Monitoring of Hemostasis in Emergency Medicine

  • S. Kozek-Langenecker


Exsanguination is still a major cause of death in severely injured patients [1]. Trauma-associated bleeding diathesis, overt at admission to the trauma unit, correlates with the severity of trauma and mortality [2, 3]. Sufficient hemostatic management is critical to the successful resuscitation of the severely injured patient, second in importance only to adequate ventilation. Despite intense efforts to elucidate the pathomechanism and control the process, trauma-associated coagulopathy remains a challenge in the treatment of trauma patients. In this light, monitoring of hemostasis should confirm and specify the clinical diagnosis of bleeding diathesis, guide goal-directed therapy, and possibly predict consecutive transfusion requirements at admission. The present chapter reviews routine laboratory tests and viscoelastic point-of-care hemostasis monitoring as a means of hemostasis monitoring in the emergency setting, as well as relevant pathomechanisms, and therapeutic approaches.


International Normalize Ratio Trauma Patient Trauma Unit Clot Strength Routine Coagulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sauaia A, Moore FA, Moore EE, et al (1995) Epidemiology of trauma deaths: a reassessment. J Trauma 38:185–193PubMedGoogle Scholar
  2. 2.
    Brohi K, Singh J, Heron M, Coats T (2003) Acute traumatic coagulopathy. J Trauma 54:1127–1130PubMedGoogle Scholar
  3. 3.
    MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M (2003) Early coagulopathy predicts mortality in trauma. J Trauma 55:39–44PubMedGoogle Scholar
  4. 4.
    Hardy JF, de Moerloose P, Samama CM (2006) Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anaesth 53:S40–58PubMedGoogle Scholar
  5. 5.
    Lynn M, Jeroukhimov I, Klein Y, Martinowitz U (2002) Updates in the management of severe coagulopathy in trauma patients. Intensive Care Med 28(Suppl 2):S241–247PubMedCrossRefGoogle Scholar
  6. 6.
    Aucar JA, Norman P, Whitten E, et al (2003) Intraoperative detection of traumatic coagulopathy using the activated coagulation time. Shock 19:404–407PubMedCrossRefGoogle Scholar
  7. 7.
    Gando S, Tedo I, Kubota M (1992) Posttrauma coagulation and fibrinolysis. Crit Care Med 20:594–600PubMedCrossRefGoogle Scholar
  8. 8.
    Ungerstedt JS, Grenander A, Bredbacka S, Blomback M (2003) Clotting onset time may be a predictor of outcome in human brain injury: a pilot study. J Neurosurg Anesthesiol 15: 13–18PubMedCrossRefGoogle Scholar
  9. 9.
    Hulka F, Mullins RJ, Frank EH (1996) Blunt brain injury activates the coagulation process. Arch Surg 131:923–927PubMedGoogle Scholar
  10. 10.
    Cosgriff N, Moore EE, Sauaia A, Kenny-Moynihan M, Burch JM, Galloway B (1997) Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidosis revisited. J Trauma 42:857–861PubMedGoogle Scholar
  11. 11.
    Schreiber MA, Differding J, Thorborg P, Mayberry JC, Mullins RJ (2005) Hypercoagulability is most prevalent early after injury and in female patients. J Trauma 58:475–480PubMedCrossRefGoogle Scholar
  12. 12.
    Kaufmann CR, Dwyer KM, Crews JD, Dols SJ, Trask AL (1997) Usefulness of thrombelastography in assessment of trauma patient coagulation. J Trauma 42:716–720PubMedGoogle Scholar
  13. 13.
    Kozek-Langenecker SA (2005) Effects of hydroxyethyl starch solutions on hemostasis. Anesthesiology 103:654–660PubMedCrossRefGoogle Scholar
  14. 14.
    Wilder DM, Reid TJ, Bakaltcheva IB (2002) Hypertonic resuscitation and blood coagulation: in vitro comparison of several hypertonic solutions for their action on platelets and plasma coagulation. Thromb Res 107:255–261PubMedCrossRefGoogle Scholar
  15. 15.
    Enderson BL, Chen JP, Robinson R, Maull KI (1991) Fibrinolysis in multisystem trauma patients. J Trauma 31:1240–1246PubMedCrossRefGoogle Scholar
  16. 16.
