fuel Cells: Fundamentals, Technology, Applications, Ed. by Vielstich, A. Lamm, and H. Gasteiger, VCH-Wiley, Weinheim, 2003.Google Scholar
  2. 2.
    2. M. Eikerling, A.A. Kornyshev, and A.R. Kucernak, Phys. Today 59 (2006) 38.Google Scholar
  3. 3.
    E.J. Carlson, DOE Hydrogen Program Annual Merit Review, May 16–19, 2006.Google Scholar
  4. 4.
    M. Eikerling, A.A. Kornyshev, and A.A. Kulikovsky, “Encyclopedia of Electrochemistry”, Ed. by A.J. Bard and M. Stratmann, Vol. 5, Electrochemical Engineering, vol. Ed. by Digby D.M. and P. Schmuki, chapter 8.2, pp. 447–543, VCH-Wiley, Weinheim, 2007.Google Scholar
  5. 5.
    5. A.Z. Weber and J. Newman, Chem. Rev. 104 (2004) 4679.Google Scholar
  6. 6.
    6. T.E. Springer, T.A. Zawodzinski, and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.Google Scholar
  7. 7.
    7. S. Gottesfeld and T.A. Zawodzinski, in Advances in Electrochemical Science and Engineering, Vol. 5, Ed. by R.C. Alkire, H. Gerischer, D.M. Kolb, and C.W. Tobias, Wiley-VCH, Weinheim, 1997, pp. 195–301.Google Scholar
  8. 8.
    8. S. S. Jang, V. Molinero, T. Çaǧ in, and W.A. Goddard III, J. Phys. Chem. B 108 (2004) 3149.Google Scholar
  9. 9.
    9. W. Goddard, B. Merinov, A. van Duin, T. Jacob, M. Blanco, V. Molinero, S.S. Jang, and Y.H. Jang, Mol. Sim. 32 (2006) 251.Google Scholar
  10. 10.
    10. A.Z. Weber and J. Newman, J. Electrochem. Soc. 151 (2004) A311.Google Scholar
  11. 11.
    11. A.Z. Weber and J. Newman, J. Electrochem. Soc. 151 (2004) A326.Google Scholar
  12. 12.
    12. K.-D. Kreuer, S.J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104 (2004) 4637.Google Scholar
  13. 13.
    13. E. Spohr, Mol. Sim. 30 (2004) 107.Google Scholar
  14. 14.
    14. S.J. Paddison, Annu. Rev. Mater. Res. 33 (2003) 289.Google Scholar
  15. 15.
    15. A. Hickner and B.S. Pivovar, Fuel Cells 5 (2005) 213.Google Scholar
  16. 16.
    16. K.A. Mauritz and R.B. Moore, Chem. Rev. 104 (2004) 4535.Google Scholar
  17. 17.
    17. L. Rubatat, G. Gebel, and O. Diat, Macromolecules 37 (2004) 7772.Google Scholar
  18. 18.
    18. G. Gebel and O. Diat, Fuel Cells 5 (2005) 261.Google Scholar
  19. 19.
    19. J. Meier, J. Schiotz, P. Liu, J.K. Norskov, and U. Stimming, Chem. Phys. Lett. 390 (2004) 440.Google Scholar
  20. 20.
    20. J. Meier, K.A. Friedrich, and U. Stimming, Faraday Discuss. 121 (2002) 365.Google Scholar
  21. 21.
    P.K. Babu, E. Oldfield, and A. Wieckowski, in Modern Aspects of Electrochemistry, Vol. 36, Ed. by C.G. Vayenas, B.E. Conway, and R.E. White, 2003, pp. 1–50.Google Scholar
  22. 22.
    22. Y.Y. Tong, E. Oldfield, and A. Wieckowski, “NMR Spectroscopy in Electrochemistry” in Encyclopedia of Electrochemistry, Vol. 2, Interfacial Kinetics and Mass Transport, Wiley, Chichester, UK, 2002.Google Scholar
  23. 23.
    23. A. Wieckowski, E.R. Savinova, and C.G. Vayenas, Catalysis and Electrocatalysis at Nanoparticle Surfaces, Marcel Dekker, New York, 2003.Google Scholar
  24. 24.
    24. I.A. Schneider, D. Kramer, A. Wokaun, and G.G. Scherer, Electrochem. Commun. 7 (2005) 1393.Google Scholar
  25. 25.
    25. I.A. Schneider, S.A. Freunberger, D.K. Wokaun, and G.G. Scherer, J. Electrochem. Soc. 154 (2007) B383.Google Scholar
  26. 26.
    F. Xu, G. Gebel, O. Diat and A. Morin, J. Electrochem. Soc., 154 (2007) 1389. Google Scholar
  27. 27.
    27. M. Eikerling, A.A. Kornyshev, and A.A. Kulikovsky, Fuel Cell Rev. 1 (2005) 15.Google Scholar
  28. 28.
    28. D. Wang, J.S. Wainright, U. Landau, and R.F. Savinell, J. Electrochem. Soc. 143 (1996) 1260.Google Scholar
  29. 29.
