Critical Illness and the Hepatic Microcirculation: A Review

  • B. van der Hoven
  • D. Gommers
  • J. Bakker


One of the most important goals of therapy in critically ill patients is restoring and maintaining adequate perfusion and oxygenation of vital organs in the recovery from a variety of disruptive processes, such as circulatory failure in myocardial infarction, sepsis, and trauma. The gastrointestinal tract is generally regarded as significant in the development of shock and multiple organ failure (MOF) as a consequence of loss of its barrier function against luminal bacteria and bacterial products, such as endotoxin in hypoxic conditions. Insufficient blood flow to the splanchnic organs is believed to be the essential mechanism [1]. Translocation of bacteria and endotoxin to the lymphatic and portal system is a first step towards distant organ damage. The gut and liver macrophages (Kupffer cells) are important as a first barrier against spread of translocated bacteria and endotoxins to the bloodstream.


Hemorrhagic Shock ADMA Level Portal Blood Flow Portal Venule Microcirculatory Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ceppa EP, Fuh KC, Bulkley GB (2003). Mesenteric hemodynamic response to circulatory shock. Curr Opin Crit Care 9:127–132PubMedCrossRefGoogle Scholar
  2. 2.
    Vallet B (1998) Vascular reactivity and tissue oxygenation. Intensive Care Med 24:3–11PubMedCrossRefGoogle Scholar
  3. 3.
    Hiltebrand LB, Krejci V, Banic A, Erni D, Wheatley AM, Sigurdsson GH (2000) Dynamic study of the distribution of microcirculatory blood flow in multiple splanchnic organs in septic shock. CritCare Med 28:3233–3241CrossRefGoogle Scholar
  4. 4.
    Verdant C, De Backer D (2005) How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care 11:240–244PubMedCrossRefGoogle Scholar
  5. 5.
    Oda M, Yokomori H, Han JY (2003) Regulatory mechanisms of hepatic microcirculation. Clin Hemorheol Microcirc 29:167–182PubMedGoogle Scholar
  6. 6.
    Wunder C, Roewer N, Eichelbronner O (2004) Main determinants of liver microcirculation during systemic inflammation. Anaesthesist 53:1073–1085PubMedCrossRefGoogle Scholar
  7. 7.
    Rappaport AM (1980) Hepatic blood flow: morphologic aspects and physiologic regulation. Int Rev Physiol 21:1–63PubMedGoogle Scholar
  8. 8.
    Portmann BC (2000) Anatomy of the normal liver. In: O’Grady JG, Lake JR, Howdle PD (eds) Comprehensive Clinical Hepatology. London, Mosby, pp 1–14Google Scholar
  9. 9.
    Oda M, Yokomori H, Han JY (2006) Regulatory mechanisms of hepatic microcirculatory hemodynamics: hepatic arterial system. Clin Hemorheol Microcirc 34:11–26PubMedGoogle Scholar
  10. 10.
    Bauer A, Bruegger D, Christ F (2005) Microcirculatory monitoring of sepsis. Anaesthesist 54:1163–1175PubMedCrossRefGoogle Scholar
  11. 11.
    Colle I, Van Vlierberghe H, Troisi R, De Hemptinne B (2004) Transplanted liver: consequences of denervation for liver functions. Anat Rec A Discov Mol Cell Evol Biol 280:924–931PubMedCrossRefGoogle Scholar
  12. 12.
    Alexander B, Cottam H, Naftalin R (2001) Hepatic arterial perfusion regulates portal venous flow between hepatic sinusoids and intrahepatic shunts in the normal rat liver in vitro. Pflugers Arch 443:257–264PubMedCrossRefGoogle Scholar
  13. 13.
    Alexander B, Rogers C, Naftalin R (2002) Hepatic arterial perfusion decreases intrahepatic shunting and maintains glucose uptake in the rat liver. Pflugers Arch 444:291–298PubMedCrossRefGoogle Scholar
  14. 14.
    Yokoyama Y, Wawrzyniak A, Sarmadi AM, et al (2006) Hepatic arterial flow becomes the primary supply of sinusoids following partial portal vein ligation in rats. J Gastroenterol Hepatol 21:1567–1574PubMedCrossRefGoogle Scholar
  15. 15.
    Jakab F, Sugar I, Rath Z, Nagy P, Faller J (1996) The relationship between portal venous and hepatic arterial blood flow. I. Experimental liver transplantation. HPB Surg 10:21–26PubMedCrossRefGoogle Scholar
  16. 16.
    Oda M, Han JY, Nakamura M (2000) Endothelial cell dysfunction in microvasculature: relevance to disease processes. Clin Hemorheol Microcirc 23:199–211PubMedGoogle Scholar
  17. 17.
    Reynaert H, Thompson MG, Thomas T, Geerts A (2002) Hepatic stellate cells: role in micro-circulation and pathophysiology of portal hypertension. Gut 50:571–581PubMedCrossRefGoogle Scholar
  18. 18.
    Chen T, Zamora R, Zuckerbraun B, Billiar TR (2003) Role of nitric oxide in liver injury. Curr Mol Med 3:519–526PubMedCrossRefGoogle Scholar
  19. 19.
    Li X, Benjamin IS, Alexander B (2003) The role of nitric oxide in systemic and hepatic haemodynamics in the rat in vivo. Naunyn Schmiedebergs Arch Pharmacol 368:142–149PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor BS, Alarcon LH, Billiar TR (1998) Inducible nitric oxide synthase in the liver: regulation and function. Biochemistry (Mosc) 63:766–781Google Scholar
  21. 21.
    Lhuillier F, Robert MO, Crova P, et al (2006) Nitric oxide and liver microcirculation during autoregulation and haemorrhagic shock in rabbit model. Br J Anaesth 97:137–146PubMedCrossRefGoogle Scholar
  22. 22.
    Nijveldt RJ, Siroen MP, Teerlink T, van Lambalgen AA, Rauwerda JA, van Leeuwen PA (2004) Gut and liver handling of asymmetric and symmetric dimethylarginine in the rat under basal conditions and during endotoxemia. Liver Int 24:510–518PubMedCrossRefGoogle Scholar
  23. 23.
    Nijveldt RJ, Siroen MP, Teerlink T, van Leeuwen PA (2004) Elimination of asymmetric dimethylarginine by the kidney and the liver: a link to the development of multiple organ failure? J Nutr 134(Suppl 10):2848S–2852SPubMedGoogle Scholar
  24. 24.
    Nijveldt RJ, Teerlink T, Van Der Hoven B, at al (2003) Asymmetrical dimethylarginine (ADMA) in critically ill patients: high plasma ADMA concentration is an independent risk factor of ICU mortality. Clin Nutr 22:23–30PubMedCrossRefGoogle Scholar
  25. 25.
    Nijveldt RJ, Siroen MP, van der Hoven B, et al (2004) High plasma arginine concentrations in critically ill patients suffering from hepatic failure. Eur J Clin Nutr 58:587–593PubMedCrossRefGoogle Scholar
  26. 26.
    Dallinger S, Sieder A, Strametz J, Bayerle-Eder M, Wolzt M, Schmetterer L (2003) Vasodilator effects of L-arginine are stereospecific and augmented by insulin in humans. Am J Physiol Endocrinol Metab 284:E1106–1111PubMedGoogle Scholar
  27. 27.
    Siroen MP, van Leeuwen PA, Nijveldt RJ, Teerlink T, Wouters PJ, Van den Berghe G (2005) Modulation of asymmetric dimethylarginine in critically ill patients receiving intensive insulin treatment: a possible explanation of reduced morbidity and mortality? Crit Care Med 33:504–510PubMedCrossRefGoogle Scholar
  28. 28.
    Fondevila C, Busuttil RW, Kupiec-Weglinski JW (2003) Hepatic ischemia/reperfusion injury — a fresh look. Exp Mol Pathol 74:86–93PubMedCrossRefGoogle Scholar
  29. 29.
    Kupiec-Weglinski JW, Busuttil RW (2005) Ischemia and reperfusion injury in liver transplantation. Transplant Proc 37:1653–1656PubMedCrossRefGoogle Scholar
  30. 30.
    Brems JJ (2006) Ischemia-reperfusion: putting the pieces of the puzzle together. Crit Care Med 34:1570–1571PubMedCrossRefGoogle Scholar
  31. 31.
    Khandoga A, Biberthaler P, Enders G, Krombach F (2004) 5-Aminoisoquinolinone, a novel inhibitor of poly(adenosine disphosphate-ribose) polymerase, reduces microvascular liver injury but not mortality rate after hepatic ischemia-reperfusion. Crit Care Med 32:472–477PubMedCrossRefGoogle Scholar
  32. 32.
    Roesner JP, Vagts DA, Iber T, Eipel C, Vollmar B, Noldge-Schomburg GF (2006) Protective effects of PARP inhibition on liver microcirculation and function after haemorrhagic shock and resuscitation in male rats. Intensive Care Med 32:1649–1657PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • B. van der Hoven
    • 1
  • D. Gommers
    • 1
  • J. Bakker
    • 1
  1. 1.Department of Intensive CareErasmus University Medical CenterRotterdamNetherlands

Personalised recommendations