Advertisement

Autonomic Dysfunction: A Relevant Component in Multiple Organ Dysfunction Syndrome

  • H. Schmidt
  • U. Müller-Werdan
  • K. Werdan
Conference paper

Abstract

In our article “We need to know more about autonomic dysfunction in our critically ill patients” [1] in the 1999 issue of this Yearbook, we postulated that autonomic dysfunction may have a relevance beyond just being an epiphenomen in these patients, and listed the questions to which answers may prove or disprove this hypothesis:
  • Is the impairment of autonomic function caused by sepsis or multiorgan failure?

  • If so, can a blunted autonomic function predict mortality in multiple organ dysfunction syndrome (MODS)?

  • Is the autonomic function in MODS confounded by age or application of drugs?

  • Can our pharmacological treatment strategies improve autonomic dysfunction?

Now, eight years later, we have gained many new insights into the intriguing interplay of cardiovascular reflexes that mediate the autonomic dysfunction seen in MODS and sepsis, so that we can now answer at least some of the aforementioned questions.

Keywords

Heart Rate Variability Chronic Heart Failure Autonomic Dysfunction Autonomic Function Multiple Organ Dysfunction Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt H, Heinroth K, Werdan K (1999) Autonomic dysfunction in critically ill patients. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 519–536Google Scholar
  2. 2.
    Abboud FM, Thames MD (1983) Interaction of cardiovascular reflexes in circulatory control. In: Sheperd JT, Abboud FM, Geiger SR (eds) Handbook of Physiology. Section 2: The Cardiovascular System, Vol III, Chapter 19. American Physiological Society, Bethesda, pp 675–752Google Scholar
  3. 3.
    Eyzaguirre C, Fitzgerald RS, Lahiri S, Zapata P (1983) Arterial chemoreceptors. In:. In: Sheperd JT, Abboud FM, Geiger SR (eds) Handbook of Physiology. Section 2: The Cardiovascular System, Vol III, Chapter 19. American Physiological Society, Bethesda, pp 557–562Google Scholar
  4. 4.
    Board of the European Society of Cardiology and North American Society of Pacing and Electrophysiology (1996) Heart rate variability — standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381Google Scholar
  5. 5.
    Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators. A complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24:1107–1116PubMedCrossRefGoogle Scholar
  6. 6.
    Toweill D, Sonnenthal K, Kimberley B, et al (2000) Linear and nonlinear analysis of hemodynamic signals during sepsis and septic shock. Crit Care Med 28:2051–2057PubMedCrossRefGoogle Scholar
  7. 7.
    Seely AJE, Christou NV (2000) Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med 28:2193–2200PubMedCrossRefGoogle Scholar
  8. 8.
    Marshall JC (2000) Complexity, chaos, and incomprehensibility: Parsing the biology of critical illness. Crit Care Med 28:2646–2648PubMedCrossRefGoogle Scholar
  9. 9.
    Haji-Michael PG, Vincent JL, Degaute JP, et al (2000) Power spectral analysis of cardiovascular variability in critically ill neurosurgical patients. Crit Care Med 28:2578–2583PubMedCrossRefGoogle Scholar
  10. 10.
    Lombardi F (2000) Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 101:8–10PubMedGoogle Scholar
  11. 11.
    Nakao M, Tazikawa T, Nakamura K, et al (2001) An optimal control model of 1/f fluctuations in heart rate variability. IEEE Eng Med Biol Mag 20:77–87PubMedCrossRefGoogle Scholar
  12. 12.
    La Rovere MT, Bigger Jr JT, Marcus FI, et al (1998) Baroreflex sensitivity and heart rate variability in prediciton of total cardiac mortality after myocardical infarction. Lancet 351: 478–484PubMedCrossRefGoogle Scholar
  13. 13.
    Bigger JT Jr, La Rovere MT, Steinmann RC, et al (1989) Comparison of baroreflex sensitivity and heart rate variability after myocardical infarction. J Am Coll Cardiol 14:1511–1518PubMedCrossRefGoogle Scholar
  14. 14.
    Di Rienzo M, Castiglioni P, Mancia G, et al (2001) Advancement in estimating baroreflex function. IEEE Eng Med Biol Mag 20:25–32PubMedCrossRefGoogle Scholar
  15. 15.
    Maestri R, Pinna GD, Mortara AM, et al (1998) Assessing baroreflex sensitivity in post-myocardical infarction patients: comparison of spectral and phenylephrine techniques. J Am Coll Cardiol 31:344–351PubMedCrossRefGoogle Scholar
  16. 16.
    Pitzalis MV, Mastropasqua F, Passantino A, et al (1998) Comparison between noninvasive indices of baroreceptor sensitivity and the phenylephrine method in post-myocardial infarction patients. Circulation 97:1362–1367PubMedGoogle Scholar
  17. 17.
    Chua TP, Clark AL, Amadi AA, et al (1996) Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol 27:650–657PubMedCrossRefGoogle Scholar
  18. 18.
    Chua TP, Coats AJS (1995) The reproducibility and comparability of tests of the peripheral chemoreflex: comparing the transient hypoxic ventilatory drive test and the single-breath carbon dioxide response test in healthy subjects. Eur J Clin Invest 25:887–892PubMedCrossRefGoogle Scholar
  19. 19.
    Chua TP, Harrigton D, Ponikowski P, et al (1997) Effects of dihydrocodeine on chemosensitivity and exercise tolerance in patients with chronic heart failure. J Am Coll Cardiol 29: 147–152PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt H, Rauchhaus M, Francis DP, et al (2001) Assessment of chemoreflex sensitivity in free breathing young subjects by correction for respiratory influence. Int J Cardiol 78: 157–165PubMedCrossRefGoogle Scholar
  21. 21.
    Hoyer D, Friedrich H, Zwiener U, et al (2006) prognostic impact of autonomic information in multiple organ dysfunction syndrome patients. Int J Cardiol 108:359–369PubMedCrossRefGoogle Scholar
  22. 22.
    Schmidt H, Müller-Werdan U, Nuding S, et al (2004) Impaired chemoreflex sensitivity in adult patients with multiple organ dysfunction syndrome — the potential role of disease severity. Intensive Care Med 30:665–672PubMedCrossRefGoogle Scholar
  23. 23.
    Winchell RJ, Hoyt DB (1996) Spectral analysis of heart rate variability in the ICU. J Surg Res 63:11–16PubMedCrossRefGoogle Scholar
  24. 24.
    Garrard CS, Kontoyannis DA, Piepoli M (1993) Spectral analysis of heart rate variability in sepsis syndrome. Clin Auton Res 3:5–13PubMedCrossRefGoogle Scholar
  25. 25.
    Schmidt H, Werdan K, Müller-Werdan U (2001) Autonomic dysfunction in the ICU patient. Curr Opin Crit Care 7:314–322PubMedCrossRefGoogle Scholar
  26. 26.
    Ponikowki P, Banasiak W (2001) Chemosensitivity in chronic heart failure. Heart Fail Monitor 1:126–131Google Scholar
  27. 27.
    Ponikowski P, Chua TP, Piepoli M, et al (1997) Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 96:2586–2594PubMedGoogle Scholar
  28. 28.
    Ponikowski P, Chua TP, Piepoli M, et al (1997) Chemoreceptor dependence of very low fre quency rhythms in advanced chronic heart failure. Am J Physiol 272:H438–H447PubMedGoogle Scholar
  29. 29.
    Hennersdorf M, Perings C, Niebich V, Hillebrand S, Vester EG, Strauer BE (2000) Chemoreflex sensitivity in patients with survived sudden cardiac arrest and prior myocardial infarction. Pacing Clin Electrophysiol 23:457–462PubMedCrossRefGoogle Scholar
  30. 30.
    Godin PJ, Fleisher LA, Eidsath A, et al (1996) Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized crossover trial. Crit Care Med 24: 1117–1124PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidt H, Müller-Werdan U, Saworski J, Kuhn C, Heinroth C, Werdan K (1999) Beating rate variability of cardiomyocytes is narrowed by LPS but not by TNF-α. Intensive Care Med 25(Suppl 1):59 (abst)Google Scholar
  32. 32.
    Tibby SM, Frndova H, Bryan AC, Cox P (1999) Heart rate variability displays 1/f noise in critical illness and correlates with numbers of organ failures. Intensive Care Med 25(Suppl 1):370 (abst)Google Scholar
  33. 33.
    Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. JAMA 275:470–447PubMedCrossRefGoogle Scholar
  34. 34.
    Bolton CF, Young GB, Zochodne DW (1993) The neurological complications of sepsis. Ann Neurol 33:94–100PubMedCrossRefGoogle Scholar
  35. 35.
    Tobin MJ, Laghi F, Jubran A (1998) Respiratory muscle dysfunction in mechanically-ventilated patients. Mol Cell Biochem 179:87–98PubMedCrossRefGoogle Scholar
  36. 36.
    Hussain SNA (1998) Respiratory muscle dysfunction in sepsis. Mol Cell Biochem 179:125–113PubMedCrossRefGoogle Scholar
  37. 37.
    Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859PubMedCrossRefGoogle Scholar
  38. 38.
    Borovikova LV, Ivanova S, Zhang M, et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462PubMedCrossRefGoogle Scholar
  39. 39.
    Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462PubMedCrossRefGoogle Scholar
  40. 40.
    Libert C (2003) A nervous connection. Nature 421:328–329PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt H, Müller-Werdan U, Hoffmann T, et al (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002PubMedCrossRefGoogle Scholar
  42. 42.
    La Rovere MT, Bigger TJ Jr, Marcus FI, et al (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351:478–84PubMedCrossRefGoogle Scholar
  43. 43.
    Hennersdorf M, Perings C, Niebich V, Hillebrand S, Vester EG, Strauer BE (2000) Chemoreflex sensitivity in patients with survived sudden cardiac arrest and prior myocardial infarction. Pacing Clin Electrophysiol 23:457–462PubMedCrossRefGoogle Scholar
  44. 44.
    Toweill D, Sonnenthal K, Kimberley B, Lai S, Goldstein B (2000) Linear and nonlinear analysis of hemodynamic signals during sepsis and septic shock. Crit Care Med 28:2051–2057PubMedCrossRefGoogle Scholar
  45. 45.
    Biswas AK, Scott WA, Sommerauer JF, Luckett PM (2000) Heart rate variability after acute traumatic brain injury in children. Crit Care Med 28:3907–3912PubMedCrossRefGoogle Scholar
  46. 46.
    Korach M, Sharshar T, Jarrin I, et al (2001) Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med 29:1380–1385PubMedCrossRefGoogle Scholar
  47. 47.
    Agelink MW, Majewski TB, Andrich J, Mueck-Weymann M (2002) Short-term effects of intravenous benzodiazepines on autonomic neurocardiac regulation in humans: a comparison between midazolam, diazepam and lorazepam. Crit Care Med 30:997–1006PubMedCrossRefGoogle Scholar
  48. 48.
    Sellgren J, Biber B, Henriksson BA, Martner J, Ponten J (1992) The effects of propofol, methohexitone and isofluorane on the baroreflex in the cat. Acta Anaesthesiol Scand 36:784–790PubMedGoogle Scholar
  49. 49.
    Eriksson LI (1996) Reduced hypoxic chemosensitivity in partially paralyzed man. A new property of muscle relaxants? Acta Anaesthesiol Scand 40:520–523PubMedCrossRefGoogle Scholar
  50. 50.
    Colosimo A, Giuliani A, Mancini AM, Piccirillo G, Marigliano V (1997) Estimating cardiac age by means of heart rate variability. Am J Physiol 273:H1841–H1847PubMedGoogle Scholar
  51. 51.
    Pikkujamsa SM, Makikallio TH, Sourander LB, et al (1999) Cardiac interbeat interval dynamics from childhood to senescence. Comparison of conventional and new measures based on fractals and chaos theory. Circulation 100:393–399PubMedGoogle Scholar
  52. 52.
    Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59: 256–262PubMedCrossRefGoogle Scholar
  53. 53.
    Milicevic G, Lakusic N, Szirovicza L, Cerovec D, Majsec M (2001) Different cut-off points of decreased heart rate variability for different age groups of cardiac patients. J Cardiovasc Risk 8:93–102PubMedCrossRefGoogle Scholar
  54. 54.
    Smyth H, Sleight P, Pickering G (1969) Reflex regulation of arterial pressure during sleep in man. Circ Res 24:109–121PubMedGoogle Scholar
  55. 55.
    Schmidt H, Muller-Werdan, Hoffmann T, et al. (2006) Attenuated autonomic function in multiple organ dysfunction syndrome across three age groups. Biomed Tech 51:264–267CrossRefGoogle Scholar
  56. 56.
    Nolan J, Batin PD, Andrews R, et al (1998) Prospective study of heart rate variability and mortality in chronic heart failure — results of the United Kingdom Heart Evaluation and Assessement of Risk Trial (UK-Heart). Circulation 98:1510–1516PubMedGoogle Scholar
  57. 57.
    Taylor JA, Deborah LC, Myers CW, Eckberg DL (1998) Mechanisms underlying very-low-frequency rr-interval oscillations in humans. Circulation 98:547–555PubMedGoogle Scholar
  58. 58.
    Stauss HM (2003) Heart rate variability. Am J Physiol Integr Comp Physiol 285:R927–931Google Scholar
  59. 59.
    Yien HW, Hseu SS, Lee LC, Kuo TBJ, Lee TY, Chan SHH (1997) Spectral analysis of systemic arterial pressure and heart rate signals as a prognostic tool for prediction of patients out come in the intensive care unit. Crit Care Med 25:258–266PubMedCrossRefGoogle Scholar
  60. 60.
    Stein PK, Schmieg RE, El-Fouly A, Domitrovich PP, Buchman TG (2001) Association between heart rate variability recorded on postoperative day 1 and length of stay in abdominal aortic surgery patients. Crit Care Med 29:1738–1743PubMedCrossRefGoogle Scholar
  61. 61.
    Welzig CM, Shin DG, Park HJ, Kim YJ, Saul JP, Galper JP (2003) Lipid Lowering by Pravastatin Increases Parasympathetic Modulation of Heart Rate. Gαi2, a Possible Molecular Marker for Parasympathetic Responsiveness. Circulation 108:2743–2746PubMedCrossRefGoogle Scholar
  62. 62.
    Almog Y, Shefer A, Novack V, et al (2004) Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation 110:880–885PubMedCrossRefGoogle Scholar
  63. 63.
    Schmidt H, Hennen R, Keller A, et al (2006) Association of statin therapy and increased survival in patients with multiorgan dysfunction syndrome. Intensive Care Med 32:1248–1251PubMedCrossRefGoogle Scholar
  64. 64.
    Hackam DG, Mamdani M, Li P, Redelmeier DA (2006) Statins and sepsis in patients with car diovascular disease: a population-based cohort analysis. Lancet 367:413–418PubMedCrossRefGoogle Scholar
  65. 65.
    Liappis AP, Kan VL, Rochester CG, Simon GL (2001) The effect of statins on mortality in patients with bacteremia. Clin Infect Dis 33:1352–1357PubMedCrossRefGoogle Scholar
  66. 66.
    Kruger P, Fitzsimmons K, Cook D, Jones M, Nimmo G (2006) Statin therapy is associated with fewer deaths in patients with bacteraemia. Intensive Care Med 32:75–77PubMedCrossRefGoogle Scholar
  67. 67.
    Merx MW, Liehn EA, Janssens U, et al (2004) HMG-CoA Reductase Inhibitor Simvastatin Profoundly Improves Survival in a Murine Model of Sepsis. Circulation 109:2560–2256PubMedCrossRefGoogle Scholar
  68. 68.
    Pruefer D, Makowski J, Schnell M, et al (2002) Simvastatin inhibits inflammatory properties of Staphylococcus aureus alpha-toxin. Circulation 106:2104–2110PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • H. Schmidt
    • 1
  • U. Müller-Werdan
    • 1
  • K. Werdan
    • 1
  1. 1.Department of Medicine IIIMartin-Luther-University, Klinikum KröllwitzHalle/SaaleGermany

Personalised recommendations