Fluid Management in Sepsis: Colloids or Crystalloids?

  • G. Marx
  • T. Schuerholz
  • K. Reinhart


Sepsis and septic shock are associated with both a relative and an absolute intravas-cular volume deficit [1]. The absolute volume deficit occurs with fever, and includes perspiration and increased insensible loss, vomiting, diarrhea, and volume loss by drains or sequestration. The relative volume deficit is due to vasodilatation, venous pooling, and alterations in the endothelial barrier. The functional disturbances induced by sepsis are reflected by increased blood lactate concentrations, oliguria, coagulation abnormalities, and altered mental state.


Septic Shock Severe Sepsis Fluid Resuscitation Fluid Management Hydroxyethyl Starch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Imm A, Carlson RW (1993) Fluid resuscitation in circulatory shock. Crit Care Clin 9:313–333PubMedGoogle Scholar
  2. 2.
    Groeneveld AB, Bronsveld W, Thijs LG (1986) Hemodynamic determinants of mortality in human septic shock. Surgery 99:140–153PubMedGoogle Scholar
  3. 3.
    Thijs L (1995) Fluid therapy in septic shock. In: Sibbald W, Vincent J, eds. Clinical Trials for the Treatment of Sepsis, vol 19. Springer, Heidelberg, pp 167–190.Google Scholar
  4. 4.
    Boldt J (2000) Volume therapy in the intensive care patient—we are still confused, but... Intensive Care Med 26:1181–1192CrossRefPubMedGoogle Scholar
  5. 5.
    Haljamae H (1993) Volume substitution in shock. Acta Anaesthesiol Scand Suppl 98:25–28PubMedGoogle Scholar
  6. 6.
    Marx G (2003) Fluid therapy in sepsis with capillary leakage. Eur J Anaesthesiol 20:429–442CrossRefPubMedGoogle Scholar
  7. 7.
    Carlson RW, Rattan S, Haupt M (1990) Fluid resuscitation in conditions of increased permeability. Anesth Rev 17(Suppl 3):14Google Scholar
  8. 8.
    Hasibeder WR (2002) Fluid resuscitation during capillary leakage: does the type of fluid make a difference. Intensive Care Med 28:532–534CrossRefPubMedGoogle Scholar
  9. 9.
    Bisonni RS, Holtgrave DR, Lawler F, Marley DS (1991) Colloids versus crystalloids in fluid resuscitation: an analysis of randomized controlled trials. J Fam Pract 32:387–390PubMedGoogle Scholar
  10. 10.
    Schierhout G, Roberts I (1998) Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ 316:961–964PubMedGoogle Scholar
  11. 11.
    Choi PT, Yip G, Quinonez LG, Cook DJ (1999) Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 27:200–210CrossRefPubMedGoogle Scholar
  12. 12.
    Velanovich V (1989) Crystalloid versus colloid fluid resuscitation: a meta-analysis of mortality. Surgery 105:65–71PubMedGoogle Scholar
  13. 13.
    Cook D, Guyatt G (2001) Colloid use for fluid resuscitation: evidence and spin. Ann Intern Med 135:205–208PubMedGoogle Scholar
  14. 14.
    Vincent JL (2000) Issues in contemporary fluid management. Crit Care 4:Sl–2Google Scholar
  15. 15.
    van Lambalgen AA, van den Bos GC, Thijs LG (1990) Whole body plasma extravasation in saline and Haemaccel loaded rats: effects of endotoxemia. Int J Microcirc Clin Exp 9:303–318PubMedGoogle Scholar
  16. 16.
    Morisaki H, Bloos F, Keys J, Martin C, Neal A, Sibbald WJ (1994) Compared with crystalloid, colloid therapy slows progression of extrapulmonary tissue injury in septic sheep. J Appl Physiol 77:1507–1518PubMedGoogle Scholar
  17. 17.
    Vincent JL (1991) Plugging the leaks? New insights into synthetic colloids. Crit Care Med 19:316–318CrossRefPubMedGoogle Scholar
  18. 18.
    Oz MC, Zikria BA, McLeod PF, Popilkis SJ (1991) Hydroxyethyl starch macromolecule and superoxide dismutase effects on myocardial reperfusion injury. Am J Surg 162:59–62CrossRefPubMedGoogle Scholar
  19. 19.