    Rohrer M, Natale A (1992) Effect of hypothermia on the coagulation cascade. Crit Care Med 20:1402–1405PubMedCrossRefGoogle Scholar
  17. 17.
    Scharbert G, Kalb M, Marschalek C, Kozek-Langenecker SA (2006) The effects of test temperature and storage temperature on platelet aggregation: a whole blood in vitro study. Anesth Analg 102:1280–1284PubMedCrossRefGoogle Scholar
  18. 18.
    Engstrom M, Schott U, Romner B, Reinstrup P (2006) Acidosis impairs the coagulation: A thromboelastographic study. J Trauma 61:624–628PubMedGoogle Scholar
  19. 19.
    DeLoughery TG (2004) Coagulation defects in trauma patients: etiology, recognition, and therapy. Crit Care Clin 20:13–24PubMedCrossRefGoogle Scholar
  20. 20.
    Ciavarella D, Reed R, Counts R, et al (1987) Clotting factor levels and the risk of diffuse microvascular bleeding in the massively transfused patient. Br J Haematol 67:365–368PubMedGoogle Scholar
  21. 21.
    Counts RB, Haisch C, Simon TL, Maxwell NG, Heimbach DM, Carrico CJ (1979) Hemostasis in massively transfused trauma patients. Ann Surg 190:91–99PubMedCrossRefGoogle Scholar
  22. 22.
    Yuan S, Ferrell C, Chandler WL (2006) Comparing the prothrombin time INR versus the APTT to evaluate the coagulopathy of acute trauma. Thromb ResGoogle Scholar
  23. 23.
    Hiippala ST, Myllyla GJ, Vahtera EM (1995) Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg 81:360–365PubMedCrossRefGoogle Scholar
  24. 24.
    Ketchum L, Hess JR, Hiippala S (2006) Indications for early fresh frozen plasma, cryoprecipitate, and platelet transfusion in trauma. J Trauma 60:S51–58PubMedGoogle Scholar
  25. 25.
    American Society of Anesthesiologists Task Force (2006) Practice guidelines for periperative blood transfusion and adjuvant therapies. An updated report by the American Society of Anesthesiologists Task Force on perioperative blood transfusion and adjuvant therapies. Anesthesiology 105:198–208CrossRefGoogle Scholar
  26. 26.
    Hartert H (1948) Blutgerinnungsstudien mit der Thrombelastgraphie, einem neuen Untersuchungsverfahren. Klin Wochenschrift 26:557–583CrossRefGoogle Scholar
  27. 27.
    Luddington RJ (2005) Thrombelastography/thromboelastometry. Clin Lab Haematol 27:81–90PubMedCrossRefGoogle Scholar
  28. 28.
    Spiel AO, Mayr FB, Firbas C, Quehenberger P, Jilma B (2006) Validation of rotation thrombelastography in a model of systemic activation of fibrinolysis and coagulation in humans. J Thromb Haemost 4:411–416PubMedCrossRefGoogle Scholar
  29. 29.
    Lang T, Bauters A, Braun SL, et al (2005) Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinolysis 16:301–310PubMedCrossRefGoogle Scholar
  30. 30.
    Hess JR, Lawson JH (2006) The coagulopathy of trauma versus disseminated intravascular coagulation. J Trauma 60:S12–19PubMedGoogle Scholar
  31. 31.
    Shore-Lesserson L (2005) Evidence based coagulation monitors: heparin monitoring, thromboelastography, and platelet function. Semin Cardiothorac Vasc Anesth 9:41–52PubMedCrossRefGoogle Scholar
  32. 32.
    Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA (1999) Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg 88:312–319PubMedCrossRefGoogle Scholar
  33. 33.
    Avidan MS, Alcock EL, Da Fonseca J, et al (2004) Comparison of structured use of routine laboratory tests or near-patient assessment with clinical judgement in the management of bleeding after cardiac surgery. Br J Anaesth 92:178–186PubMedCrossRefGoogle Scholar
  34. 34.
    Royston D, von Kier S (2001) Reduced haemostatic factor transfusion using heparinase-modified thrombelastography during cardiopulmonary bypass. Br J Anaesth 86:575–578PubMedCrossRefGoogle Scholar
  35. 35.
    Nuttall GA, Oliver WC, Santrach PJ, et al (2001) Efficacy of a simple intraoperative transfusion algorithm for nonerythrocyte component utilization after cardiopulmonary bypass. Anesthesiology 94:773–781PubMedCrossRefGoogle Scholar
  36. 36.
    Spiess BD, Gillies BS, Chandler W, Verrier E (1995) Changes in transfusion therapy and reexploration rate after institution of a blood management program in cardiac surgical patients. J Cardiothorac Vasc Anesth 9:168–173PubMedCrossRefGoogle Scholar
  37. 37.
    Chowdhury P, Saayman AG, Paulus U, Findlay GP, Collins PW (2004) Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol 125:69–73PubMedCrossRefGoogle Scholar
  38. 38.
    Anderson L, Quasim I, Soutar R, Steven M, Macfie A, Korte W (2006) An audit of red cell and blood product use after the institution of thromboelastometry in a cardiac intensive care unit. Transfus Med 16:31–39PubMedCrossRefGoogle Scholar
  39. 39.
    Coakley M, Reddy K, Mackie I, Mallett S (2006) Transfusion triggers in orthotopic liver transplantation: a comparison of the thromboelastometry analyzer, the thromboelastogram, and conventional coagulation tests. J Cardiothorac Vasc Anesth 20:548–553PubMedCrossRefGoogle Scholar
  40. 40.
    Fries D, Haas T, Salchner V, Lindner K, Innerhofer P (2005) [Management of coagulation after multiple trauma]. Anaesthesist 54:137–144PubMedCrossRefGoogle Scholar
  41. 41.
    Levi M, Cromheecke ME, de Jonge E, et al (1999) Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet 354:1940–1947PubMedCrossRefGoogle Scholar
  42. 42.
    Spivey M, Parr MJ (2005) Therapeutic approaches in trauma-induced coagulopathy. Minerva Anestesiol 71:281–289PubMedGoogle Scholar
  43. 43.
    Fries D (2006) [Dilutional coagulopathy: development, diagnostic options and management]. Hamostaseologie 26:S15–19PubMedGoogle Scholar
  44. 44.
    Fries D, Krismer A, Klingler A, et al (2005) Effect of flbrinogen on reversal of dilutional coagulopathy: a porcine model. Br J Anaesth 95:172–177PubMedCrossRefGoogle Scholar
  45. 45.
    Dzik W, Arkin C, Jenkins R, Stump D (1988) Fibrinolysis during liver transplantation in humans: role of tissue-type plasminogen activator. Blood 71:1090–1095PubMedGoogle Scholar
  46. 46.
    Sorensen B, Ingerslev J (2004) Thromboelastography and recombinant factor Vlla-hemophilia and beyond. Semin Hematol 41:140–144PubMedCrossRefGoogle Scholar
  47. 47.
    Sorensen B, Johansen P, Christiansen K, Woelke M, Ingerslev J (2003) Whole blood coagulation thrombelastographic profiles employing minimal tissue factor activation. J Thromb Haemost 1:551–558PubMedCrossRefGoogle Scholar
  48. 48.
    Pusateri AE, Park MS (2005) Mechanistic implications for the use and monitoring of recombinant activated factor VII in trauma. Crit Care 9(Suppl 5):S15–24PubMedCrossRefGoogle Scholar
  49. 49.
    Brandsborg S, Sorensen B, Poulsen LH, Ingerslev J (2006) Recombinant activated factor VIIa in uncontrolled bleeding: a haemostasis laboratory study in non-haemophilia patients. Blood Coagul Fibrinolysis 17:241–249PubMedCrossRefGoogle Scholar
  50. 50.
    Merritt JC, Bhatt DL (2004) The efficacy and safety of perioperative antiplatelet therapy. J Thromb Thrombolysis 17:21–27PubMedCrossRefGoogle Scholar
  51. 51.
    Rodgers A, Walker N, Schug S, et al (2000) Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. BMJ 321:1493PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • S. Kozek-Langenecker
    • 1
  1. 1.Department of Anesthesiology and General Intensive Care Clinical Division BMedical UniversityViennaAustria

Personalised recommendations