The Changing Prognostic Determinants in the Critically III Patient

  • R. Moreno
  • B. Jordan
  • P. Metnitz


The science and art of risk stratification appeared in early 1953, when Virginia Apgar [1] published a simple physiological scoring tool to evaluate the newborn child. This system, still commonly used worldwide, evaluates only two physiologic systems: Cardiopulmonary and central nervous system (CNS) function. Several years later, in the early 1980s, several researchers applied the same concept to critically ill patients, through the introduction of the acute physiology and chronic health evaluation (APACHE) and the simplified acute physiological score (SAPS), both physiologically based classification systems [2, 3]. These instruments, named general severity scores, are tools that aim at stratifying patients based on their severity, assigning to each patient an increasing score as their severity of illness increases. Initially designed to be applicable to individual patients, it became apparent very early after their introduction that both systems could in fact be used only in large heterogeneous groups of critically ill patients.


Intensive Care Unit Admission Simplified Acute Physiological Score Mortality Prediction Model Intensive Care National Audit General Critical Care Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apgar V (1953) A proposal for a new method of evaluation of the newborn infant. Anesth Analg 32:260–267CrossRefGoogle Scholar
  2. 2.
    Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE (1981) APACHE — acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 9:591–597PubMedCrossRefGoogle Scholar
  3. 3.
    Le Gall JR, Loirat P, Alperovitch A (1983) Simplified acute physiological score for intensive care patients. Lancet 2:741PubMedCrossRefGoogle Scholar
  4. 4.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829PubMedCrossRefGoogle Scholar
  5. 5.
    Lemeshow S, Teres D, Pastides H, et al (1985) A method for predicting survival and mortality of ICU patients using objectively derived weights. Crit Care Med 13:519–525PubMedCrossRefGoogle Scholar
  6. 6.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963PubMedCrossRefGoogle Scholar
  7. 7.
    Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J (1993) Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA 270:2478–2486PubMedCrossRefGoogle Scholar
  8. 8.
    Knaus WA, Wagner DP, Draper EA, et al (1991) The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100:1619–1636PubMedGoogle Scholar
  9. 9.
    Suter P, Armagandis A, Beaufils F, et al (1994) Predicting outcome in ICU patients: consensus conference organized by the ESICM and the SRLF. Intensive Care Med 20:390–397CrossRefGoogle Scholar
  10. 10.
    Moreno R, Matos R (2000) The “new” scores: what problems have been fixed, and what remain. Curr Opin Crit Care 6:158–165CrossRefGoogle Scholar
  11. 11.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  12. 12.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554PubMedCrossRefGoogle Scholar
  13. 13.
    Bernard GR, Vincent J-L, Laterre PF, et al (2001) Efficacy and Safety of Recombinant Human Activated Protein C for Severe Sepsis. N Engl J Med 344:699–709PubMedCrossRefGoogle Scholar
  14. 14.
    Ely EW, Laterre P-F, Angus DC, et al (2003) Drotrecogin alfa (activated) administration across clinically important subgroups of patients with severe sepsis. Crit Care Med 31:12–19PubMedCrossRefGoogle Scholar
  15. 15.
    Moreno R, Apolone G (1997) The impact of different customization strategies in the performance of a general severity score. Crit Care Med 25:2001–2008PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu B-P, Lemeshow S, Hosmer DW, Klarm J, Avrunin J, Teres D (1996) Factors affecting the performance of the models in the mortality probability model and strategies of customization: a simulation study. Crit Care Med 24:57–63PubMedCrossRefGoogle Scholar
  17. 17.
    Le Gall JR, Lemeshow S, Leleu G, et al (1995) Customized probability models for early severe sepsis in adult intensive care patients. JAMA 273:644–650PubMedCrossRefGoogle Scholar
  18. 18.
    Apolone G, D’Amico R, Bertolini G, et al (1996) The performance of SAPS II in a cohort of patients admitted in 99 Italian ICUs: results from the GiViTI. Intensive Care Med 22:1368–1378PubMedCrossRefGoogle Scholar
  19. 19.
    Rivera-Fernandez R, Vazquez-Mata G, Bravo M, et al (1998) The Apache III prognostic system: customized mortality predictions for Spanish ICU patients. Intensive Care Med 24: 574–581PubMedCrossRefGoogle Scholar
  20. 20.
    Zimmerman JE, Wagner DP, Draper EA, Wright L, Alzola C, Knaus WA (1998) Evaluation of acute physiology and chronic health evaluation III predictions of hospital mortality in an independent database. Crit Care Med 26:1317–1326PubMedCrossRefGoogle Scholar
  21. 21.
    Zimmerman JE, Kramer AA, McNair DS, Malila FM (2006) Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today’s critically ill patients. Crit Care Med 34:1297–1310PubMedCrossRefGoogle Scholar
  22. 22.
    Metnitz PG, Valentin A, Vesely H, et al (1999) Prognostic performance and customization of the SAPS II: results of a multicenter Austrian study. Intensive Care Med 25:192–197PubMedCrossRefGoogle Scholar
  23. 23.
    Moreno R, Apolone G, Reis Miranda D (1998) Evaluation of the uniformity of fit of general outcome prediction models. Intensive Care Med 24:40–47PubMedCrossRefGoogle Scholar
  24. 24.
    Le Galll J-R, Neumann A, Hemery F, et al (2005) Mortality prediction using SAPS II: an update for French intensive care units. Crit Care 9:R645–R652CrossRefGoogle Scholar
  25. 25.
    Aegerter P, Boumendil A, Retbi A, Minvielle E, Dervaux B, Guidet B (2005) SAPS II revisited. Intensive Care Med 31:416–423PubMedCrossRefGoogle Scholar
  26. 26.
    Harrison DA, Brady AR, Parry GJ, Carpenter JR, Rowan K (2006) Recalibration of risk prediction models in a large multicenter cohort of admissions to adult, general critical care units in the United Kingdom. Crit Care Med 34:1378–1388PubMedCrossRefGoogle Scholar
  27. 27.
    Rowan KM, Kerr JH, Major E, McPherson K, Short A, Vessey MP (1993) Intensive Care Society’s APACHE II study in Britain and Ireland — II: Outcome comparisons of intensive care units after adjustment for case mix by the American APACHE II method. BMJ 307:977–981PubMedCrossRefGoogle Scholar
  28. 28.
    Metnitz PG, Moreno RP, Almeida E, et al (2005) SAPS 3. From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Med 31:1336–1344PubMedCrossRefGoogle Scholar
  29. 29.
    Moreno RP, Metnitz PG, Almeida E, et al (2005) SAPS 3. From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med 31:1345–1355PubMedCrossRefGoogle Scholar
  30. 30.
    Moreno R, Metnitz P, Jordan B, Einfalt J, Bauer P (2006) SAPS 3 28 days score: a prognostic model to estimate patient survival during the first 28 days in the ICU. Intensive Care Med 32:S203 (abst)CrossRefGoogle Scholar
  31. 31.
    Rothen H, Stricker K, Einfalt J, Metnitz P, Moreno R, Takala J (2006) Variability in outcome and resource use in ICU’S. Intensive Care Med 32:S138 (abst)Google Scholar
  32. 32.
    Zimmerman JE, Kramer AA, McNair DS, Malila FM, Shaffer VL (2006) Intensive care unit length of stay: Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care Med 34:2517–2529PubMedCrossRefGoogle Scholar
  33. 33.
    Higgins T, Teres D, Copes W, Nathanson B, Stark M, Kramer A (2005) Preliminary update of the Mortality Prediction Model (MPM0). Crit Care 9:S97 (abst)CrossRefGoogle Scholar
  34. 34.
    Harrison D, Parry G, Carpenter J, Short A, Rowan K (2006). A new risk prediction model: the Intensive Care National Audit & Research Centre (ICNARC) model. Intensive Care Med 32:S204 (abst)Google Scholar
  35. 35.
    Niskanen M, Kari A, Halonen P (1996) Five-year survival after intensive care — comparison of 12,180 patients with the general population. Crit Care Med 24:1962–1967PubMedCrossRefGoogle Scholar
  36. 36.
    Bion JF (2000) Susceptibility to critical illness: reserve, response and therapy. Intensive Care Med 26:S57–S63PubMedCrossRefGoogle Scholar
  37. 37.
    Villar J, Flores C, Méndez-Alvarez S (2003) Genetic susceptibility to acute lung injury. Crit Care Med 31:S272–S275PubMedCrossRefGoogle Scholar
  38. 38.
    Villar J, Maca-Meyer N, Pérez-Méndez L, Flores C (2004) Bench-to-bedside review: Understanding genetic predisposition to sepsis. Crit Care 8:180–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • R. Moreno
    • 1
  • B. Jordan
    • 2
  • P. Metnitz
    • 3
  1. 1.Intensive Care Unit Hospital de Santo Antonio dos CapuchosAlameda de Santo Antonio dos CapuchosLisbonPortugal
  2. 2.Department of Medical StatisticsUniversity of ViennaViennaAustria
  3. 3.Department of Anesthesiology and General Intensive CareUniversity HospitalViennaAustria

Personalised recommendations