The Critically III Red Blood Cell

  • E. Almac
  • C. Ince
Conference paper


Anemia is one of the most common problems suffered by critically ill patients and occurs early during their intensive care unit (ICU) stay. Despite alternatives, blood transfusion is still the most common treatment of anemia in ICUs around the world. In the last decade, a number of studies have observed the transfusion practices in North America and Europe. These studies have also provided information regarding the efficacy and the negative consequences of blood transfusion therapy.


Intensive Care Unit Stay Transfusion Practice Orthogonal Polarization Spectral Storage Lesion Microcirculatory Oxygenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vincent JL, Baron JF, Reinhart K, et al (2002) Anemia and blood transfusion in critically ill patients. JAMA 288:1499–1507PubMedCrossRefGoogle Scholar
  2. 2.
    Corwin HL, Gettinger A, Pearl RG, et al (2004) The CRIT Study: anemia and blood transfusion in the critically ill — current clinical practice in the United States. Crit Care Med 32: 39–52PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen Ba V, Peres Bota D, Melot C, et al (2003) Time course of hemoglobin concentrations in non-bleeding ICU patients. Crit Care Med 31:406–410PubMedCrossRefGoogle Scholar
  4. 4.
    Rao MP, Boralessa H, Morgan C, et al (2002) Blood component use in critically ill patients. Anaesthesia 57:530–534PubMedCrossRefGoogle Scholar
  5. 5.
    Chohan SS, McArdle F, McClelland DB, Mackenzie SJ, Walsh TS (2003) Red cell transfusion practice following the transfusion requirements in critical care (TRICC) study: prospective observational cohort study in a large UK intensive care unit. Vox Sang 84:211–218PubMedCrossRefGoogle Scholar
  6. 6.
    Rogiers P, Zhang H, Leeman M, et al (1997) Erythropoietin response is blunted in critically ill patients. Intensive Care Med 23:159–162PubMedCrossRefGoogle Scholar
  7. 7.
    Piagnerelli M, Vincent JL (2004) Role of iron in anaemic critically ill patients: it’s time to investigate! Crit Care 8:306–307PubMedCrossRefGoogle Scholar
  8. 8.
    Corwin HL, Parsonnet KC, Gettinger A (1995) RBC transfusion in the ICU. Is there a reason? Chest 108:767–771PubMedGoogle Scholar
  9. 9.
    Vincent JL, Piagnerelli M (2006) Transfusion in the intensive care unit. Crit Care Med 34(Suppl 5):S96–101PubMedCrossRefGoogle Scholar
  10. 10.
    Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, Vincent JL (2003) Red blood cell rheology in sepsis. Intensive Care Med 29:1052–1061PubMedCrossRefGoogle Scholar
  11. 11.
    Astiz ME, DeGent GE, Lin RY, Rackow EC (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23:265–271PubMedCrossRefGoogle Scholar
  12. 12.
    Baskurt OK, Gelmont D, Meiselman HJ (1998) Red blood cell deformability in sepsis. Am J Respir Crit Care Med 157:421–427PubMedGoogle Scholar
  13. 13.
    Piagnerelli M, Boudjeltia KZ, Brohee D, et al (2003) Alterations of red blood cell shape and sialic acid membrane content in septic patients. Crit Care Med 31:2156–2162PubMedCrossRefGoogle Scholar
  14. 14.
    Hebert PC, Wells G, Blajchman MA, et al (1999) The Transfusion Requirements in Critical Care Investigators for the Canadian Critical Care Trials Group: A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340: 409–417PubMedCrossRefGoogle Scholar
  15. 15.
    Vincent JL, Sakr 4, Le Gall JR, et al (2003) Is red blood cell transfusion associated with worse outcome. Results of the SOAP study. Chest 124: 1255 (abst)Google Scholar
  16. 16.
    Hebert PC, Fergusson DA (2002) Executive Committee of the Evaluation of a Universal Leukoreduction Program study. Evaluation of a universal leukoreduction program in Canada. Vox Sang 83(Suppl 1):207–209PubMedGoogle Scholar
  17. 17.
    Bilgin YM, van de Watering LM, Eijsman L, et al (2004) Double-blind, randomized controlled trial on the effect of leukocyte-depleted erythrocyte transfusions in cardiac valve surgery. Circulation 109:2755–2760PubMedCrossRefGoogle Scholar
  18. 18.
    Fung MK, Rao N, Rice J, et al (2004) Leukoreduction in the setting of open heart surgery: A prospective cohort-controlled study. Transfusion 44:30–35PubMedCrossRefGoogle Scholar
  19. 19.
    Fung MK, Moore K, Ridenour M, Mook W, Triulzi DJ (2006) Clinical effects of reverting from leukoreduced to nonleukoreduced blood in cardiac surgery. Transfusion 46:386–391PubMedCrossRefGoogle Scholar
  20. 20.
    van de Watering LM, Hermans J, Houbiers JG, et al (1998) Beneficial effects of leukocyte depletion of transfused blood on postoperative complications in patients undergoing cardiac surgery: a randomized clinical trial. Circulation 97:562–568PubMedGoogle Scholar
  21. 21.
    Izbicki G, Rudensky B, Na’amad M, Hershko C, Huerta M, Hersch M (2004) Transfusion-related leukocytosis in critically ill patients. Crit Care Med 32:439–442PubMedCrossRefGoogle Scholar
  22. 22.
    Fergusson D, Khanna MP, Tinmouth A, Hebert PC (2004) Transfusion of leukoreduced red blood cells may decrease postoperative infections: two meta-analyses of randomized con-trolled trials. Can J Anaesth 51:417–424PubMedCrossRefGoogle Scholar
  23. 23.
    Raat NJ, Verhoeven AJ, Mik EG, et al (2005) The effect of storage time of human red cells on intestinal microcirculatory oxygenation in a rat isovolemic exchange model. Crit Care Med 33:39–45PubMedCrossRefGoogle Scholar
  24. 24.
    Marik PE, Sibbald WJ (1993) Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 269:3024–3029PubMedCrossRefGoogle Scholar
  25. 25.
    Raat NJ, Berends F, Verhoeven AJ, de Korte D, Ince C (2005) The age of stored red blood cell concentrates at the time of transfusion. Transfus Med 15:419–423PubMedCrossRefGoogle Scholar
  26. 26.
    Fitzgerald RD, Martin CM, Dietz GE, Doig GS, Potter RF, Sibbald WJ (1997) Transfusing red blood cells stored in citrate phosphate dextrose adenine-1 for 28 days fails to improve tissue oxygenation in rats. Crit Care Med 25:726–732PubMedCrossRefGoogle Scholar
  27. 27.
    Purdy FR, Tweeddale MG, Merrick PM (1997) Association of mortality with age of blood transfused in septic ICU patients. Can J Anaesth 44:1256–1261PubMedGoogle Scholar
  28. 28.
    Messana I, Ferroni L, Misiti F, et al (2000) Blood bank conditions and RBCs: the progressive loss of metabolic modulation. Transfusion 40:353–360PubMedCrossRefGoogle Scholar
  29. 29.
    Vamvakas EC, Carven JH (2000) Length of storage of transfused red cells and postoperative morbidity in patients undergoing coronary artery bypass graft surgery. Transfusion 40: 101–109PubMedCrossRefGoogle Scholar
  30. 30.
    Walsh TS, McArdle F, McLellan SA, et al (2004) Does the storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients? Crit Care Med 32:364–371PubMedCrossRefGoogle Scholar
  31. 31.
    van Bommel J, de Korte D, Lind A, et al (2001) The effect of the transfusion of stored RBCs on intestinal microvascular oxygenation in the rat. Transfusion 41:1515–1523PubMedCrossRefGoogle Scholar
  32. 32.
    d’Almeida MS, Gray D, Martin C, Ellis CG, Chin-Yee IH (2001) Effect of prophylactic transfusion of stored RBCs on oxygen reserve in response to acute isovolemic hemorrhage in a rodent model. Transfusion 41:950–956PubMedCrossRefGoogle Scholar
  33. 33.
    Habib RH, Zacharias A, Schwann TA, et al (2005) Role of hemodilutional anemia and trans-fusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit Care Med 33:1749–1756PubMedCrossRefGoogle Scholar
  34. 34.
    Spiess BD (2005) Choose one: damned if you do/damned if you don’t! Crit Care Med 33: 1871–1874PubMedCrossRefGoogle Scholar
  35. 35.
    Scott KL, Lecak J, Acker JP (2005) Biopreservation of red blood cells: past, present, and future. Transfus Med Rev 19:127–142PubMedCrossRefGoogle Scholar
  36. 36.
    Card RT (1988) Red cell membrane changes during storage. Transfus Med Rev 2:40–47PubMedGoogle Scholar
  37. 37.
    Hess JR, Greenwalt TJ (2002) Storage of red blood cells: New approaches. Transfus Med Rev 16:283–295PubMedCrossRefGoogle Scholar
  38. 38.
    Rumsby MG, Trotter J, Allan D, Michell RH (1977) Recovery of membrane micro-vesicles from human erythrocytes stored for transfusion: a mechanism for the erythrocyte discocyte-to-spherocyte shape transformation. Biochem Soc Trans 5:126–128PubMedGoogle Scholar
  39. 39.
    Brunauer LS, Moxness MS, Huestis WH (1994) Hydrogen peroxide oxidation induces the transfer of phospholipids from the membrane into the cytosol of human erythrocytes. Bio-chemistry 33:4527–4532Google Scholar
  40. 40.
    Verhoeven AJ, Hilarius PM, Dekkers DW, Lagerberg JW, de Korte D (2006) Prolonged storage of red blood cells affects aminophospholipid translocase activity. Vox Sang 91:244–251PubMedCrossRefGoogle Scholar
  41. 41.
    Heaton A, Keegan T, Holme S (1989) In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells. Br J Haematol 71:131–136PubMedGoogle Scholar
  42. 42.
    Ellsworth ML (2000) The red blood cell as an oxygen sensor: what is the evidence? Acta Physiol Scand 168:551–559PubMedCrossRefGoogle Scholar
  43. 43.
    Dietrich HH, Ellsworth ML, Sprague RS, Dacey RG Jr (2000) Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol 278: H1294–1298PubMedGoogle Scholar
  44. 44.
    Crawford JH, Isbell TS, Huang Z, et al (2006) Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107:566–574PubMedCrossRefGoogle Scholar
  45. 45.
    Cosby K, Partovi KS, Crawford JH, et al (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9:1498–1505PubMedCrossRefGoogle Scholar
  46. 46.
    Kleinbongard P, Schulz R, Rassaf T, et al (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107:2943–2951PubMedCrossRefGoogle Scholar
  47. 47.
    Van der Linden P, De Hert S, Belisle S, et al (2001) Comparative effects of red blood cell transfusion and increasing blood flow on tissue oxygenation in oxygen supply-dependent conditions. Am J Respir Crit Care Med 163:1605–1608PubMedGoogle Scholar
  48. 48.
    Elbers PW, Ince C (2006) Bench-to-bedside review: mechanisms of critical illness — classifying microcirculatory flow abnormalities in distributive shock. Crit Care 10:221PubMedCrossRefGoogle Scholar
  49. 49.
    De Backer D, Creteur J, Dubois MJ, et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408PubMedCrossRefGoogle Scholar
  50. 50.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  51. 51.
    Schwarte LA, Fournell A, van Bommel J, Ince C (2005) Redistribution of intestinal microcirculatory oxygenation during acute hemodilution in pigs. J Appl Physiol 98:1070–1075PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • E. Almac
    • 1
  • C. Ince
    • 1
  1. 1.Clinical Physiology DepartmentAcademic Medical CenterAmsterdamNetherlands

Personalised recommendations