Skip to main content

Modeling of Impedance of Porous Electrodes

  • Chapter
  • First Online:
Modeling and Numerical Simulations

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 43))

Abstract

Porous electrodes are very important in practical applications of electrocatalysis, where an increase in the real surface area leads to an increase in catalytic activity. Porous electrodes are used in gas evolution (water electrolysis, hydrogen and oxygen evolution, chlorine evolution), electrocatalytic hydrogenation or oxidation of organic compounds, in batteries, fuel cells, etc. Good knowledge of the porous electrode theory permits for the construction of the electrodes with optimal utilization of the active electrode material. The porous electrode model was first developed by several authors for dc conditions (1–6) and later applied to the impedance studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. A. N. Frumkin, Zh. Fiz. Khim. 23 (1949) 1477.

    Google Scholar 

  2. 2. O. S. Ksenzhek and V. V. Strender, Dokl. Akad. Nauk SSSR 106 (1956) 487.

    Google Scholar 

  3. 3. O. S. Ksenzhek, Russ. J. Phys. Chem. 36 (1962) 331.

    Google Scholar 

  4. 4. A. Winsel, Z. Elektrochem. 66 (1962) 287.

    Google Scholar 

  5. 5. F. A. Posey, J. Electrochem. Soc. 111 (1964) 1173.

    Google Scholar 

  6. 6. J. M. Bisang, K. Jüttner, and G. Kreysa, Electrochim. Acta 39 (1994) 1297.

    Google Scholar 

  7. 7. A. Lasia, in Modern Aspects of Electrochemistry, Vol. 32, Ed. by B. E. Conway, J. Bockris, and R. E. White, Kluwer/Plenum, New York, 1999, p. 143.

    Google Scholar 

  8. 8. A. Lasia, in Modern Aspects of Electrochemistry, Vol. 35, Ed. by B. E. Conway and R. E. White, Kluwer/Plenum, New York, 2002, p. 1.

    Google Scholar 

  9. 9. R. de Levie, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 6, Ed. by P. Delahay, Interscience, New York, 1967, p. 329.

    Google Scholar 

  10. 10. L. M. Gassa, J. R. Vilche, M. Ebert, K. Jüttner, and W. J. Lorenz, J. Appl. Electrochem. 20 (1990) 677.

    Google Scholar 

  11. 11. R. de Levie, Electrochim. Acta 8 (1963) 751.

    Google Scholar 

  12. 12. I. D. Reistrick, Electrochim. Acta 35 (1990) 1579.

    Google Scholar 

  13. 13. R. Jurczakowski, C. Hitz, and A. Lasia, J. Electroanal. Chem. 572 (2004) 355.

    Google Scholar 

  14. 14. R. de Levie, Electrochim. Acta 10 (1965) 113.

    Google Scholar 

  15. 15. J. Gunning, J. Electroanal. Chem. 392 (1995) 1.

    Google Scholar 

  16. 16. H. Keiser, K. D. Beccu, and M. A. Gutjahr, Electrochim. Acta 21 (1976) 539.

    Google Scholar 

  17. 17. C. Hitz and A. Lasia, J. Electroanal. Chem 500 (2001) 213.

    Google Scholar 

  18. 18. K. Eloot, F. Debuyck, M. Moors, and A. P. Peteghem, J. Appl. Electrochem. 25 (1995) 326.

    Google Scholar 

  19. 19. K. Eloot, F. Debuyck, M. Moors, and A. P. Peteghem, J. Appl. Electrochem. 25 (1995) 334.

    Google Scholar 

  20. 20. L. Chen and A. Lasia, J. Electrochem. Soc. 139 (1992) 3214.

    Google Scholar 

  21. 21. L. Chen and A. Lasia, J. Electrochem. Soc. 140 (1993) 2464.

    Google Scholar 

  22. 22. A. Lasia, in Current Topics in Electrochemistry, Vol. 3, Research Trends, Trivandrum, India, 1993, p. 239.

    Google Scholar 

  23. 23. A. Lasia, Int. J. Hydrogen Energy 18 (1993) 557.

    Google Scholar 

  24. 24. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, and A. Compte, Electrochem. Commun. 1 (1999) 429.

    Google Scholar 

  25. 25. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, J. Phys. Chem. B 104 (2000) 2287.

