Modulation of Blood Pressure in Traumatic Brain Injury

  • M. Leone
  • P. Visintini
  • C. Martin


The modulation of arterial pressure is an important stage in the care of a patient with a cerebral lesion. International guidelines recommend a level of cerebral perfusion pressure (CPP = mean arterial pressure [MAP] – intracranial pressure [ICP]) that is superior to 60 mmHg. On the other hand, a level that exceeds 70 mmHg in the absence of cerebral ischemia must be avoided given the risk of acute respiratory distress syndrome (ARDS) [1]. Moreover, a single episode of hypotension defined as systolic arterial pressure <90 mmHg in a patient with severe head trauma is associated with an increase in mortality and morbidity [2].


Traumatic Brain Injury Cerebral Perfusion Pressure Cerebral Lesion Severe Head Trauma Local Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brain Trauma Foundation (2003) The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Guidelines for cerebral perfusion pressure. At:; Accessed December 2006
  2. 2.
    The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care (2000) Hypotension. J Neurotrauma 17:591–595Google Scholar
  3. 3.
    Lang EW, Lagopoulos J, Griffith J, et al (2003) Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry 74:1053–1059PubMedCrossRefGoogle Scholar
  4. 4.
    Clifton GL, Miller ER, Choi SC, Levin HS (2002) Fluid thresholds and outcome from severe brain injury. Crit Care Med 30:739–745PubMedCrossRefGoogle Scholar
  5. 5.
    Coles JP, Steiner LA, Johnston AJ, et al (2004) Does induced hypertension reduce cerebral ischaemia within the traumatized human brain?. Brain 127:2479–2490PubMedCrossRefGoogle Scholar
  6. 6.
    Oertel M, Kelly DF, Lee JH, et al (2002) Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury. J Neurosurg 97:1045–1053PubMedCrossRefGoogle Scholar
  7. 7.
    Cremer OL, van Dijk GW, Amelink GJ, de Smet AM, Moons KG, Kalkman CJ (2004) Cerebral hemodynamic responses to blood pressure manipulation in severely head-injured patients in the presence or absence of intracranial hypertension. Anesth Analg 99:1211–1217PubMedCrossRefGoogle Scholar
  8. 8.
    Steiner LA, Coles JP, Johnston AJ, et al (2003) Responses of posttraumatic pericontusional cerebral blood flow and blood volume to an increase in cerebral perfusion pressure. J Cereb Blood Flow Metab 23:1371–1377PubMedCrossRefGoogle Scholar
  9. 9.
    Albanèse J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126:534–539PubMedCrossRefGoogle Scholar
  10. 10.
    Wie EP, Raper AJ, Kontos HA, Patterson JL (1975) Determinants of response of pial arteries to norepinephrine and sympathetic nerve stimulation. Stroke 6:654–658Google Scholar
  11. 11.
    Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66:8–17PubMedGoogle Scholar
  12. 12.
    Bauknight GC Jr, Faraci FM, Heistad DD (1992) Endothelium-derived relaxing factor modulates noradrenergic constriction of cerebral arterioles in rabbits. Stroke 23:1522–1526PubMedGoogle Scholar
  13. 13.
    MacKenzie ET, McCulloch J, O’Kean M, Pickard JD, Harper AM (1976) Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Physiol 231:483–488PubMedGoogle Scholar
  14. 14.
    Subbarao KV, Hertz L (1991) Stimulation of energy metabolism by alpha-adrenergic agonists in primary cultures of astrocytes. J Neurosci Res 28:399–405PubMedCrossRefGoogle Scholar
  15. 15.
    Tuor UI, Edvinsson L, McCulloch J (1986) Catecholamines and the relationship between cerebral blood flow and glucose use. Am J Physiol 251:H824–H833PubMedGoogle Scholar
  16. 16.
    Kuschinsky W, Suda S, Bunger R, Yaffe S, Sokoloff L (1983) The effects of intravenous norepinephrine on the local coupling between glucose utilization and blood flow in the rat brain. Pflugers Arch 398:134–138PubMedCrossRefGoogle Scholar
  17. 17.
    Paspalas CD, Papadopoulos GC (1998) Ultrastructural evidence for combined action of noradrenaline and vasoactive intestinal polypeptide upon neurons, astrocytes, and blood vessels of the rat cerebral cortex. Brain Res Bull 45:247–259PubMedCrossRefGoogle Scholar
  18. 18.
    Kroppenstedt SN, Thomale UW, Griebenow M, et al (2003) Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats. Crit Care Med 31:2211–2221PubMedCrossRefGoogle Scholar
  19. 19.
    Kimmerly DS, Tutungi E, Wilson TD, et al (2003) Circulating norepinephrine and cerebrovascular control in conscious humans. Clin Physiol Funct Imaging 23:314–319PubMedCrossRefGoogle Scholar
  20. 20.
    Toda N (1983) Dopamine vasodilates human cerebral artery. Experientia 39:1131–1132PubMedCrossRefGoogle Scholar
  21. 21.
    Gleason CA, Robinson R, Harris AP, Mayock DE, Traystman RJ (2002) Cerebrovascular effects of intravenous dopamine infusions in fetal sheep. J Appl Physiol 92:717–724PubMedGoogle Scholar
  22. 22.
    Myburgh JA, Upton RN, Grant C, Martinez A (2003) The effect of infusions of adrenaline, noradrenaline and dopamine on cerebral autoregulation under propofol anaesthesia in an ovine model. Intensive Care Med 29:817–824PubMedGoogle Scholar
  23. 23.
    Kroppenstedt SN, Stover JF, Unterberg AW (2000) Effects of dopamine on posttraumatic cerebral blood flow, brain edema, and cerebrospinal fluid glutamate and hypoxanthine concentrations. Crit Care Med 28:3792–3798PubMedCrossRefGoogle Scholar
  24. 24.
    Beaumont A, Hayasaki K, Marmarou A, Barzo P, Fatouros P, Corwin F (2001) Contrasting effects of dopamine therapy in experimental brain injury. J Neurotrauma 18:1359–1372PubMedCrossRefGoogle Scholar
  25. 25.
    Myburgh JA, Upton RN, Grant C, Martinez A (1998) A comparison of the effects of norepinephrine, epinephrine, and dopamine on cerebral blood flow and oxygen utilisation. Acta Neurochir Suppl 71:19–21PubMedGoogle Scholar
  26. 26.
    Berre J, De Backer D, Moraine JJ, Melot C, Kahn RJ, Vincent JL (1997) Dobutamine increases cerebral blood flow velocity and jugular bulb hemoglobin saturation in septic patients. Crit Care Med 25:392–398PubMedCrossRefGoogle Scholar
  27. 27.
    Moppett IK, Wild MJ, Sherman RW, Latter JA, Miller K, Mahajan RP (2004) Effects of ephedrine, dobutamine and dopexamine on cerebral haemodynamics: transcranial Doppler studies in healthy volunteers. Br J Anaesth 92:39–44PubMedCrossRefGoogle Scholar
  28. 28.
    Fernandez N, Martinez MA, Garcia-Villalon AL, Monge L, Dieguez G (2001) Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(l) and V(2) receptors and nitric oxide. Br J Pharmacol 132:1837–1844PubMedCrossRefGoogle Scholar
  29. 29.
    Trandafir CC, Nishihashi T, Wang A, Murakami S, Ji X, Kurahashi K (2004) Participation of vasopressin in the development of cerebral vasospasm in a rat model of subarachnoid haemorrhage. Clin Exp Pharmacol Physiol 31:261–266PubMedCrossRefGoogle Scholar
  30. 30.
    Feinstein AJ, Patel MB, Sanui M, Cohn SM, Majetschak M, Proctor KG (2005) Resuscitation with pressors after traumatic brain injury. J Am Coll Surg 201:536–545PubMedCrossRefGoogle Scholar
  31. 31.
    Ract C, Vigue B, Bodjarian N, Mazoit JX, Samii K, Tadie M (2001) Comparison of dopamine and norepinephrine after traumatic brain injury and hypoxic-hypotensive insult. J Neurotrauma 18:1247–1254PubMedCrossRefGoogle Scholar
  32. 32.
    Ract C, Vigue B (2001) Comparison of the cerebral effects of dopamine and norepinephrine in severely head-injured patients. Intensive Care Med 27:101–106PubMedCrossRefGoogle Scholar
  33. 33.
    Johnston AJ, Steiner LA, Chatfield DA, et al (2004) Effect of cerebral perfusion pressure augmentation with dopamine and norepinephrine on global and focal brain oxygenation after traumatic brain injury. Intensive Care Med 30:791–797PubMedCrossRefGoogle Scholar
  34. 34.
    Steiner LA, Johnston AJ, Czosnyka M, et al (2004) Direct comparison of cerebrovascular effects of norepinephrine and dopamine in head-injured patients. Crit Care Med 32:1049–1054PubMedCrossRefGoogle Scholar
  35. 35.
    Boyadjiev I, Gamier F, Antonini F, Leone M, Albanèse J, Martin C (2005) Comparaison des effets de la dopamine ou de la noradrénaline sur les circulations régionales chez les traumatisés crâniens]. Ann Fr Anesth Réanim 24:R375 (abst)Google Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • M. Leone
    • 1
  • P. Visintini
    • 1
  • C. Martin
    • 1
  1. 1.Department of Anesthesiology and Intensive CareCentre Hospitalier et Universitaire NordMarseilleFrance

Personalised recommendations