Skip to main content

Are Mitochondria Responsible for Improved Outcomes in Recent Studies?

  • Conference paper
Intensive Care Medicine

Abstract

The Acute Respiratory Distress Syndrome Network (ARDSnet) group compared low tidal volume ventilation with standard ventilatory strategies [1]; early goal directed therapy (EGDT) advocated administering fluids, blood products, and dobutamine to achieve oxygen delivery goals to septic patients on arrival in the emergency department [2]; and intensive insulin therapy was used to maintain tight glucose parameters in surgical patients [3]. These are landmark but disparate trials that have demonstrated major improvements in outcome and feature in the Surviving Sepsis Campaign Guidelines for managing sepsis [4]. In this chapter, we discuss the role mito-chondrial dysfunction plays in critical illness and its manifestation as a disruption of cellular energetics. We suggest that the positive outcomes from the above-mentioned trials relate to a reduction of impaired mitochondrial function and a reduction in the subsequent generation of inflammatory signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Article  Google Scholar 

  2. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  3. Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  4. Dellinger RP, Carlet JM, Masur H, et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873

    Article  PubMed  Google Scholar 

  5. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  6. Crouser ED, Julian MW, Blaho DV, Pfeiffer DR (2002) Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med 30:276–284

    Article  PubMed  CAS  Google Scholar 

  7. Bateman RM, Sharpe MD, Ellis CG (2003) Bench-to-bedside review: microvascular dysfunction in sepsis—hemodynamics, oxygen transport, and nitric oxide. Crit Care 7:359–373

    Article  PubMed  Google Scholar 

  8. Fink MP (2002) Bench-to-bedside review: Cytopathic hypoxia. Crit Care 6:491–499

    Article  PubMed  Google Scholar 

  9. Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  PubMed  CAS  Google Scholar 

  10. Terada LS (2006) Specificity in reactive oxidant signaling: Think globally, act locally. J Cell Biol 174:615–623

    Article  PubMed  CAS  Google Scholar 

  11. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  PubMed  CAS  Google Scholar 

  12. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:9S–15S

    Article  PubMed  CAS  Google Scholar 

  13. Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725

    PubMed  CAS  Google Scholar 

  14. Kuiper JW, Groeneveld AB, Slutsky AS, Plotz FB (2005) Mechanical ventilation and acute renal failure. Crit Care Med 33:1408–1415

    Article  PubMed  Google Scholar 

  15. Chapman KE, Sinclair SE, Zhuang D, et al (2005) Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289:L834–841

    Article  PubMed  CAS  Google Scholar 

  16. Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT (2004) Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am J Physiol Lung Cell Mol Physiol 287:L486–496

    Article  PubMed  CAS  Google Scholar 

  17. Ichimura H, Parthasarathi K, Quadri S, Issekutz AC, Bhattacharya J (2003) Mechano-oxidative coupling by mitochondria induces proinflammatory responses in lung venular capillaries. J Clin Invest 111:691–699

    Article  PubMed  CAS  Google Scholar 

  18. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342: 1334–1349

    Article  PubMed  CAS  Google Scholar 

  19. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  20. Imai Y, Parodo J, Kajikawa O, et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:2104–2112

    Article  PubMed  Google Scholar 

  21. Pagano A, Donati Y, Metrailler I, Barazzone Argiroffo C (2004) Mitochondrial cytochrome c release is a key event in hyperoxia-induced lung injury: protection by cyclosporin A. Am J Physiol Lung Cell Mol Physiol 286:L275–283

    Article  PubMed  CAS  Google Scholar 

  22. Hayes MA, Timmins AC, Yau EH, et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    Article  PubMed  CAS  Google Scholar 

  23. Rosser DM, Stidwill RP, Jacobson D, Singer M (1996) Cardiorespiratory and tissue oxygen dose response to rat endotoxemia. Am J Physiol 271:H891–895

    PubMed  CAS  Google Scholar 

  24. Callahan LA, Supinski GS (2005) Sepsis induces diaphragm electron transport chain dysfunction and protein depletion. Am J Respir Crit Care Med 172:861–868

    Article  PubMed  Google Scholar 

  25. Brealey D, Karyampudi S, Jacques TS, et al (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 286: R491–497

    PubMed  CAS  Google Scholar 

  26. Welty-Wolf KE, Simonson SG, Huang YC, et al (1996) Ultrastructural changes in skeletal muscle mitochondria in gram-negative sepsis. Shock 5: 378–384

    Article  PubMed  CAS  Google Scholar 

  27. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  28. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–19

    Article  PubMed  Google Scholar 

  29. Hoedemaekers CW, Pickkers P, Netea MG, van Deuren M, Van der Hoeven JG (2005) Intensive insulin therapy does not alter the inflammatory response in patients undergoing coronary artery bypass grafting: a randomized controlled trial. Crit Care 9: R790–797

    Article  PubMed  Google Scholar 

  30. Van den Berghe G, Wouters PJ, Bouillon R, et al (2003) Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control. Crit Care Med 31:359–366

    Article  PubMed  Google Scholar 

  31. Ellger B, Debaveye Y, Vanhorebeek I, et al (2006) Survival benefits of intensive insulin therapy in critical illness: impact of maintaining normoglycemia versus glycemia-independent actions of insulin. Diabetes 55:1096–1105

    Article  PubMed  CAS  Google Scholar 

  32. Finney SJ, Zekveld C, Elia A, Evans TW (2003) Glucose control and mortality in critically ill patients. JAMA 290:2041–2047

    Article  PubMed  CAS  Google Scholar 

  33. Vanhorebeek I, De Vos R, Mesotten D, et al (2005) Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 365:53–59

    Article  PubMed  CAS  Google Scholar 

  34. Langouche L, Vanhorebeek I, Vlasselaers D, et al (2005) Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest 115:2277–2286

    Article  PubMed  CAS  Google Scholar 

  35. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media Inc.

About this paper

Cite this paper

Johnston, A., Whitehouse, T. (2007). Are Mitochondria Responsible for Improved Outcomes in Recent Studies?. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49518-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49518-7_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-49517-0

  • Online ISBN: 978-0-387-49518-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics