Skip to main content

Environmental Reservoir and Transmission into the Mammalian Host

  • Chapter
Listeria monocytogenes: Pathogenesis and Host Response

The widespread presence of Listeria monocytogenes in various diverse environments, including those that are natural (i.e., nonagricultural), agricultural, and food-associated, suggests that these environments may serve as sources or reservoirs of L. monocytogenes that can be transmitted to various hosts, including humans. As the vast majority of human listeriosis infections are recognized to occur through consumption of contaminated foods, and as animal listeriosis infections also appear to be predominantly feed-borne, development of effective intervention strategies for reducing the incidence of listeriosis among susceptible human and animal populations requires elucidation of specific routes of L. monocytogenes transmission among different ecosystems and compartments within food and feed production systems. Current knowledge of L. monocytogenes ecology is presented to provide insight into the primary sources that appear to contribute to its introduction into human food-associated environments and foods as well as its transmission among various compartments in food and agricultural production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • al-Ghazali MR, al-Azawi SK (1988a) Storage effects of sewage sludge cake on the survival of Listeria monocytogenes. J Appl Bacteriol 65:209–213

    CAS  Google Scholar 

  • al-Ghazali MR, al-Azawi SK (1988b) Effects of sewage treatment on the removal of Listeria monocytogenes. J Appl Bacteriol 65:203–208

    CAS  Google Scholar 

  • Allerberger F, Guggenbichler JP (1989) Listeriosis in Austria—report of an outbreak in 1986. Acta Microbiol Hung 36:149–152

    PubMed  CAS  Google Scholar 

  • Arvanitidou M, Papa A, Constantinidis TC, Danielides V, Katsouyannopoulos V (1997) The occurrence of Listeria spp. and Salmonella spp. in surface waters. Microbiol Res 152:395–397

    PubMed  CAS  Google Scholar 

  • Autio T, Hielm S, Miettinen M, Sjoberg AM, Aarnisalo K, Bjorkroth J, Mattila-Sandholm T, Korkeala H (1999) Sources of Listeria monocytogenes contamination in a cold-smoked rainbow trout processing plant detected by pulsed-field gel electrophoresis typing. Appl Environ Microbiol 65:150–155

    PubMed  CAS  Google Scholar 

  • Bernagozzi M, Bianucci F, Sacchetti R, Bisbini P (1994) Study of the prevalence of Listeria spp. in surface water. Zentralbl Hyg Umweltmed 196:237–244

    PubMed  CAS  Google Scholar 

  • Beuchat LR (1996) Listeria monocytogenes incidence on vegetables. Food Control 7:223–228

    Google Scholar 

  • Beumer RR, te Giffel MC, Spoorenberg E, Rombouts FM (1996) Listeria species in domestic environments. Epidemiol Infect 117:437–442

    PubMed  CAS  Google Scholar 

  • Borucki MK, Reynolds J, Gay CC, McElwain KL, Kim SH, Knowles DP, Hu J (2004) Dairy farm reservoir of Listeria monocytogenes sporadic and epidemic strains. J Food Prot 67:2496–2499

    PubMed  Google Scholar 

  • Borucki MK, Gay CC, Reynolds J, McElwain KL, Kim SH, Call DR, Knowles DP (2005) Genetic diversity of Listeria monocytogenes strains from a high-prevalence dairy farm. Appl Environ Microbiol 71:5893–5899

    PubMed  CAS  Google Scholar 

  • Botzler RG, Cowan AB, Wetzler TF (1974) Survival of Listeria monocytogenes in soil and water. J Wildl Dis 10:204–212

    PubMed  CAS  Google Scholar 

  • Cai S, Kabuki DY, Kuaye AY, Cargioli TG, Chung MS, Nielsen R, Wiedmann M (2002) Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes. J Clin Microbiol 40:3319–3325

    PubMed  CAS  Google Scholar 

  • CDC (1999) Update: multistate outbreak of listeriosis—United States. MMWR 47:1117–1118

    Google Scholar 

  • Chasseignaux E, Toquin MT, Ragimbeau C, Salvat G, Colin P, Ermel G (2001) Molecular epidemiology of Listeria monocytogenes isolates collected from the environment, raw meat and raw products in two poultry- and pork-processing plants. J Appl Microbiol 91:888–899

    PubMed  CAS  Google Scholar 

  • Chasseignaux E, Gerault P, Toquin MT, Salvat G, Colin P, Ermel G (2002) Ecology of Listeria monocytogenes in the environment of raw poultry meat and raw pork meat processing plants. FEMS Microbiol Lett 210:271–275

    PubMed  CAS  Google Scholar 

  • Chen Y, Ross WH, Gray MJ, Wiedmann M, Whiting RC, Scott VN (2006) Attributing risk to Listeria monocytogenes subgroups: dose response in relation to genetic lineages. J Food Prot 69:335–344

    PubMed  Google Scholar 

  • Colburn KG, Kaysner CA, Abeyta CJ, Wekell MM (1990) Listeria species in a California coast estuarine environment. Appl Environ Microbiol 56:2007–2011

    PubMed  CAS  Google Scholar 

  • De Luca G ZF, Fateh-Moghadm P, Stampi S (1998) Occurrence of Listeria monocytogenes in sewage sludge. Zentralbl Hyg Umweltmed 201:269–277

    PubMed  Google Scholar 

  • De Roin MA, Foong SC, Dixon PM, Dickson JS (2003) Survival and recovery of Listeria monocytogenes on ready-to-eat meats inoculated with a desiccated and nutritionally depleted dustlike vector. J Food Prot 66:962–969

    PubMed  Google Scholar 

  • Dijkstra RG (1971) Investigations on the survival times of Listeria bacteria in suspensions of brain tissue, silage and faeces and in milk. Zentralbl Bakteriol [Orig] 216:92–95

    CAS  Google Scholar 

  • Dijkstra RG (1978) Incidence of Listeria monocytogenes in the intestinal contents of broilers on different farms. Tijdschr Diergeneeskd 103:229–231

    PubMed  CAS  Google Scholar 

  • Donnelly CW (2002) Detection and isolation of Listeria monocytogenes from food samples: implications of sublethal injury. J AOAC Int 85:495–500

    PubMed  CAS  Google Scholar 

  • Eklund M, Poysky F, Paranjpye R, Lashbrook L, Peterson M, Pelroy G (1995) Incidence and sources of Listeria monocytogenes in cold smoking fishery products and processing plants. J Food Prot 58:502–508

    Google Scholar 

  • Ericsson H, Eklow A, Danielsson-Tham M, Loncarevic S, Mentzing L, Persson I, Unnerstad H, Tham W (1997) An outbreak of listeriosis suspected to have been caused by rainbow trout. J Clin Microbiol 35:2904–2907

    PubMed  CAS  Google Scholar 

  • FAO/WHO (2004) Microbiological risk assessment series 5: risk assessment of Listeria monocytogenes in ready-to-eat foods. Available at: http://www.fao.org/documents

    Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    PubMed  CAS  Google Scholar 

  • Farber JM, Peterkin PI (1999) Incidence and behavior of Listeria monocytogenes in meat products. In: w Ryser ET, Marth EH (eds) Listeria, listeriosis, and food safety. 2nd edn. Marcel Decker, New York, pp. 505–564

    Google Scholar 

  • FDA/USDA (2003) Quanitative assessment of relative risk to public health from foodborne Listeria monocytogenes among selected categories of ready-to-eat foods. Available at: http://wwwfoodsafetygov/∼dms/LMr2-tochtml

    Google Scholar 

  • Fenlon DR (1985) Wild birds and silage as reservoirs of Listeria in the agricultural environment. J Appl Bacteriol 59:537–543

    PubMed  CAS  Google Scholar 

  • Fenlon DR (1986) Rapid quantitative assessment of the distribution of Listeria in silage implicated in a suspected outbreak of listeriosis in calves. Vet Rec 118:240–242

    PubMed  CAS  Google Scholar 

  • Fenlon DR (1999) Listeria monocytogenes in the natural environment. In: Ryser ET, Marth EH (eds) Listeria, listeriosis, and food safety. 2nd edn. Marcel Decker, New York, pp. 21–37

    Google Scholar 

  • Fenlon DR, Stewart T, Donachie W (1995) The incidence, numbers and types of Listeria monocytogenes isolated from farm bulk tank milks. Lett Appl Microbiol 20:57–60

    PubMed  CAS  Google Scholar 

  • Fenlon DR, Wilson J, Donachie W (1996) The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing. J Appl Bacteriol 81:641–650

    PubMed  CAS  Google Scholar 

  • Fonnesbech Vogel B, Huss HH, Ojeniyi B, Ahrens P, Gram L (2001) Elucidation of Listeria monocytogenes contamination routes in cold-smoked salmon processing plants detected by DNA-based typing methods. Appl Environ Microbiol 67:2586–2595

    PubMed  CAS  Google Scholar 

  • Frances N, Hornby H, Hunter PR (1991) The isolation of Listeria species from fresh-water sites in Cheshire and North Wales. Epidemiol Infect 107:235–238

    PubMed  CAS  Google Scholar 

  • Garrec N, Picard-Bonnaud F, Pourcher AM (2003) Occurrence of Listeria sp. and L. monocytogenes in sewage sludge used for land application: effect of dewatering, liming and storage in tank on survival of Listeria species. FEMS Immunol Med Microbiol 35:275–283

    PubMed  CAS  Google Scholar 

  • Geuenich HH, Muller HE, Schretten-Brunner A, Seeliger HP (1985) The occurrence of different Listeria species in municipal waste water. Zentralbl Bakteriol Mikrobiol Hyg [B] 181:563–565

    CAS  Google Scholar 

  • Gombas DE, Chen Y, Clavero RS, Scott VN (2003) Survey of Listeria monocytogenes in ready-to-eat foods. J Food Prot 66:559–569

    PubMed  Google Scholar 

  • Gottlieb SL, Newbern EC, Griffin PM, Graves LM, Hoekstra RM, Baker NL, Hunter SB, Holt KG, Ramsey F, Head M, Levine P, Johnson G, Schoonmaker-Bopp D, Reddy V, Kornstein L, Gerwel M, Nsubuga J, Edwards L, Stonecipher S, Hurd S, Austin D, Jefferson MA, Young SD, Hise K, Chernak ED, Sobel J, Group LOW (2006) Multistate outbreak of listeriosis linked to turkey deli meat and subsequent changes in US regulatory policy. Clin Infect Dis 42:29–36

    PubMed  Google Scholar 

  • Goulet V, Jacquet C, Vaillant V, Rebiere I, Mouret E, Lorente C, Maillot E, Stainer F, Rocourt J (1995) Listeriosis from consumption of raw-milk cheese. Lancet 345:1581–1582

    PubMed  CAS  Google Scholar 

  • Gravani R (1999) Incidence and control of Listeria in food-processing facilities. In: Ryser ET, Marth EH (eds) Listeria, listeriosis, and food safety. 2nd edn. Marcel Decker, New York, pp. 657–700

    Google Scholar 

  • Gray MJ, Zadoks RN, Fortes ED, Dogan B, Cai S, Chen Y, Scott VN, Gombas DE, Boor KJ, Wiedmann M (2004) Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol 70:5833–5841

    PubMed  CAS  Google Scholar 

  • Gray ML, Killinger AH (1966) Listeria monocytogenes and listeric infections. Bacteriol Rev 30:309–382

    PubMed  CAS  Google Scholar 

  • Grif K, Patscheider G, Dierich MP, Allerberger F (2003) Incidence of fecal carriage of Listeria monocytogenes in three healthy volunteers: a one-year prospective stool survey. Eur J Clin Microbiol Infect Dis 22:16–20

    PubMed  CAS  Google Scholar 

  • Gronstol H (1979) Listeriosis in sheep. Listeria monocytogenes excretion and immunological state in healthy sheep. Acta Vet Scand 20:168–179

    PubMed  CAS  Google Scholar 

  • Gronstol H, Overas J (1980) Listeriosis in sheep. Eperythrozoon ovis infection used as a model to study predisposing factors. Acta Vet Scand 21:523–532

    PubMed  CAS  Google Scholar 

  • Gudmundsdottir K, Svansson V, Aalbaek B, Gunnarsson E, Sigurdarson S (2004) Listeria monocytogenes in horses in Iceland. Vet Rec 155:456–459

    PubMed  CAS  Google Scholar 

  • Hayashidani H, Kanzaki N, Kaneko Y, Okatani A, Taniguchi T, Kaneko K, Ogawa M (2002) Occurrence of yersiniosis and listeriosis in wild boars in Japan. J Wildl Dis 38:202–205

    PubMed  Google Scholar 

  • Ho JL, Shands KN, Friedland G, Eckind P, Fraser DW (1986) An outbreak of type 4b Listeria monocytogenes infection involving patients from eight Boston hospitals. Arch Intern Med 146:520–524

