Extravascular Lung Water Measurement

  • B. Maddison
  • T. Best
  • R. M. Pearse
Conference paper


Extravascular lung water (EVLW) is the term used to describe water within the lungs but outside the pulmonary vasculature. Excessive EVLW volume is a common and serious feature of critical illness. However, clinical assessment of the extent of pulmonary capillary leakage is difficult and inconsistent [1, 2]. Traditional methods of reducing EVLW volume include the use of loop diuretics and vasodilator drugs. The choice of these interventions is very much at the discretion of the clinician; pharmacological therapy is titrated to achieve a subjective clinical improvement rather than a quantitative EVLW volume target. The critically ill patient may also require fluid resuscitation to correct hypovolemia and to maintain oxygen delivery to the major organs. However, in the presence of increased pulmonary capillary permeability or impaired myocardial function, the administration of large volumes of intravenous fluid is associated with a significant risk of pulmonary edema. Effective fluid resuscitation, therefore, involves a fine balance between the harmful effects of inadequate tissue oxygen delivery on the one hand and excessive EVLW volume on the other.


Acute Lung Injury Mean Transit Time Extravascular Lung Water Indicator Dilution Intrathoracic Blood Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baudendistel L, Shields JB, Kaminski DL (1982) Comparison of double indicator thermodilution measurements of extravascular lung water (EVLW) with radiographic estimation of lung water in trauma patients. J Trauma 22:983–988PubMedGoogle Scholar
  2. 2.
    Halperin BD, Feeley TW, Mihm FG, Chiles C, Guthaner DF, Blank NE (1985) Evaluation of the portable chest roentgenogram for quantitating extravascular lung water in critically ill adults. Chest 88:649–652PubMedGoogle Scholar
  3. 3.
    Sakka SG, Reinhart K, Meier-Hellmann A (2002) Prognostic value of the indocyanine green plasma disappearance rate in critically ill patients. Chest 122:1715–1720PubMedCrossRefGoogle Scholar
  4. 4.
    Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP (1987) A prospective study of lung water measurements during patient management in an intensive care unit. Am Rev Respir Dis 136:662–668PubMedGoogle Scholar
  5. 5.
    Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998PubMedGoogle Scholar
  6. 6.
    Hemingway A (1950) A method of chemical analysis of guinea pig lung for the factors involved in pulmonary edema. J Lab Clin 35:817–822Google Scholar
  7. 7.
    Pearce ML, Yamashita J, Beazell J (1965) Measurement of pulmonary edema. Circ Res 16:482–488PubMedGoogle Scholar
  8. 8.
    Rossi P, Wanecek M, Rudehill A, Konrad D, Weitzberg E, Oldner A (2006) Comparison of a single indicator and gravimetric technique for estimation of extravascular lung water in endotoxemic pigs. Crit Care Med 34:1437–1443PubMedCrossRefGoogle Scholar
  9. 9.
    Hamilton WF, Moore TW, Kinsman JM, Spurling RG (1928) Simultaneous determination of the greater and lesser circulation times, of the mean velocity of blood flow through the heart and lungs of the cardiac output and the approximation of the amount of blood actively circulating in the heart and lungs. Am J Physiol 85:377–378Google Scholar
  10. 10.
    Stewart GN (1921) The pulmonary circulation time, the quantity of blood in the lungs and the output of the heart. Am J Physiol 58:20–44Google Scholar
  11. 11.
    Yu P (1974) Measurement of pulmonary blood volume and pulmonary extravascular water volume. In: Bloomfield D (ed) Dye Curves: The Theory and Practice of Indicator Dilution. HM+M Medical & Scientific, Aylesbury, pp 165–186Google Scholar
  12. 12.
    Chinard FP, Enns T (1954) Transcapillary pulmonary exchange of water in the dog. Am J Physiol 178:197–202PubMedGoogle Scholar
  13. 13.
    Newman EV, Merrell M, Genecin A, Monge C, Milnor WR, McKeever WP (1951) The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation 4:735–746PubMedGoogle Scholar
  14. 14.
    Mihm FG, Feeley TW, Rosenthal MH, Lewis F (1982) Measurement of extravascular lung water in dogs using the thermal-green dye indicator dilution method. Anesthesiology 57: 116–122PubMedCrossRefGoogle Scholar
  15. 15.
    Slutsky RA, Higgins CB (1985) In vivo validation of the thermal-green dye technique for measuring extravascular lung water. Crit Care Med 13:432–435PubMedCrossRefGoogle Scholar
  16. 16.
    Roch A, Michelet P, Lambert D, et al (2004) Accuracy of the double indicator method for measurement of extravascular lung water depends on the type of acute lung injury. Crit Care Med 32:811–817PubMedCrossRefGoogle Scholar
  17. 17.
    Mihm FG, Feeley TW, Jamieson SW (1987) Thermal dye double indicator dilution measurement of lung water in man: comparison with gravimetric measurements. Thorax 42:72–76PubMedGoogle Scholar
  18. 18.
    Leksell LG, Schreiner MS, Sylvestro A, Neufeld GR (1990) Commercial double-indicator-dilution densitometer using heavy water: evaluation in oleic-acid pulmonary edema. J Clin Monit 6:99–106PubMedGoogle Scholar
  19. 19.
    Rossi P, Oldner A, Wanecek M, et al (2003) Comparison of gravimetric and a double-indicator dilution technique for assessment of extra-vascular lung water in endotoxaemia. Intensive Care Med 29:460–466PubMedCrossRefGoogle Scholar
  20. 20.
    Elings VB, Lewis FR (1982) A single indicator technique to estimate extravascular lung water. J Surg Res 33:375–385PubMedCrossRefGoogle Scholar
  21. 21.
    Sakka SG, Ruhl CC, Pfeiffer UJ, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187PubMedCrossRefGoogle Scholar
  22. 22.
    Nirmalan M, Willard TM, Edwards DJ, Little RA, Dark PM (2005) Estimation of errors in determining intrathoracic blood volume using the single transpulmonary thermal dilution technique in hypovolemic shock. Anesthesiology 103:805–812PubMedCrossRefGoogle Scholar
  23. 23.
    Nirmalan M, Niranjan M, Willard T, Edwards JD, Little RA, Dark PM (2004) Estimation of errors in determining intrathoracic blood volume using thermal dilution in pigs with acute lung injury and haemorrhage. Br J Anaesth 93:546–551PubMedCrossRefGoogle Scholar
  24. 24.
    Katzenelson R, Perel A, Berkenstadt H, et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32: 1550–1554PubMedCrossRefGoogle Scholar
  25. 25.
    Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ (2004) Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care 8:R451–458PubMedCrossRefGoogle Scholar
  26. 26.
    Schuster DP, Calandrino FS (1991) Single versus double indicator dilution measurements of extravascular lung water. Crit Care Med 19:84–88PubMedCrossRefGoogle Scholar
  27. 27.
    Michard F, Schachtrupp A, Toens C (2005) Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients. Crit Care Med 33:1243–1247PubMedCrossRefGoogle Scholar
  28. 28.
    Martin GS, Eaton S, Mealer M, Moss M (2005) Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 9:R74–82PubMedCrossRefGoogle Scholar
  29. 29.
    Kuzkov VV, Kirov MY, Sovershaev MA, et al (2006) Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med 34:1647–1653PubMedCrossRefGoogle Scholar
  30. 30.
    Patroniti N, Bellani G, Maggioni E, Manfio A, Marcora B, Pesenti A (2005) Measurement of pulmonary edema in patients with acute respiratory distress syndrome. Crit Care Med 33: 2547–2554PubMedCrossRefGoogle Scholar
  31. 31.
    Kauczor HU, Kreitner KF (1999) MRI of the pulmonary parenchyma. Eur Radiol 9:1755–1764PubMedCrossRefGoogle Scholar
  32. 32.
    Carroll FE Jr, Loyd JE, Nolop KB, Collins JC (1985) MR imaging parameters in the study of lung water. A preliminary study. Invest Radiol 20:381–387PubMedCrossRefGoogle Scholar
  33. 33.
