Advertisement

Modeling of Impedance of Porous Electrodes

  • Andrzej Lasia
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 43)

Abstract

Porous electrodes are very important in practical applications of electrocatalysis, where an increase in the real surface area leads to an increase in catalytic activity. Porous electrodes are used in gas evolution (water electrolysis, hydrogen and oxygen evolution, chlorine evolution), electrocatalytic hydrogenation or oxidation of organic compounds, in batteries, fuel cells, etc. Good knowledge of the porous electrode theory permits for the construction of the electrodes with optimal utilization of the active electrode material. The porous electrode model was first developed by several authors for dc conditions (1–6) and later applied to the impedance studies.

Keywords

Pore Wall Potential Gradient Constant Phase Element Double Layer Capacitance Porous Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. A. N. Frumkin, Zh. Fiz. Khim. 23 (1949) 1477.Google Scholar
  2. 2.
    2. O. S. Ksenzhek and V. V. Strender, Dokl. Akad. Nauk SSSR 106 (1956) 487.Google Scholar
  3. 3.
    3. O. S. Ksenzhek, Russ. J. Phys. Chem. 36 (1962) 331.Google Scholar
  4. 4.
    4. A. Winsel, Z. Elektrochem. 66 (1962) 287.Google Scholar
  5. 5.
    5. F. A. Posey, J. Electrochem. Soc. 111 (1964) 1173.Google Scholar
  6. 6.
    6. J. M. Bisang, K. Jüttner, and G. Kreysa, Electrochim. Acta 39 (1994) 1297.Google Scholar
  7. 7.
    7. A. Lasia, in Modern Aspects of Electrochemistry, Vol. 32, Ed. by B. E. Conway, J. Bockris, and R. E. White, Kluwer/Plenum, New York, 1999, p. 143.Google Scholar
  8. 8.
    8. A. Lasia, in Modern Aspects of Electrochemistry, Vol. 35, Ed. by B. E. Conway and R. E. White, Kluwer/Plenum, New York, 2002, p. 1.Google Scholar
  9. 9.
    9. R. de Levie, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 6, Ed. by P. Delahay, Interscience, New York, 1967, p. 329.Google Scholar
  10. 10.
    10. L. M. Gassa, J. R. Vilche, M. Ebert, K. Jüttner, and W. J. Lorenz, J. Appl. Electrochem. 20 (1990) 677.Google Scholar
  11. 11.
    11. R. de Levie, Electrochim. Acta 8 (1963) 751.Google Scholar
  12. 12.
    12. I. D. Reistrick, Electrochim. Acta 35 (1990) 1579.Google Scholar
  13. 13.
    13. R. Jurczakowski, C. Hitz, and A. Lasia, J. Electroanal. Chem. 572 (2004) 355.Google Scholar
  14. 14.
    14. R. de Levie, Electrochim. Acta 10 (1965) 113.Google Scholar
  15. 15.
    15. J. Gunning, J. Electroanal. Chem. 392 (1995) 1.Google Scholar
  16. 16.
    16. H. Keiser, K. D. Beccu, and M. A. Gutjahr, Electrochim. Acta 21 (1976) 539.Google Scholar
  17. 17.
    17. C. Hitz and A. Lasia, J. Electroanal. Chem 500 (2001) 213.Google Scholar
  18. 18.
    18. K. Eloot, F. Debuyck, M. Moors, and A. P. Peteghem, J. Appl. Electrochem. 25 (1995) 326.Google Scholar
  19. 19.
    19. K. Eloot, F. Debuyck, M. Moors, and A. P. Peteghem, J. Appl. Electrochem. 25 (1995) 334.Google Scholar
  20. 20.
    20. L. Chen and A. Lasia, J. Electrochem. Soc. 139 (1992) 3214.Google Scholar
  21. 21.
    21. L. Chen and A. Lasia, J. Electrochem. Soc. 140 (1993) 2464.Google Scholar
  22. 22.
    22. A. Lasia, in Current Topics in Electrochemistry, Vol. 3, Research Trends, Trivandrum, India, 1993, p. 239.Google Scholar
  23. 23.
    23. A. Lasia, Int. J. Hydrogen Energy 18 (1993) 557.Google Scholar
  24. 24.
    24. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, and A. Compte, Electrochem. Commun. 1 (1999) 429.Google Scholar
  25. 25.
    25. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, J. Phys. Chem. B 104 (2000) 2287.Google Scholar
  26. 26.
    26. J. Bisquert, Phys. Chem. Chem. Phys. 2 (2000) 4185.Google Scholar
  27. 27.
    27. P. Los, A. Lasia, and H. Ménard, J. Electroanal. Chem. 360 (1993) 101.Google Scholar
  28. 28.
    28. L. Birry and A. Lasia, J. Appl. Electrochem. 34 (2004) 735.Google Scholar
  29. 29.
    29. A. Lasia, J. Electroanal. Chem. 397 (1995) 27.Google Scholar
  30. 30.
    30. I. Roušar, K. Micka, and A. Kimla, Electrochemical Engineering, Vol. II, Elsevier, Amsterdam, 1986, p. 133.Google Scholar
  31. 31.
    31. K. Scott, J. Appl. Electrochem. 13 (1983) 709.Google Scholar
  32. 32.
    32. S. I. Marshall, J. Electrochem. Soc. 138 (1991) 1040.Google Scholar
  33. 33.
    32. A. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, J. Wiley & Sons, Inc., New York, 2001.Google Scholar
  34. 34.
    34. G. J. Brug, A. L. G. van der Eeden, M. Sluyters-Rehbach, and J. H. Sluyters, J. Electroanal. Chem. 176 (1984) 275.Google Scholar
  35. 35.
    35. J. S. Newman and C. W. Tobias, J. Electrochem. Soc. 109 (1962) 1183.Google Scholar
  36. 36.
    36. L. G. Austin and H. Lerner, Electrochim. Acta 9 (1964) 1469.Google Scholar
  37. 37.
    37. S. K. Rangarajan, J. Electroanal. Chem. 22 (1969) 89.Google Scholar
  38. 38.
    38. K. Scott, J. Appl. Electrochem. 13 (1983) 709.Google Scholar
  39. 39.
    39. M. Keddam, C. Rakomotavo, and H. Takenouti, J. Appl. Electrochem. 14 (1984) 437.Google Scholar
  40. 40.
    40. C. Cachet and R. Wiart, J. Electroanal. Chem. 195 (1985) 21.Google Scholar
  41. 41.
    41. A. Lasia, J. Electroanal. Chem. 428 155 (1997).Google Scholar
  42. 42.
    42. A. Lasia, J. Electroanal. Chem. 454 115 (1998).Google Scholar
  43. 43.
    43. A. Lasia, J. Electroanal. Chem. 500 (2001) 30.Google Scholar
  44. 44.
    44. H. Wendt, S. Rausch, and T. Borucinski, in Advances in Catalysis, Vol. 40, Academic Press, New York, 1994, p. 87.Google Scholar
  45. 45.
    45. R. Jurczakowski and A. Lasia, J. Electroanal. Chem. 582 (2005) 85.Google Scholar
  46. 46.
    46. S. Rausch and H. Wendt, J. Appl. Electrochem. 22 (1992) 1025.Google Scholar
  47. 47.
    47. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 2001, p. 105.Google Scholar
  48. 48.
    48. D. D. Macdonaldm, M. Urquidi-Macdonald, S. D. Bhaktam, and B. G. Pound, J. Electrochem. Soc 138 (1991) 1359.Google Scholar
  49. 49.
    49. D. D. Macdonald, Electrochim. Acta 51 (2006) 1376.Google Scholar
  50. 50.
    50. S.-I. Pyun, C.-H. Kim, S.-W. Kim, and J.-H. Kim, J. New. Mater. Electrochem. Syst. 5 (2002) 289.Google Scholar
  51. 51.
    51. H. K. Song, Y. H. Jung, K. H. Lee, and L. H. Dao, Electrochim. Acta 44 (1999) 3513.Google Scholar
  52. 52.
    52. H. K. Song, H. Y. Hwang, K. H. Lee, and L. H. Dao, Electrochim. Acta 45 (2000) 2241.Google Scholar
  53. 53.
    53. H. K. Song, J. H. Sung, Y. H. Jung, K. H. Lee, L. H. Dao, M. H. Kim, and H. N. Kim, J. Electrochem. Soc. 151 (2004) E102.Google Scholar
  54. 54.
    54. H. K. Song, J. H. Jang, J. J. Kim, and S. M. Oh, Electrochem. Commun. 8 (2006) 1191.Google Scholar
  55. 55.
    55. L. M. Delves and J. Walsh, Numerical Solution of Integral Equations, Clarendon Press, Oxford, 1974.Google Scholar
  56. 56.
    56. F. Dion and A. Lasia, J. Electroanal. Chem. 475 (1999) 28.Google Scholar
  57. 57.
    57. P. Kowalczyk, S. Savard, and A. Lasia, J. Electroanal. Chem. 574 (2004) 41.Google Scholar
  58. 58.
    58. J. S. Newman, Electrochemical Systems, Second Edition, Prentice Hall, Englewood Cliffs, NJ, 1991.Google Scholar
  59. 59.
    59. S. Devan, V. R. Subramanian, and R. E. White, J. Electrochem. Soc. 151 (2004) A905.Google Scholar
  60. 60.
    60. J. P. Meyers, M. Doyle, R. M. Darling, and J. Newman, J. Electrochem. Soc. 147 (2000) 2930.Google Scholar
  61. 61.
    61. M. Doyle, J. P. Meyers, and J. Newman, J. Electrochem. Soc. 147 (2000) 99.Google Scholar
  62. 62.
    62. A. M. Svensson, L. O. Valøen, and R. Tunold, Electrochim. Acta 50 (2005) 2647.Google Scholar
  63. 63.
    63. T. E. Springer, T. A. Zawodzinski, M. S. Wilson, and S. Gottesfeld, J. Electrochem. Soc. 143 (1996) 587.Google Scholar
  64. 64.
    64. B. B. Mandenbrot, The Fractal Geometry of the Nature, Freeman, San Francisco, 1982.Google Scholar
  65. 65.
    65. R. de Levie, J. Electroanal. Chem. 281 (1990) 1.Google Scholar
  66. 66.
    66. L. Nyikos and T. Pajkossy, Electrochim. Acta 30 (1985) 1533.Google Scholar
  67. 67.
    67. H. von Koch, Ark. Mat. Astron. Fys. 1 (1904) 681.Google Scholar
  68. 68.
    68. A. Le Méhauté and G. Crépy, Solid State Ionics 9/10 (1983) 17.Google Scholar
  69. 69.
    69. A. Le Méhauté, G. Crépy, and A. Hurd, C. R. Acad. Sci. Paris 306 (1988) 117.Google Scholar
  70. 70.
    70. L. Nyikos and T. Pajkossy, J. Electrochem. Soc. 133 (1986) 2061.Google Scholar
  71. 71.
    71. L. Nyikos and T. Pajkossy, Electrochim. Acta 31 (1986) 1347.Google Scholar
  72. 72.
    72. T. Pajkossy and L. Nyikos, Electrochim. Acta 34 (1989) 171.Google Scholar
  73. 73.
    73. T. Pajkossy, J. Electroanal. Chem. 300 (1991) 1.Google Scholar
  74. 74.
    74. L. Nyikos and T. Pajkossy, Electrochim. Acta 35 (1990) 1567.Google Scholar
  75. 75.
    75. A. P. Borossy, L. Nyikos, and T. Pajkossy, Electrochim. Acta 36 (1991) 163.Google Scholar
  76. 76.
    76. A. Sakharova, L. Nyikos, and T. Pajkossy, Electrochim. Acta 37 (1992) 973.Google Scholar
  77. 77.
    77. T. Pajkossy, Heterogen. Chem. Rev. 2 (1995) 143.Google Scholar
  78. 78.
    78. E. Chassaing, R. Sapoval, G. Daccord, and R. Lenormand, J. Electroanal. Chem. 279 (1990) 67.Google Scholar
  79. 79.
    79. M. Filoche and B. Sapoval, Electrochim. Acta 46 (2000) 213.Google Scholar
  80. 80.
    80. T. Pajkossy and L. Nyikos, J. Electroanal. Chem. 332 (1992) 55.Google Scholar
  81. 81.
    81. M. Keddam and H. Takenouti, Electrochim. Acta 33 (1988) 445.Google Scholar
  82. 82.
    82. T. Pajkossy, J. Electroanal. Chem. 364 (1994) 111.Google Scholar
  83. 83.
    83. T. Pajkossy and L. Nyikos, Electrochim. Acta 34 (1989) 181.Google Scholar