    Zikria BA, Subbarao C, Oz MC, et al. (1990) Hydroxyethyl starch macromolecules reduce myocardial reperfusion injury. Arch Surg 125:930–934PubMedGoogle Scholar
  20. 20.
    Oz MC, FitzPatrick MF, Zikria BA, Pinsky DJ, Duran WN (1995) Attenuation of microvascular permeability dysfunction in postischemic striated muscle by hydroxyethyl starch. Microvasc Res 50:71–79CrossRefPubMedGoogle Scholar
  21. 21.
    Zikria BA, Subbarao C, Oz MC, et al (1989) Macromolecules reduce abnormal microvascular permeability in rat limb ischemia-reperfusion injury. Crit Care Med 17:1306–1309PubMedGoogle Scholar
  22. 22.
    Hakaim AG, Corsetti R, Cho SI (1994) The pentafraction of hydroxyethyl starch inhibits ischemia-induced compartment syndrome. J Trauma 37:18–21PubMedCrossRefGoogle Scholar
  23. 23.
    Webb AR, Tighe D, Moss RF, al-Saady N, Hynd JW, Bennett ED (1991) Advantages of a narrow-range, medium molecular weight hydroxyethyl starch for volume maintenance in a porcine model of fecal peritonitis. Crit Care Med 19:409–416CrossRefPubMedGoogle Scholar
  24. 24.
    Webb AR, Moss RF, Tighe D, et al (1992) A narrow range, medium molecular weight penta-starch reduces structural organ damage in a hyperdynamic porcine model of sepsis. Intensive Care Med 18:348–355CrossRefPubMedGoogle Scholar
  25. 25.
    Marx G, Cobas Meyer M, Schuerholz T, et al (2002) Hydroxyethyl starch and modified fluid gelatin maintain plasma volume in a porcine model of septic shock with capillary leakage. Intensive Care Med 28:629–635CrossRefPubMedGoogle Scholar
  26. 26.
    Linderkamp O, Holthausen H, Seifert J, Butenandt I, Riegel KP (1977) Accuracy of blood volume estimations in critically ill children using 125I-labelled albumin and 51Cr-labelled red ceils. Eur J Pediatr 125:143–151CrossRefPubMedGoogle Scholar
  27. 27.
    Swan H, Nelson AW (1971) Blood volume measurement: concepts and technology. J Cardiovasc Surg (Torino) 12:389–401Google Scholar
  28. 28.
    Schuerholz T, Sumpelmann R, Piepenbrock S, Leuwer M, Marx G (2004) Ringer’s solution but not hydroxyethyl starch or modified fluid gelatin enhances platelet microvesicle formation in a porcine model of septic shock. Br J Anaesth 92:716–721CrossRefPubMedGoogle Scholar
  29. 29.
    Marx G, Pedder S, Smith L, et al (2004) Resuscitation from septic shock with capillary leakage: hydroxyethyl starch (130 kd), but not Ringer’s solution maintains plasma volume and systemic oxygenation. Shock 21:336–341CrossRefPubMedGoogle Scholar
  30. 30.
    Groeneveld AB (2000) Albumin and artificial colloids in fluid management: where does the clinical evidence of their utility stand? Crit Care 4:S16–20CrossRefPubMedGoogle Scholar
  31. 31.
    Tawadrous ZS, Delude RL, Fink MP (2002) Resuscitation from hemorrhagic shock with Ringer’s ethyl pyruvate solution improves survival and ameliorates intestinal mucosal hyper-permeability in rats. Shock 17:473–477CrossRefPubMedGoogle Scholar
  32. 32.
    Venkataraman R, Kellum JA, Song M, Fink MP (2002) Resuscitation with Ringer’s ethyl pyruvate solution prolongs survival and modulates plasma cytokine and nitrite/nitrate concentrations in a rat model of lipopolysaccharide-induced shock. Shock 18:507–512CrossRefPubMedGoogle Scholar
  33. 33.
    Marx G, Pedder S, Smith L, et al (2006) Attenuation of capillary leakage by hydroxyethyl starch (130/0.42) in a porcine model of septic shock. Crit Care Med 34:3005–3010PubMedGoogle Scholar
  34. 34.
    Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Schildberg FW, Menger MD (2002) Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology 97:460–470CrossRefPubMedGoogle Scholar
  35. 35.
    Collis RE, Collins PW, Gutteridge CN, et al (1994) The effect of hydroxyethyl starch and other plasma volume substitutes on endothelial cell activation; an in vitro study. Intensive Care Med 20:37–41CrossRefPubMedGoogle Scholar
  36. 36.
    Lv R, Zhou W, Zhang LD, Xu JG (2005) Effects of hydroxyethyl starch on hepatic production of cytokines and activation of transcription factors in lipopolysaccharide-administered rats. Acta Anaesthesiol Scand 49:635–642CrossRefPubMedGoogle Scholar
  37. 37.
    Holbeck S, Bentzer P, Wikstrand C, Grande PO (2001) Dextran, gelatin, and hydroxyethyl starch do not affect permeability for albumin in cat skeletal muscle. Crit Care Med 29: 123–128CrossRefPubMedGoogle Scholar
  38. 38.
    van Buul JD, Voermans C, van den Berg V, et al (2002) Migration of human hematopoietic progenitor cells across bone marrow endothelium is regulated by vascular endothelial cadherin. J Immunol 168:588–596PubMedGoogle Scholar
  39. 39.
    Winlove C, Parker K (1993) Vascular biophysics: mechanics and permeability. Eur Respir Rev 3:535–542Google Scholar
  40. 40.
    Gotloib L, Shustak A, Jaichenko J, Galdi P (1988) Decreased density distribution of mesen-teric and diaphragmatic microvascular anionic charges during murine abdominal sepsis. Resuscitation 16:179–192CrossRefPubMedGoogle Scholar
  41. 41.
    Shostak A, Gotloib L (1998) Increased mesenteric, diaphragmatic, and pancreatic interstitial albumin content in rats with acute abdominal sepsis. Shock 9:135–137CrossRefPubMedGoogle Scholar
  42. 42.
    Lehmann G, Boll M, Hilgers R, Förster H, Burmeister MA (2005) HES 130 shows less alteration of pharmakokinetics than HES 200 when dosed repeatedly. Acta Anaesthesiol Scand 49:3–4Google Scholar
  43. 43.
    Dieterich HJ (2003) Recent developments in European colloid solutions. J Trauma 54:S26–30PubMedGoogle Scholar
  44. 44.
    Gallandat Huet RC, Siemons AW, Baus D, et al (2000) A novel hydroxyethyl starch (Voluven) for effective perioperative plasma volume substitution in cardiac surgery. Can J Anaesth 47:1207–1215PubMedGoogle Scholar
  45. 45.
    Jungheinrich C, Sauermann W, Bepperling F, Vogt NH (2004) Volume efficacy and reduced influence on measures of coagulation using hydroxyethyl starch 130/0.4 (6%) with an optimised in vivo molecular weight in orthopaedic surgery: a randomised, double-blind study. Drugs R D 5:1–9CrossRefPubMedGoogle Scholar
  46. 46.
    Jungheinrich C, Neff TA (2005) Pharmacokinetics of hydroxyethyl starch. Clin Pharmacokinet 44:681–699CrossRefPubMedGoogle Scholar
  47. 47.
    Schmidt W, Schmidt H, Bauer H, Gebhard MM, Martin E (1997) Influence of lidocaine on endotoxin-induced leukocyte-endothelial cell adhesion and macromolecular leakage in vivo. Anesthesiology 87:617–624CrossRefPubMedGoogle Scholar
  48. 48.
    Lang JD Jr, Figueroa M, Chumley P, et al (2004) Albumin and hydroxyethyl starch modulate oxidative inflammatory injury to vascular endothelium. Anesthesiology 100:51–58CrossRefPubMedGoogle Scholar
  49. 49.
    Han X, Fink MP, Yang R, Delude RL (2004) Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21:261–270CrossRefPubMedGoogle Scholar
  50. 50.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256CrossRefPubMedGoogle Scholar
  51. 51.
    Alderson P, Bunn F, Lefebvre C, et al. (2004) Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev:CD001208Google Scholar
  52. 52.
    Vincent JL, Navickis RJ, Wilkes MM (2004) Morbidity in hospitalized patients receiving human albumin: a meta-analysis of randomized, controlled trials. Crit Care Med 32:2029–2038CrossRefPubMedGoogle Scholar
  53. 53.
    Sort P, Navasa M, Arroyo V, et al (1999) Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 341:403–409CrossRefPubMedGoogle Scholar
  54. 54.
    Patch D, Burroughs A (1999) Intravenous albumin in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 341:1773–1774CrossRefPubMedGoogle Scholar
  55. 55.
    Rackow EC, Mecher C, Astiz ME, Griffel M, Falk JL, Weil MH (1989) Effects of pentastarch and albumin infusion on cardiorespiratory function and coagulation in patients with severe sepsis and systemic hypoperfusion. Crit Care Med 17:394–398PubMedCrossRefGoogle Scholar
  56. 56.
    Hankeln K, Radel C, Beez M, Laniewski P, Bohmert F (1989) Comparison of hydroxyethyl starch and lactated Ringer’s solution on hemodynamics and oxygen transport of critically ill patients in prospective crossover studies. Crit Care Med 17:133–135CrossRefPubMedGoogle Scholar
  57. 57.
    Boldt J, Heesen M, Muller M, Pabsdorf M, Hempelmann G (1996) The effects of albumin versus hydroxyethyl starch solution on cardiorespiratory and circulatory variables in critically ill patients. Anesth Analg 83:254–261CrossRefPubMedGoogle Scholar
  58. 58.
    Boldt J, Muller M, Heesen M, Heyn O, Hempelmann G (1996) Influence of different volume therapies on platelet function in the critically ill. Intensive Care Med 22:1075–1081CrossRefPubMedGoogle Scholar
  59. 59.
    Schortgen F, Lacherade JC, Bruneel F, et al (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357:911–916CrossRefPubMedGoogle Scholar
  60. 60.
    Reinhart K, Bloos F, Engel C, et al (2006) Hydroxyethyl starch and Ringer’s lactate for fluid resuscitation in patients with severe sepsis — results from the VISEP study. Intensive Care Med 32:S213 (abst)Google Scholar
  61. 61.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377CrossRefPubMedGoogle Scholar
  62. 62.
    Auwerda JJ, Leebeek FW, Wilson JH, van Diggelen OP, Lam KH, Sonneveld P (2006) Acquired lysosomal storage caused by frequent plasmapheresis procedures with hydroxyethyl starch. Transfusion 46:1705–1711CrossRefPubMedGoogle Scholar
  63. 63.
    Treib J, Haass A, Pindur G, et al (1997) Increased haemorrhagic risk after repeated infusion of highly substituted medium molecular weight hydroxyethyl starch. Arzneimittelforschung 47:18–22PubMedGoogle Scholar
  64. 64.
    Sirtl C, Laubenthal H, Zumtobel V, Kraft D, Jurecka W (1999) Tissue deposits of hydroxyethyl starch (HES): dose-dependent and time-related. Br J Anaesth 82:510–515PubMedGoogle Scholar
  65. 65.
    Auwerda JJ, Wilson JH, Sonneveld P (2002) Foamy macrophage syndrome due to hydroxyethyl starch replacement: a severe side effect in plasmapheresis. Ann Intern Med 137:1013–1014PubMedGoogle Scholar
  66. 66.
    Schmidt-Hieber M, Loddenkemper C, Schwartz S, Arntz G, Thiel E, Notter M (2006) Hydrops lysosomalis generalisatus—an underestimated side effect of hydroxyethyl starch therapy? Eur J Haematol 77:83–85CrossRefPubMedGoogle Scholar
  67. 67.
    Third European Consensus Conference in Intensive Care Medicine (1996) Tissue hypoxia: How to detect, how to correct, how to prevent. Societe de Reanimation de Langue Francaise. The American Thoracic Society. European Society of Intensive Care Medicine. Am J Respir Crit Care Med 154:1573–1578Google Scholar
  68. 68.
    American Thoracic Society Consensus Statement (2004) Evidence-based colloid use in the critically ill. Am J Respir Crit Care Med 170:1247–1259CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • G. Marx
    • 1
  • T. Schuerholz
    • 1
  • K. Reinhart
    • 2
  1. 1.Department of Anesthesia and Intensive Care MedicineFriedrich Schiller UniversityJenaGermany
  2. 2.Department of Anesthesiology and Intensive CareFriedrich-Schiller UniversityJenaGermany

Personalised recommendations