    29. D. Marx, M.E. Tuckerman, J. Hutter, and M. Parinello, Nature 397 (1999) 601.Google Scholar
  30. 30.
    30. M.E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Phys. Chem. 99 (1995) 5749.Google Scholar
  31. 31.
    31. M.E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Chem. Phys. 103 (1995) 150.Google Scholar
  32. 32.
    32. M.K. Petersen, F. Wang, N.P. Blake, H. Metiu, and G.A. Voth, J. Phys. Chem. B 109 (2005) 3727.Google Scholar
  33. 33.
    33. A. Roudgar, S.P. Narasimachary, and M. Eikerling, J. Phys. Chem. B 110 (2006) 20469.Google Scholar
  34. 34.
    34. G. Hummer and C. Dellago, Phys. Rev. Lett. 97 (2006) 245901.Google Scholar
  35. 35.
    35. S. Braun-Sand, M. Strajbl, and A. Warshel, Biophys. J. 87 (2004) 2221.Google Scholar
  36. 36.
    36. A.Y. Mulkidjanian, J. Heberle, and D.A. Cherepanov, Biochim. Biophys. Acta 1757 (2006) 913.Google Scholar
  37. 37.
    37. M. Eikerling and A.A. Kornyshev, J. Electroanal. Chem. 502 (2001) 1.Google Scholar
  38. 38.
    38. P. Commer, A.G. Cherstvy, E. Spohr, and A.A. Kornyshev, Fuel Cells 2 (2002) 127.Google Scholar
  39. 39.
    39. M. Eikerling, A.A. Kornyshev, A.M. Kuznetsov, J. Ulstrup, and S. Walbran, J. Phys. Chem. B 105 (2001) 3646.Google Scholar
  40. 40.
    40. M. Kato, A.V. Pisliakov, and A. Warshel, Proteins Struct. Funct. Genet. 64 (2006) 829.Google Scholar
  41. 41.
    41. J. Heberle, J. Riesle, and G. Thiedemann et al., Nature 370 (1994) 379.Google Scholar
  42. 42.
    42. J. Zhang and P.R. Unwin, Phys. Chem. Chem. Phys. 4 (2002) 3814.Google Scholar
  43. 43.
    43. V.B.P. Leite, A. Cavalli, and O.N. Oliveira Jr., Phys. Rev. E 57 (1998) 6835.Google Scholar
  44. 44.
    44. M. Cappadonia, J.W. Erning, S.M.S. Niaki, and U. Stimming, Solid State Ionics 77 (1995) 65.Google Scholar
  45. 45.
    45. A. Vishnyakov and A.V. Neimark, J. Phys. Chem. B 105 (2001) 9586.Google Scholar
  46. 46.
    46. A.S. Ioselevich, A.A. Kornyshev, and J.H.G. Steinke, J. Phys. Chem. B 108 (2003) 11953.Google Scholar
  47. 47.
    47. S.M. Haile, Mater. Today 6 (2003) 24.Google Scholar
  48. 48.
    48. M. Schuster, T. Rager, A. Noda, K.D. Kreuer, and J. Maier, Fuel Cells 5 (2005) 355.Google Scholar
  49. 49.
    49. J.A. Elliott and S.J. Paddison, Phys. Chem. Chem. Phys. 9 (2007) 2602.Google Scholar
  50. 50.
    50. S.J. Paddison and J.A. Elliott, Phys. Chem. Chem. Phys. 8 (2006) 2193.Google Scholar
  51. 51.
    51. M. Eikerling, S.J. Paddison, L.R. Pratt, and T.A. Zawodzinski Jr., Chem. Phys. Lett. 368 (2003) 108.Google Scholar
  52. 52.
    52. M.K. Petersen and G.A. Voth, J. Phys. Chem. B 110 (2006) 18594.Google Scholar
  53. 53.
    53. E. Spohr, P. Commer, and A.A. Kornyshev, J. Phys. Chem. B 106 (2002) 10560.Google Scholar
  54. 54.
    54. M. Eikerling, A.S. Ioselevich, and A.A. Kornyshev, Fuel Cells 4 (2004) 131.Google Scholar
  55. 55.
    55. M. Boudart, Adv. Catal. 20 (1969) 153.Google Scholar
  56. 56.
    56. M. Eikerling, J. Meier, and U. Stimming, Z. Phys. Chem. 217 (2003) 395.Google Scholar
  57. 57.
    57. F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, and U. Stimming, Faraday Discuss. 125 (2004) 357.Google Scholar
  58. 58.
    58. L.B. Hansen, P. Stoltze, J.K. Nørskov, B.S. Clausen, and W. Niemann, Phys. Rev. Lett. 64 (1990) 3155.Google Scholar
  59. 59.
    59. B. Andreaus, F. Maillard, J. Kocylo, E. Savinova, and M. Eikerling, J. Phys. Chem. B 110 (2006) 21028.Google Scholar
  60. 60.
    60. O.V. Cherstiouk, P.A. Simonov, and E.R. Savinova, Electrochim. Acta 48 (2003) 3851.Google Scholar
  61. 61.
    61. F. Maillard, S. Schreier, M. Heinzlik, E.R. Savinova, S. Weinkauf, and U. Stimming, Phys. Chem. Chem. Phys. 7 (2005) 385.Google Scholar
  62. 62.
    62. F. Maillard, E.R. Savinova, and U. Stimming, J. Electroanal. Chem. 599 (2006) 221.Google Scholar
  63. 63.
    K. Malek, M. Eikerling, Q. Wang, T. Navessin, and Z. Liu, J Phys Chem C 111 (2007) 13627.Google Scholar
  64. 64.
    64. M. Uchida, Y. Aoyama, E. Eda, and A. Ohta, J. Electrochem. Soc. 142 (1995) 463.Google Scholar
  65. 65.
    65. M. Uchida, Y. Aoyama, E. Eda, and A. Ohta, J. Electrochem. Soc. 142 (1995) 4143.Google Scholar
  66. 66.
    66. M. Uchida, Y. Fuuoka, Y. Sugawara, N. Eda, and A. Ohta, J. Electrochem. Soc. 143 (1996) 2245.Google Scholar
  67. 67.
    67. M. Eikerling and A.A. Kornyshev, J. Electroanal. Chem. 453 (1998) 89.Google Scholar
  68. 68.
    68. M. Eikerling, J. Electrochem. Soc. 153 (2006) E58.Google Scholar
  69. 69.
    69. R. Fernandez, P. Ferriera-Aparicio, and L. Daza, J. Power Sources 151 (2005) 18.Google Scholar
  70. 70.
    70. S. Torquato, Random Heterogeneous Mater., Springer, New York, Berlin, Heidelberg, 2002.Google Scholar
  71. 71.
    71. M. Sahimi, G.R. Gavalas, and T.T. Tsotsis, Chem. Eng. Sci. 45 (1990) 1443.Google Scholar
  72. 72.
    72. M. Eikerling, A.A. Kornyshev, and U. Stimming, J. Phys. Chem. B 101 (1997) 10807.Google Scholar
  73. 73.
    Z. Xia, Q. Wang, M. Eikerling, and Z. Liu, Can J Chem. 86 (2008) 657.Google Scholar
  74. 74.
    M. Eikerling, A.A. Kornyshev, and E. Spohr, chapter in Advances in Polymer Science, Polymers for Fuel Cells, Ed. By G.G. Scherer, DOI 10.1007/12_2008_132.Google Scholar
  75. 75.
    75. D. Seeliger, C. Hartnig, and E. Spohr, Electrochim. Acta 50 (2005) 4234.Google Scholar
  76. 76.
    76. S. Tanimura and T. Matsuoka, J. Poly. Sci. B 42 (2005) 1905.Google Scholar
  77. 77.
    77. B. Smitha, S. Sridhar, and A.A. Khan, J. Memb. Sci. 259 (2005) 10.Google Scholar
  78. 78.
    78. S.M. Haile, Acta Mater. 51 (2003) 5981.Google Scholar
  79. 79.
    79. O. Savadogo, J. Power Sources 127 (2004) 135.Google Scholar
  80. 80.
    80. M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, and J.E. McGrath, Chem. Rev. 104 (2004) 4587.Google Scholar
  81. 81.
    81. Y. Yang and S. Holdcroft, Fuel Cells 5 (2005) 171.Google Scholar
  82. 82.
    82. M.A. Hickner and B.S. Pivovar, Fuel Cells 5 (2005) 213.Google Scholar
  83. 83.
    G. Gebel, Polymer 41 (2000) 5829; L. Rubatat, G. Gebel, and O. Diat, Macromolecules 37 (2004) 7772.Google Scholar
  84. 84.
    84. G. Gebel and O. Diat, Fuel Cells 5 (2005) 261.Google Scholar
  85. 85.
    85. R.R. Netz and D. Andelmann, Phys. Rep. 380 (2003) 1.Google Scholar
  86. 86.
    86. M. Cappadonia, J.W. Erning, and U. Stimming, J. Electroanal. Chem. 376 (1994) 189.Google Scholar
  87. 87.
    87. A.A. Kornyshev, A.M. Kuznetsov, E. Spohr, and J. Ulstrup, J. Phys. Chem. B 107 (2003) 3351.Google Scholar
  88. 88.
    88. N. Agmon, Chem. Phys. Lett. 244 (1995) 456.Google Scholar
  89. 89.
    89. H.G. Herz, K.D. Kreuer, J. Maier, G. Scharfenberger, M.F.H. Schuster, and W.H. Meyer, Electrochim. Acta 48 (2003) 2165.Google Scholar
  90. 90.
    90. A. Warshel and R.M. Weiss, J. Am. Chem. Soc. 102 (1980) 6218.Google Scholar
  91. 91.
    91. A. Warshel, in Computer Modeling of Chemical Reactions in Enzymes and in Solutions; Wiley, New York, 1991.Google Scholar
  92. 92.
    92. J. Åqvist and A. Warshel, Chem. Rev. 93 (1993) 2523.Google Scholar
  93. 93.
    93. M.K. Petersen and G.A. Voth, J. Phys. Chem. B 110 (2006) 18594.Google Scholar
  94. 94.
    94. M.K. Petersen, F. Wang, N.P. Blake, H. Metiu, and G.A. Voth, J. Phys. Chem. B 109 (2005) 3727.Google Scholar
  95. 95.
    95. S. Walbran and A.A. Kornyshev, J. Chem. Phys. 114 (2001) 10039.Google Scholar
  96. 96.
    96. E. Spohr, P. Commer, and A.A. Kornyshev, J. Phys. Chem. B 106 (2002) 10560.Google Scholar
  97. 97.
    97. M. Eikerling, A.A. Kornyshev, A.M. Kuznetsov, J. Ulstrup, and S. Walbran, J. Phys. Chem. B 105 (2001) 3646.Google Scholar
  98. 98.
    98. P.G. Bolhuis, D. Chandler, C. Dellago, and P.L. Geissler, Annu. Rev. Phys. Chem. 53 (2002) 291.Google Scholar
  99. 99.
    99. C. Dellago, P.G. Bolhuis, and D. Chandler, J. Chem. Phys. 108 (1998) 9236.Google Scholar
  100. 100.
    W.E. and E. Vanden-Eijnden, J. Stat. Phys. 123 (2006) 503.Google Scholar
  101. 101.
    101. G. Torrie and J. Valleau, Chem. Phys. Lett. 28 (1974) 578.Google Scholar
  102. 102.
    102. G. Mills, H. Jonsson, and G.K. Schenter, Surf. Sci. 324 (1995) 305.Google Scholar
  103. 103.
    103. J.B. Spencer and J.O. Lundgren, Acta Cryst. B 29 (1973) 1923.Google Scholar
  104. 104.
    104. G. Kresse and J. Hafner, Phys. Rev. B 47 (1993) 558.Google Scholar
  105. 105.
    105. G. Kresse and J. Hafner, Phys. Rev. B 49 (1994) 14251.Google Scholar
  106. 106.
    106. G. Kresse and J. Furthmüller, Phys. Rev. B 54 (1996) 11169.Google Scholar
  107. 107.
    107. G. Kresse and J. Hafner, J. Phys. Condens. Mater. 6 (1994) 8245.Google Scholar
  108. 108.
    G. Gebel, Ph.D. thesis, Université Joseph Fourier, 1989.Google Scholar
  109. 109.
    109. G. Gebel and R.B. Moore, Macromolecules 33 (2000) 4850.Google Scholar
  110. 110.
    110. A.L. Rollet, O. Diat, and G. Gebel, J. Phys. Chem. B 106 (2002) 3033.Google Scholar
  111. 111.
    111. B. Loppinet and G. Gebel, Langmuir 14 (1998) 1977.Google Scholar
  112. 112.
    112. T.D. Gierke, G.E. Munn, and F.C. Wilson, J. Polym. Sci. Polym. Phys. 19 (1981) 1687.Google Scholar
  113. 113.
    113. R. Car and M. Parrinello, Phy. Rev. Lett. 55 (1985) 2471.Google Scholar
  114. 114.
    CPMD code by J. Hutter et al., MPI für Festkörperforschung and IBM Zurich Research Laboratory, 1995–2002.Google Scholar
  115. 115.
    115. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G.F. Wang, P.N. Ross, and N.M. Markovic, Nat. Mater. 6 (2007) 241.Google Scholar
  116. 116.
    116. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, and V.R. Stamenkovic, Science 315 (2007) 493.Google Scholar
  117. 117.
    H.G. Petrow and R.J. Allen, US Patent, 3992512 (1976).Google Scholar
  118. 118.
    118. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Nature 412 (2001) 169.Google Scholar
  119. 119.
    119. X. Hao, W.A. Spieker, and J.R. Regalbuto, J. Coll. Int. Sci. 267 (2003) 259.Google Scholar
  120. 120.
    120. B. Andreaus and M. Eikerling, J. Electroanal. Chem. 607 (2007) 121.Google Scholar
  121. 121.
    121. M. Boudart, Adv. Catal. 20 (1969) 153.Google Scholar
  122. 122.
    122. R. Van Hardefeld and F. Hartog, Surf. Sci. 15 (1969) 189.Google Scholar
  123. 123.
    123. K. Kinoshita, J. Electrochem. Soc. 137 (1990) 845.Google Scholar
  124. 124.
    S. Mukerjee, in Catalysis and Electrocatalysis at Nanoparticle Surfaces, Ed. by A. Wieckowski, E.R. Savinova, and C.G. Vayenas, M. Dekker, New York, 2003 pp. 501–530.Google Scholar
  125. 125.
    125. V.P. Zhdanov and B. Kasemo, Surf. Sci. Rep. 39 (2001) 25.Google Scholar
  126. 126.
    126. W.-J. Liu, B.-L. Wu, and C.-S. Cha, J. Electroanal. Chem. 476 (1999) 101.Google Scholar
  127. 127.
    127. B. Hammer, O.H. Nielsen, and J.K. Nørskov, Catal. Lett. 46 (1997) 31.Google Scholar
  128. 128.
    128. B. Hammer and J.K. Nørskov, Adv. Catal. 45 (2000) 71.Google Scholar
  129. 129.
    129. M.L. Sattler and P.N. Ross, Ultramicroscopy 20 (1986) 21.Google Scholar
  130. 130.
    130. A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure, and R. Durand, Electrochim. Acta 41 (1996) 307.Google Scholar
  131. 131.
    131. Y. Takasu, N. Ohashi, X.-G. Zhang, Y. Murakami, H. Minawaga, S. Sato, and K. Yahikozawa, 41 (1996) 2595.Google Scholar
  132. 132.
    132. H.A. Gasteiger, S.S. Kocha, B. Sompalli, and F.T. Wagner, Appl. Catal. B 56, (2005) 9.Google Scholar
  133. 133.
    133. P.N. Ross, in Handbook of Fuel Cells Ed. by W. Vielstich, A. Lamm, and H. Gasteiger, Wiley, Chichester, GB, 2003, Vol. 2, pp. 465–480.Google Scholar
  134. 134.
    134. A. Kabbabi, F. Gloaguen, F. Andolfatto, and R. Durand, J. Electroanal. Chem. 373 (1994) 251.Google Scholar
  135. 135.
    135. T. Frelink, W. Visscher, and J.A.R. Van Veen, J. Electroanal. Chem. 382 (1995) 65.Google Scholar
  136. 136.
    136. K. Yahikozawa, Y. Fujii, M. Yoshiharu, N. Katsunori, and Y. Takasu, Electrochim. Acta 36 (1991) 973.Google Scholar
  137. 137.
    137. Y. Takasu, T. Iwazaki, W. Sugimoto, and Y. Murakami, Electrochem. Commun. 2 (2000) 671.Google Scholar
  138. 138.
    138. O.V. Cherstiouk, P.A. Simonov, and E.R. Savinova, Electrochim. Acta 48 (2003) 3851.Google Scholar
  139. 139.
    139. J.K. Norskov and C.H. Christensen, Science 312 (2006) 1322.Google Scholar
  140. 140.
    140. B. Hammer and J.K. Norskov, in Advances in Catalysis, Elsevier, Amsterdam, 2000, Vol. 45, pp. 71–129.Google Scholar
  141. 141.
    141. B. Hammer and J.K. Nørskov, Nature 376 (1995) 238.Google Scholar
  142. 142.
    142. V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, and J.K. Nøskov, Angew. Chem. Int. Ed. 18 (2006) 2815.Google Scholar
  143. 143.
    143. J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, and J.K. Norskov, Nat. Mater. 5 (2006) 909.Google Scholar
  144. 144.
    144. A. Gross, Topics in Catalysis 37 (2006) 29.Google Scholar
  145. 145.
    145. D.M. Kolb, G.E. Engelmann, and J.C. Ziegler, Angew. Chem. Int. Ed. 39 (2000) 1123.Google Scholar
  146. 146.
    146. L. Xiao and L. Wang, J. Phys. Chem. A 108 (2004) 8605.Google Scholar
  147. 147.
    147. C. Song, Q. Ge, and L. Wang, J. Phys. Chem. B 109 (2005) 22341.Google Scholar
  148. 148.
    148. A. Roudgar and A. Gross, Surf. Sci. 559 (2004) L180.Google Scholar
  149. 149.
    149. D. Mei, E.W. Hansen, and M. Neurock, J. Phys. Chem. 107 (2003) 798.Google Scholar
  150. 150.
    150. M. Neurock and D. Mei, Top. Catal. 20 (2002) 5.Google Scholar
  151. 151.
    151. S.C. Watson and E. Carter, Comp. Phys. Commun. 128 (2000) 67.Google Scholar
  152. 152.
    152. Y.A. Wang and E.A. Carter, “Orbital-Free Kinetic-Energy Density Functional Theory,” in Theoretical Methods in Condensed Phase Chemistry, a volume in Progress in Theoretical Chemistry and Physics, Ed. by S.D. Schwartz, pp. 117–184, Kluwer, Dordrecht, 2000.Google Scholar
  153. 153.
    153. B. Zhou and Y.A. Wang, J. Chem. Phys. 124 (2006) 081107 (1–5).Google Scholar
  154. 154.
    154. W.Q. Tian, L.V. Liu, and Y.A. Wang, Phys. Chem. Chem. Phys. 8 (2006) 3528.Google Scholar
  155. 155.
    155. J. Solla-Gullón, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, and A. Aldaz, Electrochem. Commun. 8 (2006) 189.Google Scholar
  156. 156.
    156. M. Watanabe and S. Motoo, J. Electroanal. Chem. 60 (1975) 275.Google Scholar
  157. 157.
    157. N.M. Marković and P.N. Ross, Surf. Sci. Rep. 45 (2002) 117.Google Scholar
  158. 158.
    158. H.A. Gasteiger, N. Marković, P.N. Ross, and E.J. Cairns, J. Phys. Chem. 97 (1993) 12020.Google Scholar
  159. 159.
    159. N.M. Marković and P.N. Ross, Surf. Sci. Rep. 45 (2002) 117.Google Scholar
  160. 160.
    160. P. Liu and J.K. Nørskov, Fuel Cells 1 (2001) 192.Google Scholar
  161. 161.
    161. K.A. Friedrich, F. Henglein, U. Stimming, and W. Unkauf, Electrochim. Acta 45 (2000) 3283.Google Scholar
  162. 162.
    162. O.V. Cherstiouk, P.A. Simonov, V.I. Zaikovskii, and E.R. Savinova, J. Electroanal. Chem. 554 (2003) 241.Google Scholar
  163. 163.
    163. F. Maillard, E.R. Savinova, P.A. Simonov, V.I. Zaikovskii, and U. Stimming, J. Phys. Chem. B 108 (2004) 17893.Google Scholar
  164. 164.
    164. K.J.J. Mayrhofer, M. Arenz, B.B. Blizanac, V.R. Stamenkovic, P.N. Ross, and N.M. Marković, Electrochim. Acta 50 (2005) 5144.Google Scholar
  165. 165.
    165. M. Arenz, K.J.J. Mayrhofer, V.R. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, and N.M. Marković, J. Am. Chem. Soc. 127 (2005) 6819.Google Scholar
  166. 166.
    166. J. Solla-Gullnó, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, and A. Aldaz, Electrochem. Commun. 8 (2006) 189.Google Scholar
  167. 167.
    167. N.P. Lebedeva, M.T.M. Koper, J.M. Feliu, and R.A. van Santen, J. Phys. Chem. B 106 (2002) 12938.Google Scholar
  168. 168.
    168. M.T.M. Koper, N.P. Lebedeva, and C.G.M. Hermse, Faraday Discuss. 121 (2002) 301.Google Scholar
  169. 169.
    169. T. Kobayashi, P.K. Babu, L. Gancs, J.H. Chung, E. Oldfield, and A. Wieckowski, J. Am. Chem. Soc. 127 (2005) 14164.Google Scholar
  170. 170.
    170. P.J. Feibelman, B. Hammer, J.K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, and J. Dumesic, J. Phys. Chem. B 105 (2001) 4018.Google Scholar
  171. 171.
    J.P. Ansermet, Ph.D. thesis, University of Illinois, Urbana-Champaign, II, 1985.Google Scholar
  172. 172.
    172. L.R. Becerra, C.A. Klug, C.P. Slichter, and J.H. Sinfelt, J. Phys. Chem. 97 (1993) 12014.Google Scholar
  173. 173.
    173. M. Bergelin, E. Herrero, J.M. Feliu, and M. Wasberg, J. Electroanal. Chem. 467 (1999) 74.Google Scholar
  174. 174.
    174. A.V. Petukhov, Chem. Phys. Lett. 277 (1997) 539.Google Scholar
  175. 175.
    175. M.T.M. Koper, A.P.J. Jansen, R.A. van Santen, J.J. Lukkien, and P.A.J. Hilbers, J. Chem. Phys. 109 (1998) 6051.Google Scholar
  176. 176.
    176. C. McCallum and D. Pletcher, J. Electroanal. Chem. 70 (1976) 277.Google Scholar
  177. 177.
    177. A. Bewick, M. Fleischmann, and H.R. Thirsk, Trans. Faraday Soc. 58 (1962) 2200.Google Scholar
  178. 178.
    178. V.P. Zhdanov and B. Kasemo, Surf. Sci. Rep. 39 (2000) 25.Google Scholar
  179. 179.
    179. V.P. Zhdanov and B. Kasemo, Surf. Sci. 545 (2003) 109.Google Scholar
  180. 180.
    180. D.T. Gillespie, J. Comp. Phys. 22 (1976) 403.Google Scholar
  181. 181.
    181. P. Gode, F. Jaouen, G. Lindbergh, A. Lundblad, and G. Sundholm, Electrochem. Acta 48 (2003) 4175.Google Scholar
  182. 182.
    182. Q. Wang, M. Eikerling, D. Song, and Z. Liu, J. Electroanal. Chem. 573 (2004) 61.Google Scholar
  183. 183.
    183. J.T. Wescott, Y. Qi, L. Subramanian, and T.W. Capehart, J. Chem. Phys. 124 (2006) 134702.Google Scholar
  184. 184.
    184. D.Y. Galperin and A.R. Khokhlov, Macromol. Theory Simul. 15 (2006) 137.Google Scholar
  185. 185.
    185. R.D. Groot and P.B. Warren, J. Chem. Phys. 107 (1997) 4423.Google Scholar
  186. 186.
    186. A. Vishnyakov and A.V. Neimark, J. Phys. Chem. 104 (2000) 4471.Google Scholar
  187. 187.
    187. D.A. Mologin, P.G. Khalatur, and A.R. Kholhlov, Macromol. Theory Simul. 11 (2002) 587.Google Scholar
  188. 188.
    188. P.G. Khalatur, S.K. Talitskikh, and A.R. Khokhlov, Macromol. Theory Simul. 11 (2002) 566.Google Scholar
  189. 189.
    S.J. Marrink, A.H. de Vries, and A.E. Mark, J. Phys. Chem. B (2007) in press. Google Scholar
  190. 190.
    190. S. Izvekov and A. Violi, J. Chem. Theory Comput. 2 (2006) 504.Google Scholar
  191. 191.
    191. S. Izvekov and A. Violi, J. Phys. Chem. B 109 (2005) 2469.Google Scholar
  192. 192.
    192. S. Izvekov, A. Violi, and G.A. Voth, J. Phys. Chem. B 109 (2005) 17019.Google Scholar
  193. 193.
    193. G.A. Voth, J. Phys. Chem. B 109 (2005) 17019.Google Scholar
  194. 194.
    194. A. Coniglio, L. De Arcangelis, E. Del Gado, A. Fierro, and N. Sator, J. Phys. Condens. Mater. 16 (2004) S4831.Google Scholar
  195. 195.
    195. M. Sahimi, Rev. Mod. Phys. 65 (1993) 1393.Google Scholar
  196. 196.
    196. D. Avnir, D. Farin, and P. Pfeifer, Nature 308 (1984) 261.Google Scholar
  197. 197.
    197. M.-O. Coppens, in Fractals in Engineering, Ed. by J. Lévy-Vehel, E. Lutton, and C. Tricot, Springer, New York, Heidelberg, Berlin, 1997, 2nd ed., p. 336.Google Scholar
  198. 198.
    198. K. Malek and M.-O. Coppens, Phys. Rev. Lett. 87 (2001) 125505.Google Scholar
  199. 199.
    199. M. Sahimi, G.R. Gavalas, and T.T. Tsotsis, Chem. Eng. Sci. 45 (1990) 1443.Google Scholar
  200. 200.
    200. M.-O. Coppens, Colloids Surf. A 187–188 (2001) 257.Google Scholar
  201. 201.
    201. M.-O. Coppens and G.F. Froment, Fractals 3 (1995) 807.Google Scholar
  202. 202.
    202. K. Malek and M.-O. Coppens, Chem. Eng. Sci. 58 (2003) 4787.Google Scholar
  203. 203.
    203. M. Sahimi, Heterogeneous Mater. 2003, Part I and Part II, Berlin, New York, Heidelberg, Springer.Google Scholar
  204. 204.
    204. M. Eikerling, Yu.I. Kharkats, A.A. Kornyshev, and Yu.M. Volfkovich, J. Electrochem. Soc. 145 (1998) 2684.Google Scholar
  205. 205.
    205. M.F.H. Schuster, W.H. Meyer, M. Schuster, and K.D. Kreuer, Chem. Mater. 16 (2004) 329.Google Scholar
  206. 206.
    206. G. Scharfenberger, W.H. Meyer, G. Wegner, M. Schuster, K.D. Kreuer, and J. Maier, Fuel Cells 6 (2006) 237.Google Scholar
  207. 207.
    207. A.B.H. Susan, M. Yoo, H. Nakamoto, and M. Watanabe, Chem. Lett. 32 (2003) 836.Google Scholar
  208. 208.
    208. D.A. Boysen, T. Uda, C.R.I. Chisholm, and S.M. Haile, Science 303 (2004) 68.Google Scholar
  209. 209.
    209. T. Uda and S.M. Haile, Electrochem. Solid State Lett. 8 (2005) A245.Google Scholar
  210. 210.
    210. L.X. Xiao, H.F. Zhang, E. Scanlon, L.S. Ramanathan, E.W. Choe, D. Rogers, T. Apple, and B.C. Benicewicz, Chem. Mater. 17 (2005) 5328.Google Scholar
  211. 211.
    211. H. Ghassemi, J.E. McGrath, and T.A. Zawodzinski Jr., Polymer 47 (2006) 4132.Google Scholar
  212. 212.
    212. J. Ding, C. Chuy, and S. Holdcroft, Macromolecules 35 (2002) 1348.Google Scholar
  213. 213.
    213. T.E. Springer, T.A. Zawodzinski, and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.Google Scholar
  214. 214.
    214. D.M. Bernardi and M.W. Verbrugge, AIChE J. 37 (1991) 1151.Google Scholar
  215. 215.
    215. D.M. Bernardi, J. Electrochem. Soc. 137 (1990) 3344.Google Scholar
  216. 216.
    216. T.F. Fuller and J. Newman, J. Electrochem. Soc. 140 (1993) 1218.Google Scholar
  217. 217.
    217. R. Mosdale and S. Srinivasan, Electrochim. Acta 40 (1995) 413.Google Scholar
  218. 218.
    218. A.A. Kulikovsky, Electrochem. Commun. 4 (2002) 845.Google Scholar
  219. 219.
    219. M.L. Perry, J. Newman, and E.J. Cairns, J. Electrochem. Soc. 145 (1998) 5.Google Scholar
  220. 220.
    220. C.C. Boyer, R.G. Anthony, and A.J. Appleby, J. Appl. Electrochem. 30 (2000) 777.Google Scholar
  221. 221.
    221. Y. Wang, Chem. Rev. 104 (2004) 4727.Google Scholar
  222. 222.
    222. U. Pasaogullari and C.Y. Wang, Electrochim. Acta 49 (2004) 4359.Google Scholar
  223. 223.
    223. P. Mukherjee, C.Y. Wang, and K.S. Chen, J. Electrochem. Soc. 154 (2007) B823.Google Scholar
  224. 224.
    224. D. Natarajan and T.V. Nguyen, J. Power Sources 115 (2003) 66.Google Scholar
  225. 225.
    225. M. Noponen, E. Birgersson, J. Ihonen, M. Vynnycky, A. Lundblad, and G. Lindbergh, Fuel Cells 4 (2004) 365.Google Scholar
  226. 226.
    226. P. Berg, K. Promislow, J. St-Pierre, J. Stumper, and B. Wetton, J. Electrochem. Soc. 151 (2004) A341.Google Scholar
  227. 227.
    227. T. Berning and N. Djilali, J. Electrochem. Soc. 150 (2003) A1589.Google Scholar
  228. 228.
    228. A.A. Kulikovsky, Electrochim. Acta 49 (2004) 5187.Google Scholar
  229. 229.
    229. D. Song, Q. Wang, Z. Liu, T. Navessin, and S. Holdcroft, Electrochim. Acta 49 (2004) 731.Google Scholar
  230. 230.
    230. D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessin, and S. Holdcroft, Electrochim. Acta 50 (2005) 3347.Google Scholar
  231. 231.
    231. Q. Wang, M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, and S. Holdcroft, J. Electrochem. Soc. 151 (2004) A950.Google Scholar
  232. 232.
    232. Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Andreaus, M. Eikerling, Z. Liu, and S. Holdcroft, J. Electrochem. Soc. 152 (2005) A1171.Google Scholar
  233. 233.
    233. G. ten Brinke and O. Ikkala, Chem. Rec. 4 (2004) 219.Google Scholar
  234. 234.
    234. A.Z. Weber and J. Newman, J. Electrochem. Soc. 150 (2003) A1008.Google Scholar
  235. 235.
    235. A.Z. Weber and J. Newman, J. Electrochem. Soc. 151 (2004) A311.Google Scholar
  236. 236.
    236. A.Z. Weber and J. Newman, J. Electrochem. Soc. 151 (2004) A326.Google Scholar
  237. 237.
    237. A.Z. Weber, R.M. Darling, and J. Newman, J. Electrochem. Soc. 151 (2004) A1715.Google Scholar
  238. 238.
    238. A. Lehmani, O. Berard, and P. Turq, J. Stat. Phys. 90 (1997) 379.Google Scholar
  239. 239.
    239. C.L. Rice and R. Whitehead, J. Phys. Chem. 69 (1965) 4017.Google Scholar
  240. 240.
    240. K.D. Kreuer, S.J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104 (2004) 4637.Google Scholar
  241. 241.
    241. F.N. Büchi and G.G. Scherer, J. Electrochem. Soc. 148 (2001) A183.Google Scholar
  242. 242.
    242. R. Mosdale, G. Gebel, and M. Pineri, J. Memb. Sci. 118 (1996) 269.Google Scholar
  243. 243.
    243. S. Renganathan, Q. Guo, V.A. Sethuraman, J.W. Weidner, and R.E. White, J. Power Sources 160 (2006) 386.Google Scholar
  244. 244.
    244. J. Divisek, M. Eikerling, V. Mazin, H. Schmitz, U. Stimming, and Yu.M. Volfkovich, J. Electrochem. Soc. 145 (1998) 2677.Google Scholar
  245. 245.
    F. Xu, O. Diat, G. Gebel, and A. Morin, submitted.Google Scholar
  246. 246.
    246. K.J. Beverley, J.H. Clint, and P.D.I. Fletcher, Phys. Chem. Chem. Phys. 1 (1999) 149.Google Scholar
  247. 247.
    247. J. Alcaniz-Monge, A. Linares-Solano, and B. Rand, J. Phys. Chem. B 105 (2001) 7998.Google Scholar
  248. 248.
    248. M.L. Studebaker and C.W. Snow, J. Phys. Chem. 59 (1955) 973.Google Scholar
  249. 249.
    J. Liu and M. Eikerling, Electrochim. Acta, 53 (2008) 4435.Google Scholar
  250. 250.
    250. M.K. Debe, in Handbook of Fuel Cells: Fundamentals, Technology, and Applications, 3, 576–589, Ed. by W. Vielstich, A. Lamm, and H. Gasteiger, Wiley, Chichester, UK, 2003.Google Scholar
  251. 251.
    251. Q. Wang, M. Eikerling, D. Song, and S. Liu, J. Electrochem. Soc. 154, (2007) F95.Google Scholar
  252. 252.
    252. A.S. Arico, P. Bruce, B. Scrosatti, J.-M. Tarascon, and W. van Schalwijk, Nat. Mater. 4 (2005) 366.Google Scholar
  253. 253.
    253. S. Förster and M. Anotnietti, Adv. Mater. 10 (1998) 195.Google Scholar
  254. 254.
    254. O. Ikkala and G. ten Brinke, Science 295 (2002) 2407.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Michael H. Eikerling
    • 1
  • Kourosh Malek
    • 2
  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada V5A 1S6
  2. 2.Institute for Fuel Cell InnovationNational Research Council of CanadaVancouverCanada V6T 1W5

Personalised recommendations