Transpulmonary Thermodilution for Advanced Cardiorespiratory Monitoring

  • F. J. Belda
  • G. Aguilar
  • A. Perel


Since the introduction of the pulmonary artery catheter (PAC) into clinical practice in the 1970s, this device has been considered to be the gold standard for cardiac out-put measurement and advanced hemodynamic monitoring. Nevertheless, in the last 10 years, its risk-to-benefit ratio has become a subject of controversy. One recent meta-analysis on the impact of the PAC in critically ill patients [1] has presented conclusive results showing that the PAC does not bring any clinical benefit, although its use does not prolong hospital length of stay or increase the mortality rate, as was previously claimed by Connors et al. [2]. Another recent prospective multicenter study on 1041 critical patients came to the same conclusions as the meta-analysis [3]. Finally, in a randomized trial comparing hemodynamic management guided by a PAC with hemodynamic management guided by a central venous catheter (CVC), using an explicit management protocol in 1000 patients with established acute lung injury (ALI), PAC-guided therapy did not improve survival or organ function, but was associated with more complications than the CVC-guided therapy. The authors concluded that these results, when considered with those of previous studies, suggested that the PAC should not be routinely used for the management of patients with ALI [4]. The negative results of the PAC studies have led to a gradual decrease in the use of this monitoring modality. In fact, a survey in Germany in 2006 showed that, in a population of 3877 critically ill patients, less than 15% of patients with the criteria of severe sepsis or septic shock were monitored with a PAC [5].


Acute Lung Injury Acute Respiratory Distress Syndrome Pulmonary Artery Catheter Stroke Volume Variation Extravascular Lung Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shah MR, Hasselblad V, Stevenson LW, et al (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomised clinical trials. JAMA 94:1664–1670CrossRefGoogle Scholar
  2. 2.
    Connors AF Jr, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in initial care of the critically ill patient. JAMA 276:889–897PubMedCrossRefGoogle Scholar
  3. 3.
    Reade MC, Angus DC (2006) PAC-man: game over for the pulmonary artery catheter. Crit Care 10:303PubMedCrossRefGoogle Scholar
  4. 4.
    Wheeler AP, Bernard GR, Thompson BT, et al (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224PubMedCrossRefGoogle Scholar
  5. 5.
    Jaschinski U, Engel C (2006) Hemodynamic monitoring in severe sepsis and septic shock in German ICUs. Crit Care 10(Suppl 1):P349 (abst)CrossRefGoogle Scholar
  6. 6.
    Friese RS, Shafi S, Gentilello LM (2006) Pulmonary artery catheter use is associated with reduced mortality in severely injured patients: a national trauma data bank analysis of 53.312 patients. Crit Care Med 34:1597–1601PubMedCrossRefGoogle Scholar
  7. 7.
    Takala J (2006) The pulmonary artery catheter: the tool versus treatments based on the tool. Crit Care 10:162 (Epub ahead of print)PubMedCrossRefGoogle Scholar
  8. 8.
    Hofer CK, Zollinger A (2006) Less invasive cardiac output monitoring: characteristics and limitations. In: Vincent JL (ed) 2006 Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 162–175CrossRefGoogle Scholar
  9. 9.
    Bajorat J, Hofmockel R, Vagts A, et al (2006) Comparison of invasive and less-invasive techniques of cardiac output measurement under different hemodynamic conditions in a pig model. Eur J Anaesthesiol 23:23–30PubMedCrossRefGoogle Scholar
  10. 10.
    Faybik P, Hetz H, Baker A, Yankovskaya E, Krenn CG, Steltez H (2004) Iced versus room temperature injectate for assessment of cardiac output, intrathoracic blood volume, and extra-vascular lung water by single transpulmonary thermodilution. J Crit Care 19:103–107PubMedCrossRefGoogle Scholar
  11. 11.
    Orme RM, Pigott DW, Mihm FG (2004) Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution. Anaesthesia 59:590–594.PubMedCrossRefGoogle Scholar
  12. 12.
    Isakow W, Schuster DP (2006) Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bed-side alternatives to the pulmonary catheter. Am J Physiol Lung Cell Mol Physiol 291:L1118–1131PubMedCrossRefGoogle Scholar
  13. 13.
    Scheeren JM, Bajorat J, Westphal B, et al (2006) The impact of intra-aortic balloon pumping on cardiac output determination by pulmonary arterial and transpulmonary thermodilution in pigs. J Cardiothorac Vasc Anesth 20:320–324PubMedCrossRefGoogle Scholar
  14. 14.
    Sakka SG, Hanusch T, Thuemer O, Wegscheider K (2006) Influence of running veno-venous renal replacement therapy on transpulmonary thermodilution. Eur J Anaesthesiol 23(Suppl 37): A766 (abst)Google Scholar
  15. 15.
    Nirmalan M, Willard TM, Edwards DJ, Little RA, Dark PM (2005) Estimation of errors in determining intrathoracic blood volume using the single transpulmonary thermal dilution technique in hypovolemic shock. Anesthesiology 103:805–812PubMedCrossRefGoogle Scholar
  16. 16.
    Teboul JL, Pinsky MR, Mercat A, et al (2000) Estimating cardiac filing pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636PubMedCrossRefGoogle Scholar
  17. 17.
    Wiesenack C, Prasser C, Keyl C, Rodig G (2001) Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth 15:584–588PubMedCrossRefGoogle Scholar
  18. 18.
    López-Herce J, Rupérez M, Sanchez C, García C, García E (2006) Haemodynamic response to acute hypovolaemia, rapid blood volume expansion aníd adrenaline administration in an infant animal model. Resuscitation 68:259–265PubMedCrossRefGoogle Scholar
  19. 19.
    Junghans T, Neuss H, Strohauer M, et al (2005) Hypovolemia alter traditional preoperative care in patients undergoing colonic surgery is underrepresented in conventional hemodynamic Monitoring. Int J Colorectal Dis 5:1–5Google Scholar
  20. 20.
    Sakka SG, Meier-Hellmann A (2003) Intrathoracic blood volume in a patient with pulmonary embolism. Eur J Anaesthesiol 20:256–257PubMedCrossRefGoogle Scholar
  21. 21.
    Michard F, Alaya S, Zarka V, Angel N, Richard C, Teboul JL (2002) Effects of volume loading and dobutamine on transpulmonary thermodilution global end-diastolic volume. Intensive Care Med 28:S53 (abst)CrossRefGoogle Scholar
  22. 22.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289PubMedCrossRefGoogle Scholar
  23. 23.
    Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedGoogle Scholar
  24. 24.
    Berkenstadt H, Margalit N, Hadani M, et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989PubMedCrossRefGoogle Scholar
  25. 25.
    Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398PubMedCrossRefGoogle Scholar
  26. 26.
    Renner J, Cavus E, Schenck E, Tonner PH, Scholz J, Bein B (2006) Stroke volume variation during changing loading conditions: impact of different tidal volume. Eur J Anaesthesiol 23(Suppl 37):A187 (abst)Google Scholar
  27. 27.
    Reuter DA, Geopfert MSG, Goresch T, Schmoeckel M, Kilger E, Gotees AE (2005) Assessing fluid responsiveness during open chest conditions. Br J Anaesth 94:318–323PubMedCrossRefGoogle Scholar
  28. 28.
    Palmisani S, Andricciola A, Pinto R, Smedile F, Di Muzio F, De Basi R (2006) Effects of mid-line thoracotomy on pulse pressure variations during pressure-control ventilation. Crit Care 10(Suppl 1):P333 (abst)CrossRefGoogle Scholar
  29. 29.
    De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigus IE (2006) Evaluation of left ventricular function in anesthestized patients using femoral artery dP/dt(max). J Cardiothorac Vasc Anesth 20:325–330PubMedCrossRefGoogle Scholar
  30. 30.
    Halperin BD, Feeley TW, Mihm FG, Chiles C, Guthaner DF, Blank NE (1985) Evaluation of the portable chest roentgenogram for quantitating extravascular lung water in critically ill adults. Chest 88: 649–652PubMedGoogle Scholar
  31. 31.
    Boussat S, Jacques T, Levy B, Laurent E, Gache A, Capellier G (2002) Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med 28:712–718PubMedCrossRefGoogle Scholar
  32. 32.
    Roch A, Michelet P, Lambert D, et al (2004) Accuracy of the double indicator method for measurement of extravascular lung water depends on the type of acute lung injury. Crit Care Med 32:811–817PubMedCrossRefGoogle Scholar
  33. 33.
    Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25:216–219PubMedCrossRefGoogle Scholar
  34. 34.
    Katzenelson R, Perel A, Berkenstadt H, et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32:1550–1554PubMedCrossRefGoogle Scholar
  35. 35.
    Agricola E, Bove T, Oppizzi M, et al (2005) Ultrasound comet-tail images: a marker of pulmonary edema. Chest 127:1690–1695PubMedCrossRefGoogle Scholar
  36. 36.
    Fernández-Mondéjar E, Rivera-Fernández R, García-Delgado M, Touma A, Machado J, Chavero J (2005) Small increases in extravascular lung water are accurately detected by transpulmonary thermodilution. J Trauma 59:1420–1424PubMedCrossRefGoogle Scholar
  37. 37.
    Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl Med 354:2564–2575CrossRefGoogle Scholar
  38. 38.
    Rivers EP (2006) Fluid-management strategies in acute lung injury-liberal, conservative, or both? N Engl Med 354:2598–2600CrossRefGoogle Scholar
  39. 39.
    Roch A, Michelet P, D’journo B? et al (2005) Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy. Chest 128:927–933PubMedCrossRefGoogle Scholar
  40. 40.
    Kuzkov V, Suborov E, Kuklin V, et al (2006) Extravascular lung water after pneumonectomy followed by ventilator-induced lung injury. Eur J Anaesthesiol 23(Suppl 37): A277 (abst)Google Scholar
  41. 41.
    Morisawa K, Taira Y, Takahashi H, et al (2006) Do the data obtained by the PiCCO system enable one to differentiate between direct ALI/ARDS and indirect ALI/ARDS? Crit Care 10(Suppl 1): P326 (abst)CrossRefGoogle Scholar
  42. 42.
    Groeneveld ABJ, Verheij J, van den Berg FG, Wisselink W, Rauwerda JA (2006) Increased pulmonary capillary permeability and extravascular lung water after major vascular surgery: effect on radiography and ventilatory variables. Eur J Anaesthesiol 23:36–41PubMedCrossRefGoogle Scholar
  43. 43.
    Verheij J, van Lingen A, Raijmakers HM, et al (2006) Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth 96:21–30PubMedCrossRefGoogle Scholar
  44. 44.
    Hagen PT, Scholz DG, Edwards WD (1984) Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc 59:17–20PubMedGoogle Scholar
  45. 45.
    Nootens MT, Berarducci LA, Kaufmann E, Devries S, Rich S (1993) The prevalence and significance of a patent foramen ovale in pulmonary hypertension. Chest 104:1673–1675PubMedGoogle Scholar
  46. 46.
    Mekontso-Dessap A, Leon R, Lemaire F, Brochard L (2006) Patient foramen ovale in patients with ARDS. Intensive Care Med 32(Suppl 13):A461 (abst)Google Scholar
  47. 47.
    Konstadt SN, Louie EK, Black S, Rao TLK, Scanlon P (1991) Intraoperative detection of patent foramen ovale by transesophageal echocardiography. Anesthesiology 74:212–216PubMedCrossRefGoogle Scholar
  48. 48.
    Ardizzone G, Arrigo A, Mascia L, et al (2006) Saline contrast and transcranial doppler in detecting right-to-left shunts in cirrhotic patients. Intensive Care Med 32(Suppl 13):A435 (abst)Google Scholar
  49. 49.
    Cujec B, Polasek P, Mayers I, Johnson D (1993) Positive end-expiratory pressure increases the right-to-left shunt in mechanically ventilated patients with patent foramen ovale. Ann Intern Med 119:887–894PubMedGoogle Scholar
  50. 50.
    Michard F, Zarka V, Perel A (2003) Thermodilution transpulmonaire: vers une approche inte-grée du coeur et des poumons. Réanimation 12:117–126CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • F. J. Belda
    • 1
  • G. Aguilar
    • 2
  • A. Perel
    • 3
  1. 1.Department of Anesthesiology and Critical CareHospital Clinico UniversitarioValenciaSpain
  2. 2.Department of Anesthesiology and Critical CareUniversity HospitalValenciaSpain
  3. 3.Department of Anesthesiology and Intensive CareSheba Medical CenterTel HashomerIsrael

Personalised recommendations