    Mayo JR, MacKay AL, Whittall KP, Baile EM, Pare PD (1995) Measurement of lung water content and pleural pressure gradient with magnetic resonance imaging. J Thorac Imaging 10: 73–81PubMedCrossRefGoogle Scholar
  34. 34.
    Battin M, Maalouf EF, Counsell S, Herilhy AH, Edwards AD (1997) Magnetic resonance imaging of the brain of premature infants. Lancet 349:1741PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt HC, Tsay DG, Higgins CB (1986) Pulmonary edema: an MR study of permeability and hydrostatic types in animals. Radiology 158:297–302PubMedGoogle Scholar
  36. 36.
    Bock JC, Pison U, Wlodarczyk W, et al (1997) [Magnetic resonance imaging of the degree of pulmonary edema using a macromolecular contrast medium]. Rofo 167:509–515PubMedGoogle Scholar
  37. 37.
    Lancaster L, Bogdan AR, Kundel HL, McAffee B (1991) Sodium MRI with coated magnetite: measurement of extravascular lung water in rats. Magn Reson Med 19:96–104PubMedCrossRefGoogle Scholar
  38. 38.
    Targhetta R, Chavagneux R, Bourgeois JM, Dauzat M, Balmes P, Pourcelot L (1992) Sonogra-phic approach to diagnosing pulmonary consolidation. J Ultrasound Med 11:667–672PubMedGoogle Scholar
  39. 39.
    Ziskin MC, Thickman DI, Goldenberg NJ, Lapayowker MS, Becker JM (1982) The comet tail artifact. J Ultrasound Med 1:1–7PubMedGoogle Scholar
  40. 40.
    Lichtenstein D, Meziere G, Biderman P, Gepner A, Barre O (1997) The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med 156:1640–1646PubMedGoogle Scholar
  41. 41.
    Jambrik Z, Monti S, Coppola V, et al (2004) Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol 93:1265–1270PubMedCrossRefGoogle Scholar
  42. 42.
    Lichtenstein D, Meziere G (1998) A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med 24:1331–1334PubMedCrossRefGoogle Scholar
  43. 43.
    Agricola E, Bove T, Oppizzi M, et al (2005) “Ultrasound comet-tail images”: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest 127:1690–1695PubMedCrossRefGoogle Scholar
  44. 44.
    Krivitski NM, Kislukhin VV, Dobson A, Gleed RD, Rawson RE, Robertshaw D (1998) Volume of extravascular lung fluid determined by blood ultrasound velocity and electrical impedance dilution. Asaio J 44:M535–540PubMedCrossRefGoogle Scholar
  45. 45.
    Garland JS, Kianfar C, Nesrallah G, Heidenheim P, Lindsay RM (2002) Measurement of extravascular lung water in hemodialysis patients using blood ultrasound velocity and optical density dilution. Asaio J 48:398–403PubMedCrossRefGoogle Scholar
  46. 46.
    Meyer GJ, Schober O, Bossaller C, Sturm J, Hundeshagen H (1984) Quantification of regional extravascular lung water in dogs with positron emission tomography, using constant infusion of 150-labeled water. Eur J Nucl Med 9:220–228PubMedCrossRefGoogle Scholar
  47. 47.
    Chu RY, Carlile PV Jr, Basmadjian G (1989) Dual-isotope measurement of lung water. Int J Rad Appl Instrum B 16:419–421PubMedGoogle Scholar
  48. 48.
    Shochat M, Charach G, Meyler S, et al. (2006) Prediction of cardiogenic pulmonary edema onset by monitoring right lung impedance. Intensive Care Med 32:1214–1221PubMedCrossRefGoogle Scholar
  49. 49.
    Perkins GD, McAuley DF, Thickett DR, Gao F (2006) The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 173: 281–287PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • B. Maddison
    • 1
  • T. Best
    • 2
  • R. M. Pearse
    • 3
  1. 1.William Harvey Research InstituteQueen Mary’s School of Medicine and DentistryLondonUK
  2. 2.Department of AnesthesiologyKings College Hospital NHS TrustLondonUK
  3. 3.Anesthetic LaboratorySt. Bartholomew’s HospitalLondonUK

Personalised recommendations