  84. 84.
    84. R. de Levie and A. Vogt, J. Electroanal. Chem. 278 (1990) 25; 281 (1990) 23.Google Scholar
  85. 85.
    85. R. de Levie, J. Electroanal. Chem. 261 (1989) 1.Google Scholar
  86. 86.
    86. W. Mulder, J. Electroanal. Chem. 326 (1992) 231.Google Scholar
  87. 87.
    87. D. W. Davidson and R. H. Cole, J. Chem. Phys. 19 (1951) 1484.Google Scholar
  88. 88.
    88. J. R. Macdonald, Impedance Spectroscopy, Wiley, New York, 1987.Google Scholar
  89. 89.
    89. G. P. Lindsay and G. D. Davidson, J. Chem. Phys. 73 (1980) 3348.Google Scholar
  90. 90.
    90. J. B. Jorcin, M. E. Orazem, N. Pebere, and B. Tribollet, Electrochim. Acta 51 (2006) 1473.Google Scholar
  91. 91.
    91. K. S. Cole and R. H. Cole, J. Chem. Phys. 9 (1941) 341.Google Scholar
  92. 92.
    92. A. Sakharova, L. Nyikos, and Y. Pleskov, Electrochim. Acta 37 (1992) 973.Google Scholar
  93. 93.
    93. A. Kerner and T. Pajkossy, J. Electroanal. Chem. 448 (1998) 139.Google Scholar
  94. 94.
    94. Z. Kerner and T. Pajkossy, Electrochim. Acta 46 (2000) 207.Google Scholar
  95. 95.
    95. P. Żółtowski, J. Electroanal. Chem. 443 (1998) 149.Google Scholar
  96. 96.
    96. A. Sadkowski, J. Electroanal. Chem. 481 (2000) 222.Google Scholar
  97. 97.
    97. P. Żółtowski, J. Electroanal. Chem. 481 (2000) 230.Google Scholar
  98. 98.
    98. A. Sadkowski, J. Electroanal. Chem. 481 (2000) 232.Google Scholar
  99. 99.
    99. B. Emmanuel, J. Electroanal. Chem. 605 (2007) 89.Google Scholar
  100. 100.
    100. V. M. W. Huang, V. Vivier, M. E. Orazem, N. Pebere, and B. Tribollet, J. Electrochem. Soc. 154 (2007) C81.Google Scholar
  101. 101.
    101. V. M. W. Huang, V. Vivier, M. E. Orazem, N. Pebere, and B. Tribollet, J. Electrochem. Soc. 154 (2007) C89.Google Scholar
  102. 102.
    102. V. M. W. Huang, V. Vivier, I. Frateur, M. E. Orazem, and B. Tribollet, J. Electrochem. Soc. 154 (2007) C99.Google Scholar
  103. 103.
    103. J. Newman, J. Electrochem. Soc. 113 (1966) 501.Google Scholar
  104. 104.
    104. J. Newman, J. Electrochem. Soc. 113 (1966) 1235.Google Scholar
  105. 105.
    105. Z. Kerner and T. Pajkossy, Electrochim. Acta 47 (2002) 2055.Google Scholar
  106. 106.
    106. T. Pajkossy, T. Wandlowski, and D. M. Kolb, J. Electroanal. Chem. 414 (1996) 209.Google Scholar
  107. 107.
    107. T. Pajkossy, Solid State Ionics 94 (1997) 123.Google Scholar
  108. 108.
    108. T. Pajkossy and D .M. Kolb, Electrochim. Acta 46 (2001) 3063.Google Scholar
  109. 109.
    109. Z. Kerner, T. Pajkossy, L. A. Kibler, and D. M. Kolb, Electrochem. Commun. 4 (2002) 787.Google Scholar
  110. 110.
    110. Z. Kerner and T. Pajkossy, Electrochim. Acta 47 (2002) 2055.Google Scholar
  111. 111.
    111. T. Pajkossy, L. A. Kibler, and D. M. Kolb, J. Electroanal. Chem. 582 (2005) 69.Google Scholar
  112. 112.
    112. T. Pajkossy and D. M. Kolb, Electrochem. Commun. 9 (2007) 1171.Google Scholar
  113. 113.
    113. T. Pajkossy, L. A. Kibler, and D. M. Kolb, J. Electroanal. Chem. 600 (2007) 113.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrzej Lasia
    • 1
  1. 1.Département de chimieUniversité de SherbrookeSherbrookeCanada

Personalised recommendations