    Google Scholar 

  26. 26. J. Bisquert, Phys. Chem. Chem. Phys. 2 (2000) 4185.

    Google Scholar 

  27. 27. P. Los, A. Lasia, and H. Ménard, J. Electroanal. Chem. 360 (1993) 101.

    Google Scholar 

  28. 28. L. Birry and A. Lasia, J. Appl. Electrochem. 34 (2004) 735.

    Google Scholar 

  29. 29. A. Lasia, J. Electroanal. Chem. 397 (1995) 27.

    Google Scholar 

  30. 30. I. Roušar, K. Micka, and A. Kimla, Electrochemical Engineering, Vol. II, Elsevier, Amsterdam, 1986, p. 133.

    Google Scholar 

  31. 31. K. Scott, J. Appl. Electrochem. 13 (1983) 709.

    Google Scholar 

  32. 32. S. I. Marshall, J. Electrochem. Soc. 138 (1991) 1040.

    Google Scholar 

  33. 32. A. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, J. Wiley & Sons, Inc., New York, 2001.

    Google Scholar 

  34. 34. G. J. Brug, A. L. G. van der Eeden, M. Sluyters-Rehbach, and J. H. Sluyters, J. Electroanal. Chem. 176 (1984) 275.

    Google Scholar 

  35. 35. J. S. Newman and C. W. Tobias, J. Electrochem. Soc. 109 (1962) 1183.

    Google Scholar 

  36. 36. L. G. Austin and H. Lerner, Electrochim. Acta 9 (1964) 1469.

    Google Scholar 

  37. 37. S. K. Rangarajan, J. Electroanal. Chem. 22 (1969) 89.

    Google Scholar 

  38. 38. K. Scott, J. Appl. Electrochem. 13 (1983) 709.

    Google Scholar 

  39. 39. M. Keddam, C. Rakomotavo, and H. Takenouti, J. Appl. Electrochem. 14 (1984) 437.

    Google Scholar 

  40. 40. C. Cachet and R. Wiart, J. Electroanal. Chem. 195 (1985) 21.

    Google Scholar 

  41. 41. A. Lasia, J. Electroanal. Chem. 428 155 (1997).

    CAS  Google Scholar 

  42. 42. A. Lasia, J. Electroanal. Chem. 454 115 (1998).

    CAS  Google Scholar 

  43. 43. A. Lasia, J. Electroanal. Chem. 500 (2001) 30.

    Google Scholar 

  44. 44. H. Wendt, S. Rausch, and T. Borucinski, in Advances in Catalysis, Vol. 40, Academic Press, New York, 1994, p. 87.

    Google Scholar 

  45. 45. R. Jurczakowski and A. Lasia, J. Electroanal. Chem. 582 (2005) 85.

    Google Scholar 

  46. 46. S. Rausch and H. Wendt, J. Appl. Electrochem. 22 (1992) 1025.

    Google Scholar 

  47. 47. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 2001, p. 105.

    Google Scholar 

  48. 48. D. D. Macdonaldm, M. Urquidi-Macdonald, S. D. Bhaktam, and B. G. Pound, J. Electrochem. Soc 138 (1991) 1359.

    Google Scholar 

  49. 49. D. D. Macdonald, Electrochim. Acta 51 (2006) 1376.

    Google Scholar 

  50. 50. S.-I. Pyun, C.-H. Kim, S.-W. Kim, and J.-H. Kim, J. New. Mater. Electrochem. Syst. 5 (2002) 289.

    Google Scholar 

  51. 51. H. K. Song, Y. H. Jung, K. H. Lee, and L. H. Dao, Electrochim. Acta 44 (1999) 3513.

    Google Scholar 

  52. 52. H. K. Song, H. Y. Hwang, K. H. Lee, and L. H. Dao, Electrochim. Acta 45 (2000) 2241.

    Google Scholar 

  53. 53. H. K. Song, J. H. Sung, Y. H. Jung, K. H. Lee, L. H. Dao, M. H. Kim, and H. N. Kim, J. Electrochem. Soc. 151 (2004) E102.

    Google Scholar 

  54. 54. H. K. Song, J. H. Jang, J. J. Kim, and S. M. Oh, Electrochem. Commun. 8 (2006) 1191.

    Google Scholar 

  55. 55. L. M. Delves and J. Walsh, Numerical Solution of Integral Equations, Clarendon Press, Oxford, 1974.

    Google Scholar 

  56. 56. F. Dion and A. Lasia, J. Electroanal. Chem. 475 (1999) 28.

    Google Scholar 

  57. 57. P. Kowalczyk, S. Savard, and A. Lasia, J. Electroanal. Chem. 574 (2004) 41.

    Google Scholar 

  58. 58. J. S. Newman, Electrochemical Systems, Second Edition, Prentice Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  59. 59. S. Devan, V. R. Subramanian, and R. E. White, J. Electrochem. Soc. 151 (2004) A905.

    Google Scholar 

  60. 60. J. P. Meyers, M. Doyle, R. M. Darling, and J. Newman, J. Electrochem. Soc. 147 (2000) 2930.

    Google Scholar 

  61. 61. M. Doyle, J. P. Meyers, and J. Newman, J. Electrochem. Soc. 147 (2000) 99.

    Google Scholar 

  62. 62. A. M. Svensson, L. O. Valøen, and R. Tunold, Electrochim. Acta 50 (2005) 2647.

    Google Scholar 

  63. 63. T. E. Springer, T. A. Zawodzinski, M. S. Wilson, and S. Gottesfeld, J. Electrochem. Soc. 143 (1996) 587.

    Google Scholar 

  64. 64. B. B. Mandenbrot, The Fractal Geometry of the Nature, Freeman, San Francisco, 1982.

    Google Scholar 

  65. 65. R. de Levie, J. Electroanal. Chem. 281 (1990) 1.

    Google Scholar 

  66. 66. L. Nyikos and T. Pajkossy, Electrochim. Acta 30 (1985) 1533.

    Google Scholar 

  67. 67. H. von Koch, Ark. Mat. Astron. Fys. 1 (1904) 681.

    Google Scholar 

  68. 68. A. Le Méhauté and G. Crépy, Solid State Ionics 9/10 (1983) 17.

    Google Scholar 

  69. 69. A. Le Méhauté, G. Crépy, and A. Hurd, C. R. Acad. Sci. Paris 306 (1988) 117.

    Google Scholar 

  70. 70. L. Nyikos and T. Pajkossy, J. Electrochem. Soc. 133 (1986) 2061.

    Google Scholar 

  71. 71. L. Nyikos and T. Pajkossy, Electrochim. Acta 31 (1986) 1347.

    Google Scholar 

  72. 72. T. Pajkossy and L. Nyikos, Electrochim. Acta 34 (1989) 171.

    Google Scholar 

  73. 73. T. Pajkossy, J. Electroanal. Chem. 300 (1991) 1.

    Google Scholar 

  74. 74. L. Nyikos and T. Pajkossy, Electrochim. Acta 35 (1990) 1567.

    Google Scholar 

  75. 75. A. P. Borossy, L. Nyikos, and T. Pajkossy, Electrochim. Acta 36 (1991) 163.

    Google Scholar 

  76. 76. A. Sakharova, L. Nyikos, and T. Pajkossy, Electrochim. Acta 37 (1992) 973.

    Google Scholar 

  77. 77. T. Pajkossy, Heterogen. Chem. Rev. 2 (1995) 143.

    Google Scholar 

  78. 78. E. Chassaing, R. Sapoval, G. Daccord, and R. Lenormand, J. Electroanal. Chem. 279 (1990) 67.

    Google Scholar 

  79. 79. M. Filoche and B. Sapoval, Electrochim. Acta 46 (2000) 213.

    Google Scholar 

  80. 80. T. Pajkossy and L. Nyikos, J. Electroanal. Chem. 332 (1992) 55.

    Google Scholar 

  81. 81. M. Keddam and H. Takenouti, Electrochim. Acta 33 (1988) 445.

    Google Scholar 

  82. 82. T. Pajkossy, J. Electroanal. Chem. 364 (1994) 111.

    Google Scholar 

  83. 83. T. Pajkossy and L. Nyikos, Electrochim. Acta 34 (1989) 181.

    Google Scholar 

  84. 84. R. de Levie and A. Vogt, J. Electroanal. Chem. 278 (1990) 25; 281 (1990) 23.

    Google Scholar 

  85. 85. R. de Levie, J. Electroanal. Chem. 261 (1989) 1.

    Google Scholar 

  86. 86. W. Mulder, J. Electroanal. Chem. 326 (1992) 231.

    Google Scholar 

  87. 87. D. W. Davidson and R. H. Cole, J. Chem. Phys. 19 (1951) 1484.

    Google Scholar 

  88. 88. J. R. Macdonald, Impedance Spectroscopy, Wiley, New York, 1987.

    Google Scholar 

  89. 89. G. P. Lindsay and G. D. Davidson, J. Chem. Phys. 73 (1980) 3348.

    Google Scholar 

  90. 90. J. B. Jorcin, M. E. Orazem, N. Pebere, and B. Tribollet, Electrochim. Acta 51 (2006) 1473.

    Google Scholar 

  91. 91. K. S. Cole and R. H. Cole, J. Chem. Phys. 9 (1941) 341.

    Google Scholar 

  92. 92. A. Sakharova, L. Nyikos, and Y. Pleskov, Electrochim. Acta 37 (1992) 973.

    Google Scholar 

  93. 93. A. Kerner and T. Pajkossy, J. Electroanal. Chem. 448 (1998) 139.

    Google Scholar 

  94. 94. Z. Kerner and T. Pajkossy, Electrochim. Acta 46 (2000) 207.

    Google Scholar 

  95. 95. P. Żółtowski, J. Electroanal. Chem. 443 (1998) 149.

    Google Scholar 

  96. 96. A. Sadkowski, J. Electroanal. Chem. 481 (2000) 222.

    Google Scholar 

  97. 97. P. Żółtowski, J. Electroanal. Chem. 481 (2000) 230.

    Google Scholar 

  98. 98. A. Sadkowski, J. Electroanal. Chem. 481 (2000) 232.

    Google Scholar 

  99. 99. B. Emmanuel, J. Electroanal. Chem. 605 (2007) 89.

    Google Scholar 

  100. 100. V. M. W. Huang, V. Vivier, M. E. Orazem, N. Pebere, and B. Tribollet, J. Electrochem. Soc. 154 (2007) C81.

    Google Scholar 

  101. 101. V. M. W. Huang, V. Vivier, M. E. Orazem, N. Pebere, and B. Tribollet, J. Electrochem. Soc. 154 (2007) C89.

    Google Scholar 

  102. 102. V. M. W. Huang, V. Vivier, I. Frateur, M. E. Orazem, and B. Tribollet, J. Electrochem. Soc. 154 (2007) C99.

    Google Scholar 

  103. 103. J. Newman, J. Electrochem. Soc. 113 (1966) 501.

    Google Scholar 

  104. 104. J. Newman, J. Electrochem. Soc. 113 (1966) 1235.

    Google Scholar 

  105. 105. Z. Kerner and T. Pajkossy, Electrochim. Acta 47 (2002) 2055.

    Google Scholar 

  106. 106. T. Pajkossy, T. Wandlowski, and D. M. Kolb, J. Electroanal. Chem. 414 (1996) 209.

    Google Scholar 

  107. 107. T. Pajkossy, Solid State Ionics 94 (1997) 123.

    Google Scholar 

  108. 108. T. Pajkossy and D .M. Kolb, Electrochim. Acta 46 (2001) 3063.

    Google Scholar 

  109. 109. Z. Kerner, T. Pajkossy, L. A. Kibler, and D. M. Kolb, Electrochem. Commun. 4 (2002) 787.

    Google Scholar 

  110. 110. Z. Kerner and T. Pajkossy, Electrochim. Acta 47 (2002) 2055.

    Google Scholar 

  111. 111. T. Pajkossy, L. A. Kibler, and D. M. Kolb, J. Electroanal. Chem. 582 (2005) 69.

    Google Scholar 

  112. 112. T. Pajkossy and D. M. Kolb, Electrochem. Commun. 9 (2007) 1171.

    Google Scholar 

  113. 113. T. Pajkossy, L. A. Kibler, and D. M. Kolb, J. Electroanal. Chem. 600 (2007) 113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

Lasia, A. (2008). Modeling of Impedance of Porous Electrodes. In: Modeling and Numerical Simulations. Modern Aspects of Electrochemistry, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49582-8_3

Download citation

Publish with us

Policies and ethics