Skip to main content

Transcription Factors and Nuclear Cofactors in Muscle Wasting

  • Conference paper
Intensive Care Medicine
  • 963 Accesses

Abstract

Muscle wasting is commonly seen in patients with sepsis, severe injury, and cancer [1, 2]. The loss of muscle mass in these conditions mainly reflects ubiquitin-proteasome-dependent degradation of myofibrillar proteins although other proteolytic mechanisms may be involved as well [3]. Muscle atrophy is regulated by multiple factors, including glucocorticoids [4], the pro-inflammatory cytokines, interleukin (IL)-1(3 and tumor necrosis factor (TNF)-α [5, 6], and myostatin [7]. In addition to these catabolic factors, a lack of anabolic signals, such as insulin-like growth factor (IGF)-1 and insulin, is probably also important for the development of muscle wasting in various catabolic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hasselgren PO, Fischer JE (2001) Muscle cachexia: Current concepts of intracellular mechanisms and molecular regulation. Ann Surg 233:9–17

    Article  PubMed  CAS  Google Scholar 

  2. Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129(Suppl):227S–237S

    PubMed  CAS  Google Scholar 

  3. Hasselgren PO, Wray C, Mammen J (2002) Molecular regulation of muscle cachexia: It may be more than the proteasome. Biochem Biophys Res Commun 290:1–10

    Article  PubMed  CAS  Google Scholar 

  4. Hasselgren PO (1999) Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 2:201–205

    Article  PubMed  CAS  Google Scholar 

  5. Tracey KJ, Wei H, Manogue KR, et al (1998) Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med 167:1211–1227

    Article  Google Scholar 

  6. Zamir O, Hasselgren PO, Kunkel SL, Frederick JA, Higashiguchi T, Fischer JE (1992) Evidence that tumor necrosis factor participates in the regulation of muscle proteolysis during sepsis. Arch Surg 127:170–174

    PubMed  CAS  Google Scholar 

  7. Reisz-Porszasz S, Bhasin S, Artaza JN, et al (2003) Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol 285:E876–E888

    CAS  Google Scholar 

  8. Reid WP, MacGowan NA (1998) Respiratory muscle injury in animal models and humans. Mol Cell Biochem 179:63–80

    Article  PubMed  CAS  Google Scholar 

  9. Andreyev HJ, Norman AR, et al (1998) Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies? Eur J Cancer 34:503–509

    Article  PubMed  CAS  Google Scholar 

  10. Skipworth RJ, Stewart GD, Ross JA, Guttridge DC, Fearon KC (2006) The molecular mechanisms of skeletal muscle wasting: implications for therapy. Surgeon 4:273–283

    Article  PubMed  CAS  Google Scholar 

  11. Tiao G, Fagan JM, Samuels N, et al (1994) Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rats skeletal muscle. J Clin Invest 94:2255–2264

    PubMed  CAS  Google Scholar 

  12. Hobler SC, Williams AB, Fischer D, et al (1999) The activity and expression of the 20S proteasome are increased in skeletal muscle during sepsis. Am J Physiol 277:R434–R440

    PubMed  CAS  Google Scholar 

  13. Fang CH, Tiao G, James JH, Ogle CK, Fischer JE, Hasselgren PO (1995) Burn injury stimulates multiple proteolytic pathways in skeletal muscle, including the ubiquitin-energy-dependent pathway. J Am Coll Surg 180:161–170

    PubMed  CAS  Google Scholar 

  14. Tiao G, Hobler S, Wang JJ, et al (1997) Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest 99:163–168

    PubMed  CAS  Google Scholar 

  15. Williams A, Sun X, Fischer JE, Hasselgren PO (1999) The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126:744–750

    PubMed  CAS  Google Scholar 

  16. Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE (1996) The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest 97:1447–1453

    Article  PubMed  CAS  Google Scholar 

  17. Lecker SH, Jagoe RT, Gilbert A, et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  PubMed  CAS  Google Scholar 

  18. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445

    Article  PubMed  CAS  Google Scholar 

  19. Bodine SC, Latres E, Baumheuter S, et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  PubMed  CAS  Google Scholar 

  20. Wray CJ, Mammen JM, Hershko DD, Hasselggren PO (2003) Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol 35:698–705

    Article  PubMed  CAS  Google Scholar 

  21. Yang H, Menconi M, Wei W, Petkova V, Hasselgren PO (2005) Dexamethasone upregulates the expression of the nuclear cofactor p300 and its interaction with C/EBPβ in cultured myotubes. J Cell Biochem 94:1058–1067

    Article  PubMed  CAS  Google Scholar 

  22. Yang H, Wei W, Menconi M, Hasselgren PO (2007) Dexamethasone-induced protein degradation in cultured myotubes is p300/HAT-dependent. Am J Physiol (in press)

    Google Scholar 

  23. Lekstrom-Himes J, Xanthopoulos KG (1998) Biological role of the CCAAT/enhancer-binding family of transcription factors. J Biol Chem 273:28545–28548

    Article  PubMed  CAS  Google Scholar 

  24. Poli V (1998) The role of C/EBP isoforms in the control of inflammatory and and native immune functions. J Biol Chem 273:29279–29282

    Article  PubMed  CAS  Google Scholar 

  25. Penner G, Gang G, Sun X, Wray C, Hasselgren PO (2002) C/EBP DNA-binding activity is uoregulated by a glucocorticoid-dependent mechanism in septic muscle. Am J Physiol 282:R439–R444

    CAS  Google Scholar 

  26. Yang H, Mammen J, Wei W, et al (2005) Expression and activity of C/EBPβ; and δare upregu-lated by dexamethasone in skeletal muscle. J Cell Phsyiol 204:219–226

    Article  CAS  Google Scholar 

  27. Wagatsuma A (2006) Upregulation of genes encoding adipogenic transcriptional factors C/ EBPα and PPARγ2 in denervated muscle. Exp Physiol 91:747–753

    Article  PubMed  CAS  Google Scholar 

  28. Hu E, Tontonoz P, Spiegelman BM (1995) Transdifferentiation of myoblasts by the adipogenic factors PPARγ and C/EBPα. Proc Natl Acad Sci USA 92:9856–9860

    Article  PubMed  CAS  Google Scholar 

  29. Ghosh S, May MJ, Kopp EB (1998) NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  PubMed  CAS  Google Scholar 

  30. Chen LF, Greene WC (2003) Regulation of distinct biological activities of the NF-kB transcription factor complex by acetylation. J Mol Med 81:549–557

    Article  PubMed  CAS  Google Scholar 

  31. Penner CG, Gang G, Wray C, Fischer JE, Hasselgren PO (2001) The transcription factors NF-kB and AP-1 are differentially regulated in skeletal muscle during sepsis. Bioochem Biophys Res Commun 281:1331–1336

    Article  CAS  Google Scholar 

  32. Ladner KJ, Caligiuri MA, Guttridge DC (2003) Tumor necrosis factor-regulated biphasic activation of NF-kB is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 278:2294–2303

    Article  PubMed  CAS  Google Scholar 

  33. Li YP, Reid MB (2000) NF-kB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am J Physiol 279:R1165–R1170

    CAS  Google Scholar 

  34. Luo GJ, Hershko DD, Robb BW, Wray CJ, Hasselgren PO (2003) IL-1β stimulates IL-6 production in cultured skeletal muscle cells through activation of MAP kinase signaling pathway and NFkB. Am J Physiol 284:R1249–R1254

    CAS  Google Scholar 

  35. Luo GJ, Sun X, Hungness E, Hasselgren PO (2001) Heat shock protects L6 myotubes from catabolic effects of dexamethasone and prevents downregulation of NF-kB. Am J Physiol 281:R1193–R1200

    CAS  Google Scholar 

  36. Hong DH, Forsberg NE (1995) Effects of dexamethasone on protein degradation and protease gene expression in rat L8 myotube cultures. Mol Cell Endocrinol 108:199–209

    Article  PubMed  CAS  Google Scholar 

  37. Wang L, Luo GJ, Wang JJ, Hasselgren PO (1998) Dexamethasone stimulates proteasome-and calcium-dependent proteolysis in cultured L6 myotubes. Shock 10:298–306

    Article  PubMed  CAS  Google Scholar 

  38. Cai D, Frantz JD, Tawa NE, et al (2004) IKKβ/NF-kB activation causes severe muscle wasting in mice. Cell 119:285–298

    Article  PubMed  CAS  Google Scholar 

  39. Du J, Mitch WE, Wang X, Price SR (2000) Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-kappa B. J Biol Chem 275:19661–19666

    Article  PubMed  CAS  Google Scholar 

  40. Sandri M, Sandri C, Gilbert A, et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin-ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  PubMed  CAS  Google Scholar 

  41. Stitt TN, Drijan D, Clarke BA, et al (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  PubMed  CAS  Google Scholar 

  42. Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33:155–165

    Article  PubMed  CAS  Google Scholar 

  43. Skurk C, Izumiya Y, Maatz H, et al (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280:20814–20823

    Article  PubMed  CAS  Google Scholar 

  44. Janknecht R, Hunter T (1996) Transcription: a growing coactivator network. Nature 383:22–23

    Article  PubMed  CAS  Google Scholar 

  45. Polesskaya A, Naguibneva I, Fritsch L, et al (2001) CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J 20:6816–6825

    Article  PubMed  CAS  Google Scholar 

  46. DeRuijter AJM, van Gennip AH, Caron HN, Kemp S, Kuilenburg ABP (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  CAS  Google Scholar 

  47. Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20:615–626

    Article  PubMed  CAS  Google Scholar 

  48. Van der Heide LP, Smidt MP (2005) Regulation of FoxO activity by CBP/p300-mediated acetylation. TRENDS Biochem Sci 30:81–86

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media Inc.

About this paper

Cite this paper

Hasselgren, P.O. (2007). Transcription Factors and Nuclear Cofactors in Muscle Wasting. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49518-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49518-7_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-49517-0

  • Online ISBN: 978-0-387-49518-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics