Skip to main content

The Role of Neutrophil-Derived Myeloperoxidase in Organ Dysfunction and Sepsis

  • Conference paper
Book cover Intensive Care Medicine

Abstract

Neutrophils are the first cells to be activated in the host immune response to infection or injury and are critical cellular effectors in both humoral and innate immunity, central to the pathogenesis of sepsis and multi-organ dysfunction [1]. However, the neutrophil capacity for bacterial killing lacks selectivity, despite stringent regulation, and thereby carries the potential to inflict collateral damage to, and destruction of host tissue [2]. Host tissue damage characterizes both autoimmune and inflammatory conditions and may arise via a variety of mechanisms including premature neutrophil activation during migration, extracellular release of cytotoxic molecules during microbial killing, removal of infected or damaged host cells or debris during host tissue remodeling, and failure to terminate acute inflammatory responses [3]. Sepsis-induced neutrophil mediated tissue injury has been demonstrated in a variety of organs including the lungs [4, 5], kidneys [6], and liver [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Das UN (2000) Critical advances in septicemia and septic shock. Crit Care 4:290–296

    Article  PubMed  CAS  Google Scholar 

  2. Marshall JC (2005) Neutrophils in the pathogenesis of sepsis. Crit Care Med 33:S502–505

    Article  PubMed  Google Scholar 

  3. Smith JA (1994) Neutrophils, host defense, and inflammation: a double-edged sword. J Leu-koc Biol 56:672–686

    CAS  Google Scholar 

  4. Abraham E (2003) Neutrophils and acute lung injury. Crit Care Med 31:S195–199

    Article  PubMed  Google Scholar 

  5. Moraes TJ, Zurawska JH, Downey GP (2006) Neutrophil granule contents in the pathogenesis of lung injury. Curr Opin Hematol 13:21–27

    Article  PubMed  CAS  Google Scholar 

  6. Heinzelmann M, Mercer-Jones MA, Passmore JC (1999) Neutrophils and renal failure. Am J Kidney Dis 34:384–399

    PubMed  CAS  Google Scholar 

  7. Jaeschke H, Hasegawa T (2006) Role of neutrophils in acute inflammatory liver injury. Liver Int 26:912–919

    Article  PubMed  CAS  Google Scholar 

  8. Kenzel S, Henneke P (2006) The innate immune system and its relevance to neonatal sepsis. Curr Opin Infect Dis 19:264–270

    Article  PubMed  CAS  Google Scholar 

  9. Mizgerd JP (2002) Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Semin Immunol 14:123–132

    Article  PubMed  CAS  Google Scholar 

  10. Burg ND, Pillinger MH (2001) The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol 99:7–17

    Article  PubMed  CAS  Google Scholar 

  11. Mayadas TN, Cullere X (2005) Neutrophil beta2 integrins: moderators of life or death decisions. Trends Immunol 26:388–395

    Article  PubMed  CAS  Google Scholar 

  12. Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31:509–515

    Article  PubMed  CAS  Google Scholar 

  13. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    Article  PubMed  CAS  Google Scholar 

  14. Marquez LA, Dunford HB (1997) Mechanism of the oxidation of 3,5,3′,5′-tetramethylbenzidine by myeloperoxidase determined by transient-and steady-state kinetics. Biochemistry 36:9349–9355

    Article  PubMed  CAS  Google Scholar 

  15. Arnhold J (2004) Properties, functions, and secretion of human myeloperoxidase. Biochemistry (Mosc) 69:4–9

    PubMed  CAS  Google Scholar 

  16. Furtmuller PG, Arnhold J, Jantschko W, Pichler H, Obinger C (2003) Redox properties of the couples compound I/compound II and compound II/native enzyme of human myeloperoxidase. Biochem Biophys Res Commun 301:551–557

    Article  PubMed  CAS  Google Scholar 

  17. Chapman AL, Hampton MB, Senthilmohan R, Winterbourn CC, Kettle AJ (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem 277:9757–9762

    Article  PubMed  CAS  Google Scholar 

  18. Agner K (1941) Verdoperoxidase. Acta Physiol Scand 2:1–62

    Article  Google Scholar 

  19. IUBMB, Enzyme Nomenclature. EC 1.11.1.7. Available at: http://www.chem.qmul.ac.uk/iubmb/enzyme/ECl/ll/l/7.html. Accessed Dec 2006

  20. Fiedler TJ, Davey CA, Fenna RE (2000) X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution. J Biol Chem 275:1964–11971

    Article  Google Scholar 

  21. Furtmuller PG, Zederbauer M, Jantschko W, et al (2006) Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 445:199–213

    Article  PubMed  CAS  Google Scholar 

  22. National Centre for Biotechnology Information. Human Genome Map Viewer. Available at: http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?taxid=9606&CHR=17&maps=genes-r,pheno,morbid,genec&Rl=on&query=MPO&VERBOSE=ON&ZOOM=3 Accessed Dec 2006

  23. Hansson M, Olsson I, Nauseef WM (2006) Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys 445:214–224

    Article  PubMed  CAS  Google Scholar 

  24. Reynolds WF, Rhees J, Maciejewski D, et al (1999) Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer’s disease. Exp Neurol 155:31–41

    Article  PubMed  CAS  Google Scholar 

  25. Yang JJ, Pendergraft WF, Alcorta DA, et al (2004) Circumvention of normal constraints on granule protein gene expression in peripheral blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibody-associated glomerulonephritis. J Am Soc Nephrol 15:2103–2114

    Article  PubMed  CAS  Google Scholar 

  26. Petrides PE (1998) Molecular genetics of peroxidase deficiency. J Mol Med 76:688–698

    Article  PubMed  CAS  Google Scholar 

  27. Piedrafita FJ, Molander RB, Vansant G, Orlova EA, Pfahl M, Reynolds WF (1996) An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem 271:14412–14420

    Article  PubMed  CAS  Google Scholar 

  28. Kumar AP, Piedrafita FJ, Reynolds WF (2004) Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the-463GA promoter polymorphism. J Biol Chem 279:8300–8315

    Article  PubMed  CAS  Google Scholar 

  29. Borregaard N, Theilgaard-Monch K, Sorensen OE, Cowland JB (2001) Regulation of human neutrophil granule protein expression. Curr Opin Hematol 8:23–27

    Article  PubMed  CAS  Google Scholar 

  30. Egesten A, Breton-Gorius J, Guichard J, Gullberg U, Olsson I (1994) The heterogeneity of azu-rophil granules in neutrophil promyelocytes: immunogold localization of myeloperoxidase, cathepsin G, elastase, proteinase 3, and bactericidal/permeability increasing protein. Blood 83:2985–2994

    PubMed  CAS  Google Scholar 

  31. Lamb NJ, Gutteridge JM, Baker C, Evans TW, Quinlan GJ (1999) Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration, and chlorination. Crit Care Med 27:1738–1744

    Article  PubMed  CAS  Google Scholar 

  32. Aggarwal A, Baker CS, Evans TW, Haslam PL (2000) G-CSF and IL-8 but not GM-CSF correlate with severity of pulmonary neutrophilia in acute respiratory distress syndrome. Eur Respir J 15:895–901

    Article  PubMed  CAS  Google Scholar 

  33. Chollet-Martin S, Jourdain B, Gibert C, Elbim C, Chastre J, Gougerot-Pocidalo MA (1996) Interactions between neutrophils and cytokines in blood and alveolar spaces during ARDS. Am J Respir Crit Care Med 154:594–601

    PubMed  CAS  Google Scholar 

  34. Pullar JM, Vissers MC, Winterbourn CC (2000) Living with a killer: the effects of hypochlo-rous acid on mammalian cells. IUBMB Life 50:259–266

    Article  PubMed  CAS  Google Scholar 

  35. Weiss SJ, Lampert MB, Test ST (1983) Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science 222:625–628

    Article  PubMed  CAS  Google Scholar 

  36. Buss IH, Senthilmohan R, Darlow BA, Mogridge N, Kettle AJ, Winterbourn CC (2003) 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome. Pediatr Res 53:455–462

    Article  PubMed  CAS  Google Scholar 

  37. Spencer JP, Whiteman M, Jenner A, Halliwell B (2000) Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radic Biol Med 28:1039–1050

    Article  PubMed  CAS  Google Scholar 

  38. Spickett CM, Jerlich A, Panasenko OM, et al (2000) The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim Pol 47:889–899

    PubMed  CAS  Google Scholar 

  39. Vissers MC, Carr AC, Chapman AL (1998) Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis. Biochem J 330 (Pt 1): 131–138

    PubMed  CAS  Google Scholar 

  40. Winterbourn CC, Kettle AJ (2000) Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med 29:403–409

    Article  PubMed  CAS  Google Scholar 

  41. Vissers MC, Pullar JM, Hampton MB (1999) Hypochlorous acid causes caspase activation and apoptosis or growth arrest in human endothelial cells. Biochem J 344 Pt 2:443–449

    Article  PubMed  CAS  Google Scholar 

  42. Padkin A, Goldfrad C, Brady AR, Young D, Black N, Rowan K (2003) Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland. Crit Care Med 31:2332–2338

    Article  PubMed  Google Scholar 

  43. Russell J (2006) Management of sepsis. N Engl J Med 355:1699–1713

    Article  PubMed  CAS  Google Scholar 

  44. Griffin SV, Chapman PT, Lianos EA, Lockwood CM (1999) The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies. Kidney Int 55:917–925

    Article  PubMed  CAS  Google Scholar 

  45. Segelmark M, Persson B, Hellmark T, Wieslander J (1997) Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin Exp Immunol 108:167–174

    Article  PubMed  CAS  Google Scholar 

  46. Kettle AJ, Winterbourn CC (1994) Superoxide-dependent hydroxylation by myeloperoxidase. J Biol Chem 269:17146–17151

    PubMed  CAS  Google Scholar 

  47. Weiss J (2003) Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defence against Gram-negative bacteria. Biochem Soc Trans 31:785–790

    Article  PubMed  CAS  Google Scholar 

  48. Elsbach P (1998) The bactericidal/permeability-increasing protein (BPI) in antibacterial host defense. J Leukoc Biol 64:14–18

    PubMed  CAS  Google Scholar 

  49. Schneider JJ, Unholzer A, Schaller M, Schafer-Korting M, Korting HC (2005) Human defen-sins. J Mol Med 83:587–595

    Article  PubMed  CAS  Google Scholar 

  50. Belaaouaj A, Kim KS, Shapiro SD (2000) Degradation of outer membrane protein A in Esche-richia coli killing by neutrophil elastase. Science 289:1185–1188

    Article  PubMed  CAS  Google Scholar 

  51. Eiserich JP, Baldus S, Brennan ML, et al (2002) Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296:2391–2394

    Article  PubMed  CAS  Google Scholar 

  52. Abu-Soud HM, Hazen SL (2000) Nitric oxide is a physiological substrate for mammalian per-oxidases. J Biol Chem 275:37524–37532

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media Inc.

About this paper

Cite this paper

MacCallum, N.S., Quinlan, G.J., Evans, T.W. (2007). The Role of Neutrophil-Derived Myeloperoxidase in Organ Dysfunction and Sepsis. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49518-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49518-7_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-49517-0

  • Online ISBN: 978-0-387-49518-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics