Skip to main content

Using Mathematical Models to Improve the Utility of Quantitative ICU Data

  • Conference paper
Intensive Care Medicine
  • 965 Accesses

Abstract

Intensive care medicine is one of the areas of medicine most closely linked to applied physiology. Furthermore, it has a long tradition of being the forefront of advanced physiologic measurement technologies. The associated volume of quantitative data about a patient’s physiologic status, therapy, together with the output of off-line analyses, creates an information overload that profoundly reduces efficient and effective information processing. To a certain extent, this disconnection is a reason for the slow progress in utilizing such information across patients and hospital systems to improve patient care, perhaps most prominently evidenced by the failure of the physiologically valuable information provided by pulmonary artery catheterization to improve outcome in the critical care setting [1, 2]. In fact, for newer and more advanced monitoring equipment, evaluations of utility and ability to fit into proven treatment protocols is often lacking. Although the difficulty in translating the increased amount of available patient-specific information into patient benefit may in part be due to the lack of adequate therapeutic options, where clear benefit is known, actual translation of this information into practice is a primary barrier to improving patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harvey S, Harrison DA, Singer M, et al (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomi sed controlled trial. Lancet 366:472–477

    Article  PubMed  Google Scholar 

  2. Shah MR, Hasselblad V, Stevenson LW, et al (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 294:1664–1670

    Article  PubMed  CAS  Google Scholar 

  3. Bellomo R, Pinsky MR (1996) Invasive monitoring. In: Tinker J, Sibbald W (eds) Critical Care — Standards, Audit and Ethics. Arnold Publishing Company, London, pp 82–104

    Google Scholar 

  4. Pinsky MR, Payen D (2005) Functional hemodynamic monitoring. Crit Care 9:566–572

    Article  PubMed  Google Scholar 

  5. Pinsky MR, Teboul JL (2005) Assessment of indices of preload and volume responsiveness. Curr Opin Crit Care 11:235–239

    Article  PubMed  Google Scholar 

  6. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289

    Article  PubMed  CAS  Google Scholar 

  7. Monnet X, Rienzo M, Osman D, et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–1407

    Article  PubMed  Google Scholar 

  8. Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    Article  PubMed  Google Scholar 

  9. Pinsky MR, Payen D (2004) Functional Hemodynamic Monitoring. Springer, Heidelberg

    Google Scholar 

  10. Beran AV, Huxtable RF, Shigezawa GY, Yeung HN (1981) In vivo evaluation of transcutaneous CO2 partial pressure monitoring. J Appl Physiol 50:1220–1223

    PubMed  CAS  Google Scholar 

  11. Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85:2360–2364

    PubMed  CAS  Google Scholar 

  12. Nakagawa Y, Weil MH, Tang W, et al (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:1838–1843

    PubMed  CAS  Google Scholar 

  13. Pellis T, Weil MH, Tang W, Sun S, Csapozi P, Castillo C (2005) Increases in both buccal and sublingual partial pressure of carbon dioxide reflect decreases of tissue blood flows in a porcine model during hemorrhagic shock. J Trauma 58:817–824

    PubMed  Google Scholar 

  14. Povoas HP, Weil MH, Tang W, Sun S, Kamohara T, Bisera J (2001) Decreases in mesenteric blood flow associated with increases in sublingual PCO2 during hemorrhagic shock. Shock 15:398–402

    PubMed  CAS  Google Scholar 

  15. Almac E, Siegemund M, Demirci C, Ince C (2006) Microcirculatory recruitment maneuvers correct tissue CO2 abnormalities in sepsis. Minerva Anestesiol 72:507–519

    PubMed  CAS  Google Scholar 

  16. Baron BJ, Sinert R, Zehtabchi S, Stavile KL, Scalea TM (2004) Diagnostic utility of sublingual PCO2 for detecting hemorrhage in penetrating trauma patients. J Trauma 57:69–74

    Article  PubMed  Google Scholar 

  17. Cammarata GA, Weil MH, Fries M, Tang W, Sun S, Castillo CJ (2006) Buccal capnometry to guide management of massive blood loss. J Appl Physiol 100:304–306

    Article  PubMed  Google Scholar 

  18. Marik PE (2006) Sublingual capnometry: a non-invasive measure of microcirculatory dysfunction and tissue hypoxia. Physiol Meas 27:R37–R47

    Article  PubMed  Google Scholar 

  19. Zenker S, Polanco P, Torres A, et al (2006) Continuous sublingual PCO2 as a rapid indicator of changes in tissue perfusion in hemorrhagic shock: an experimental study. Shock 29(Suppl 1):57 (abst)

    Article  Google Scholar 

  20. Myers DE, Anderson LD, Seifert RP, et al (2005) Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy. J Biomed Opt 10:034017

    Article  PubMed  CAS  Google Scholar 

  21. Torres A, Polanco P, Pinsky M, Kim, Puyana JC (2006) Non-invasive real-time quantification of cardiovascular reserve in human circulatory shock. J Surg Res 130:279–279 (abst)

    Article  Google Scholar 

  22. Yu G, Durduran T, Lech G, et al (2005) Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies. J Biomed Opt 10:024027

    Article  PubMed  CAS  Google Scholar 

  23. Girardis M, Rinaldi L, Busani S, Flore I, Mauro S, Pasetto A (2003) Muscle perfusion and oxygen consumption by near-infrared spectroscopy in septic-shock and non-septic-shock patients. Intensive Care Med 29:1173–1176

    Article  PubMed  Google Scholar 

  24. Sair M, Etherington PJ, Peter WC, Evans TW (2001) Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med 29:1343–1349

    Article  PubMed  CAS  Google Scholar 

  25. Crookes BA, Cohn SM, Burton EA, Nelson J, Proctor KG (2004) Noninvasive muscle oxygenation to guide fluid resuscitation after traumatic shock. Surgery 135:662–670

    Article  PubMed  Google Scholar 

  26. Crookes BA, Cohn SM, Bloch S, et al (2005) Can near-infrared spectroscopy identify the severity of shock in trauma patients? J Trauma 58:806–813

    PubMed  Google Scholar 

  27. McKinley BA, Marvin RG, Cocanour CS, Moore FA (2000) Tissue hemoglobin 02 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry. J Trauma 48:637–642

    PubMed  CAS  Google Scholar 

  28. Pareznik R, Knezevic R, Voga G, Podbregar M (2006) Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med 32:87–92

    Article  PubMed  Google Scholar 

  29. Taylor JH, Mulier KE, Myers DE, Beilman GJ (2005) Use of near-infrared spectroscopy in early determination of irreversible hemorrhagic shock. J Trauma 58:1119–1125

    PubMed  Google Scholar 

  30. Zenker S, Polanco PM, Kim H, et al (2007) Thresholded area over the curve (TAOC) of spectrometric tissue oxygen saturation (StO2) as an indicator of volume resuscitability in an acute porcine model of hemorrhagic shock. J Trauma (abst, in press)

    Google Scholar 

  31. Cholley BP, Payen D (2005) Noninvasive techniques for measurements of cardiac output. Curr Opin Crit Care 11:424–429

    Article  PubMed  Google Scholar 

  32. Belova NY, Mihaylov SV, Piryova BG (2007) Wavelet transform: A better approach for the evaluation of instantaneous changes in heart rate variability. Auton Neurosci 131:107–122

    Article  PubMed  Google Scholar 

  33. Mainardi LT, Bianchi AM, Cerutti S (2002) Time-frequency and time-varying analysis for assessing the dynamic responses of cardiovascular control. Crit Rev Biomed Eng 30:175–217

    Article  PubMed  Google Scholar 

  34. Buchman TG, Stein PK, Goldstein B (2002) Heart rate variability in critical illness and critical care. Curr Opin Crit Care 8:311–315

    Article  PubMed  Google Scholar 

  35. Lombardi F (2002) Clinical implications of present physiological understanding of HRV components. Card Electrophysiol Rev 6:245–249

    Article  PubMed  Google Scholar 

  36. Ursino M, Magosso E (2003) Role of short-term cardiovascular regulation in heart period variability: a modeling study. Am J Physiol Heart Circ Physiol 284:H1479–H1493

    PubMed  CAS  Google Scholar 

  37. Zenker S, Rubin J, Puyana JC, Clermont G (2006) The baroreflex feedback loop and the low frequency component of heart rate variability in sepsis: A simulation study. Proc Am Thorac Soc 3:A646 (abst)

    Google Scholar 

  38. Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y, Chow C (2004) In silico design of clinical trials: a method coming of age. Crit Care Med 32:2061–2070

    Article  PubMed  Google Scholar 

  39. Zenker S, Polpitiya A, Torres A, et al (2005) Determinants of the irreversibility of hemorrhagic shock: an exploratory simulation study. J Crit Care 20:397–398 (abst)

    Article  Google Scholar 

  40. Hovorka R (2006) Continuous glucose monitoring and closed-loop systems. Diabet Med 23:1–12

    Article  PubMed  CAS  Google Scholar 

  41. Luginbuhl M, Bieniok C, Leibundgut D, Wymann R, Gentilini A, Schnider TW (2006) Closed-loop control of mean arterial blood pressure during surgery with alfentanil: clinical evaluation of a novel model-based predictive controller. Anesthesiology 105:462–470

    Article  PubMed  Google Scholar 

  42. Martin JF, Smith NT, Quinn ML, Schneider AM (1992) Supervisory adaptive control of arterial pressure during cardiac surgery. IEEE Trans Biomed Eng 39:389–393

    Article  PubMed  CAS  Google Scholar 

  43. Zenker S, Rubin J, Clermont G (2006) Towards a model based medicine: integration of probabilistic inference with mechanistic knowledge. J Crit Care 21:350 (abst)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media Inc.

About this paper

Cite this paper

Zenker, S., Clermont, G., Pinsky, M.R. (2007). Using Mathematical Models to Improve the Utility of Quantitative ICU Data. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49518-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49518-7_43

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-49517-0

  • Online ISBN: 978-0-387-49518-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics