Multiscale Mass Transport in Porous Silicon Gas Sensors

Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 43)


Porous silicon (PS) is a material that has garnered considerable research attention over the past 15 years. It is formed by the dissolution of single crystalline silicon. The resulting material's morphology depends upon the silicon doping and the dissolution process. The dissolution process can be varied by changing the applied current and illumination, solvent conditions, and etching time, producing a diverse range of pore diameters (1–12) which can be made to vary from the 1 to 10 nm2–6 range (nanoporous silicon) to sizes in the 1–3 μm range (9) (microporous silicon). Interestingly, different dissolution processes lead to very different pore sizes. One can fabricate a range of hybrid structures between two limiting well-defined PS morphologies: (1) PS fabricated from aqueous electrolytes which consists of highly nanoporous, structures, and (2) PS fabricated from nonaqueous electrolytes, which is comprised of open and accessible microporous structures with deep, wide, well-ordered channels that display a crystalline Si (100) influenced pyramidal termination. The ability to control the interplay of these two regimes of porosity provides a means to exploit both the bulk and surface properties of the resulting porous membrane. In fact, the hybrid microporous/nanoporous structure etched into a silicon framework as depicted in Fig. 1, representing an extrapolation of the Probst and Kohl study (10), provides a useful platform for the construction of a conductometric PS-based sensor. All dissolution processes seem to result in mono- or bidisperse pore size distributions (13), with the typical diameters for the two sizes of pores being of the order ∼ 1 μm and <20 nm. In this chapter, the larger (∼ 1 μm pores) will be called micropores, and the smaller (<20 nm) pores will be called nanopores. This terminology is not universal! For monodisperse pore diameter porous silicon, either micro or nanopores may be present. Because the synthesis conditions that lead to a given morphology have been much perfected, reproducible PS production is now possible, a feature that is necessary for practical utility.


Mass Transport Porous Silicon Sensor Response Knudsen Number Peclet Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. M. Hejjo, A. Rifai, M. Christophersen, S. Ottow, J. Carstensen, and H. Föll, J. Electrochem. Soc. 147 (2000) 627.CrossRefGoogle Scholar
  2. 2.
    2. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82 (1997) 909 and references therein.CrossRefGoogle Scholar
  3. 3.
    3. M. J. J. Theunissen, J. Electrochem. Soc. 119 (1972) 351.CrossRefGoogle Scholar
  4. 4.
    4. V. Lehmann and H. Föll, J. Electrochem. Soc. 137 (1990) 653.CrossRefGoogle Scholar
  5. 5.
    5. H. Föll, Appl. Phys. A 53 (1991) 8.CrossRefGoogle Scholar
  6. 6.
    6. P. C. Searson, J. M. Macaulay, and F. M. Ross, J. Appl. Phys. 72 (1992) 253.CrossRefGoogle Scholar
  7. 7.
    7. I. Berbezier and A. Halimasui, J. Appl. Phys. 74 (1993) 5421.CrossRefGoogle Scholar
  8. 8.
    8. V. Lehmann, J. Electrochem. Soc. 140 (1993) 2836.CrossRefGoogle Scholar
  9. 9.
    9. C. Levy-Clement, A. Lagoubi, and M. Tomkiewicz, J. Electrochem. Soc. 141 (1994) 958.CrossRefGoogle Scholar
  10. 10.
    10. E. K. Probst and P. A. Kohl, J. Electrochem. Soc. 141 (1994) 1006.CrossRefGoogle Scholar
  11. 11.
    11. V. Lehmann and U. Gösele, Adv. Mater. 4 (1992) 114.CrossRefGoogle Scholar
  12. 12.
    12. S. Rönnebeck, S. Ottow, J. Carstensen, and H. Föll, Electrochem. Solid State Lett. 2 (1999) 126.CrossRefGoogle Scholar
  13. 13.
    13. G. X. Zhang, in Modern Aspects of Electrochemistry, Vol. 39 Ed. by C. G. Vayenas, R. E. White, and M. Gamboa-Adelco, Springer, Berlin, Heidelberg, New York, 2006, p. 65.CrossRefGoogle Scholar
  14. 14.
    14. J. L. Gole, E. C. Egeberg, E. Veje, A. F. d. Silva, I. Pepe, and D. A. Dixon, J. Phys. Chem. B 110 (2006) 2064 and references therein.CrossRefGoogle Scholar
  15. 15.
    J. L. Gole and S. E. Lewis, in Nanosilicon, Ed. by S. Kumar, Elsevier, London, 2008, p.147.Google Scholar
  16. 16.
    16. J. L. Gole, S. Lewis, and S. Lee, Phys. Status Solidi A 204 (2007) 1417.CrossRefGoogle Scholar
  17. 17.
    17. E. Galeazzo, H. E. M. Peres, G. Santos, N. Peixoto, and F. J. Ramirez-Fernandez, Sens. Actuators B-Chem. 93 (2003) 384.CrossRefGoogle Scholar
  18. 18.
    18. P. A. Kottke and A. G. Fedorov, J. Electroanal. Chem. 583 (2005) 221.CrossRefGoogle Scholar
  19. 19.
    19. C. Phillips and A. G. Fedorov, Sens. Actuators B-Chem. 99 (2004) 273.CrossRefGoogle Scholar
  20. 20.
    20. C. Phillips, M. Jakusch, H. Steiner, B. Mizaikoff, and A. G. Fedorov, Anal. Chem. 75 (2003) 1106.CrossRefGoogle Scholar
  21. 21.
    21. P. A. Kottke and A. G. Fedorov, J. Phys. Chem. B 109 (2005) 16811.CrossRefGoogle Scholar
  22. 22.
    22. V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1962.Google Scholar
  23. 23.
    23. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, NY 2002.Google Scholar
  24. 24.
    24. J. Israelachvili, Intermolecular and Surface Forces, Academic Press, San Diego, CA, 1992.Google Scholar
  25. 25.
    25. A. L. Hines and R. N. Maddox, Mass Transfer Fundamentals and Applications, Prentice Hall PTR, Englewood Cliffs, NJ, 1985.Google Scholar
  26. 26.
    26. R. Krishna and J. A. Wesselingh, Chem. Eng. Sci. 52 (1997) 861.CrossRefGoogle Scholar
  27. 27.
    27. A. Bejan, Convection Heat Transfer, Wiley, New York, NY, 1995.Google Scholar
  28. 28.
    28. L. G. Leal, Laminar Flow and Convective Transport Processes Scaling Principles and Asymptotic Analysis, Butterworth-Heinemann, Newton, MA, 1992.Google Scholar
  29. 29.
    29. S. E. Lewis, J. R. DeBoer, and J. L. Gole, Sens. Actuators B-Chem. 122 (2007) 20.CrossRefGoogle Scholar
  30. 30.
    30. L. Seals, J. L. Gole, L. A. Tsa, and P. J. Hesketh, J. Appl. Phys. 91 (2002) 2519.CrossRefGoogle Scholar
  31. 31.
    31. A. Foucaran, F. Pascal-Delannoy, A. Giani, A. Sackda, P. Combette, and A. Boyer, Thin Solid Films 297 (1997) 317.CrossRefGoogle Scholar
  32. 32.
    32. S. E. Lewis, J. R. DeBoer, J. L. Gole, and P. J. Hesketh, Sens. Actuators B-Chem. 110 (2005) 54.CrossRefGoogle Scholar
  33. 33.
    33. P. Fürjes, A. Kovács, C. Dücsö, M. Ádám, B. Müller, and U. Mescheder, Sens. Actuators B-Chem. 95 (2003) 140.CrossRefGoogle Scholar
  34. 34.
    34. M. Björkqvist, J. Salonen, and E. Laine, Appl. Surf. Sci. 222 (2004) 269.CrossRefGoogle Scholar
  35. 35.
    35. M. Björkqvist, J. Salonen, J. Paski, and E. Laine, Sens. Actuators A-Phys. 112 (2004) 244.CrossRefGoogle Scholar
  36. 36.
    36. A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Giani, and A. Boyer, Sens. Actuators A-Phys. 79 (2000) 189.CrossRefGoogle Scholar
  37. 37.
    37. D. G. Yarkin, Sens. Actuators A-Phys. 107 (2003) 1.CrossRefGoogle Scholar
  38. 38.
    38. E. J. Connolly, P. J. French, H. T. M. Pham, and P. M. Sarro, in Sensors, 2002. Proceedings of IEEE, Vol. 1, 2002, p. 499.Google Scholar
  39. 39.
    39. M. P. Stewart and J. M. Buriak, Adv. Mater. 12 (2000) 859.CrossRefGoogle Scholar
  40. 40.
    40. J. Y. Jin, N. K. Min, C. G. Kang, S. H. Park, and S. I. Hong, J. Korean Phys. Soc. 39 (2001) S67.Google Scholar
  41. 41.
    M. Fichera, S. Libertino, and G. D'Arrigo, Vol. 5119 (R.-V. Angel, A. Derek, and C. Ricardo, eds.), SPIE, 2003, p. 149.Google Scholar
  42. 42.
    L. DeStefano, I. Rendina, L. Moretti, A. M. Rossi, A. Lamberti, O. Longo, and P. Arcari, Vol. 5118 (V. Robert, A. Xavier, B. K. Laszlo, and R. Angel, eds.), SPIE, 2003, p. 305.Google Scholar
  43. 43.
    43. M. Ben Ali, R. Mlika, H. Ben Ouada, R. M'Ghaieth, and H. Maâref, Sens. Actuators A-Phys. 74 (1999) 123.CrossRefGoogle Scholar
  44. 44.
    44. S. Zairi, C. Martelet, N. Jaffrezic-Renault, R. M'Gaïeth, H. Maâref, and R. Lamartine, Thin Solid Films 383 (2001) 325.CrossRefGoogle Scholar
  45. 45.
    45. S. Zairi, C. Martelet, N. Jaffrezic-Renault, F. Vocanson, R. Lamartine, R. M'Gaïeth, H. Maâref, and M. Gamoudi, Appl. Phys. A-Mater. 73 (2001) 585.CrossRefGoogle Scholar
  46. 46.
    46. R. F. Probstein, Physiochemical Hydrodynamics: An Introduction, Wiley, New York, NY, 1994.CrossRefGoogle Scholar
  47. 47.
    47. H. Daiguji, P. Yang, A. J. Szeri, and A. Majumdar, Nano Lett. 4 (2004) 2315.CrossRefGoogle Scholar
  48. 48.
    48. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.Google Scholar
  49. 49.
    49. M. K. Gobbert, S. G. Webster, and T. S. Cale, J. Electrochem. Soc. 149 (2002) G461.CrossRefGoogle Scholar
  50. 50.
    50. S. Roy, R. Raju, H. F. Chuang, B. A. Cruden, and M. Meyyappan, J. Appl. Phys. 93 (2003) 4870.CrossRefGoogle Scholar
  51. 51.
    51. D. N. Jaguste and S. K. Bhatia, Chem. Eng. Sci. 50 (1995) 167.CrossRefGoogle Scholar
  52. 52.
    52. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, Oxford, 1975.Google Scholar
  53. 53.
    53. H. Lu, W. Ma, J. Gao, and J. Li, Sens. Actuators B-Chem. 66 (2000) 228.CrossRefGoogle Scholar
  54. 54.
    54. N. Matsunaga, G. Sakai, K. Shimanoe, and N. Yamazoe, Sens. Actuators B-Chem. 83 (2002) 216.CrossRefGoogle Scholar
  55. 55.
    55. E. Butkov, Mathematical Physics, Addison-Wesley, Reading, MA, 1968.Google Scholar
  56. 56.
    56. N. Matsunaga, G. Sakai, K. Shimanoe, and N. Yamazoe, Sens. Actuators B-Chem. 96 (2003) 226.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyG. W. Woodruff School of Mechanical EngineeringAtlantaUSA
  2. 2.Petit Institute for Bioengineering and BioscienceAtlantaUSA

Personalised recommendations