    PubMed  CAS  Google Scholar 

  • Hoffman AD, Gall KL, Norton DM, Wiedmann M (2003) Listeria monocytogenes contamination patterns for the smoked fish processing environment and for raw fish. J Food Prot 66:52–60

    PubMed  Google Scholar 

  • Hu Y, Gall K, Ho A, Ivanek R, Grohn YT, Wiedmann M (2006) Daily variability of Listeria contamination patterns in a cold-smoked salmon processing operations. J Food Prot 69:2123–2133

    PubMed  Google Scholar 

  • Husu JR (1990) Epidemiological studies on the occurrence of Listeria monocytogenes in the feces of dairy cattle. Zentralbl Veterinarmed B 37:276–282

    PubMed  CAS  Google Scholar 

  • ICMSF (1996) Listeria monocytogenes. In: Roberts TA, Baird-Parker AC, Tompkin RB (eds) Microorganisms in foods 5. 1st edn. Blackie Academic & Professional, London, pp. 141–182

    Google Scholar 

  • Ivanek R, Grohn YT, Wiedmann M (2006) Listeria monocytogenes in multiple habitats and host populations: review of available data for mathematical modeling. Foodborne Pathog Dis 3:319–336

    PubMed  CAS  Google Scholar 

  • Jacquet C, Doumith M, Gordon JI, Martin PM, Cossart P, Lecuit M (2004) A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect Dis 189:2094–2100

    PubMed  CAS  Google Scholar 

  • Jeffers GT, Bruce JL, McDonough PL, Scarlett J, Boor KJ, Wiedmann M (2001) Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147:1095–1104

    PubMed  CAS  Google Scholar 

  • Jiang X, Islam M, Morgan J, Doyle MP (2004) Fate of Listeria monocytogenes in bovine manure-amended soil. J Food Prot 67:1676–1681

    PubMed  Google Scholar 

  • Kabuki DY, Kuaye AY, Wiedmann M, Boor KJ (2004) Molecular subtyping and tracking of Listeria monocytogenes in latin-style fresh-cheese processing plants. J Dairy Sci 87:2803–2812

    PubMed  CAS  Google Scholar 

  • Kathariou S (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65:1811–1829

    PubMed  Google Scholar 

  • Kells J, Gilmour A (2004) Incidence of Listeria monocytogenes in two milk processing environments, and assessment of Listeria monocytogenes blood agar for isolation. Int J Food Microbiol 91:167–174

    PubMed  CAS  Google Scholar 

  • Kreft J, Vazquez-Boland JA, Ng E, Goebel W (1999) Virulence gene clusters and putative pathogenicity islands in Listeriae. In: Kaper JB, Hacker J (eds) Pathogenicity islands and other mobile virulence elements. 1st edn. ASM Press, Washington, DC, pp. 219–232

    Google Scholar 

  • Lappi VR, Thimothe J, Nightingale KK, Gall K, Scott VN, Wiedmann M (2004) Longitudinal studies on Listeria in smoked fish plants: impact of intervention strategies on contamination patterns. J Food Prot 67:2500–2514

    PubMed  Google Scholar 

  • Lappi VR, Thimothe J, Walker J, Bell J, Gall K, Moody MW, Wiedmann M (2004) Impact of intervention strategies on Listeria contamination patterns in crawfish processing plants: a longitudinal study. J Food Prot 67:1163–1169

    PubMed  Google Scholar 

  • Lawrence LM, Gilmour A (1995) Characterization of Listeria monocytogenes isolated from poultry products and from the poultry-processing environment by random amplification of polymorphic DNA and multilocus enzyme electrophoresis. Appl Environ Microbiol 61:2139–2144

    PubMed  CAS  Google Scholar 

  • Linnan M, Mascola L, Lou X, Goulet V, May S, Salminen C, Hird D, Yonkura M, Hayes PS, Weaver RE, Audurier A, Plikaytis BD, Fannin S, Kleks A, Broome CV (1988) Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med 319:823–828

    PubMed  CAS  Google Scholar 

  • Loken T, Aspoy E, Gronstol H (1982) Listeria monocytogenes excretion and humoral immunity in goats in a herd with outbreaks of listeriosis and in a healthy herd. Acta Vet Scand 23:392–399

    PubMed  CAS  Google Scholar 

  • Lozniewski A, Humbert A, Corsaro D, Schwartzbrod J, Weber M, Le Faou A (2001) Comparison of sludge and clinical isolates of Listeria monocytogenes. Lett Appl Microbiol 32:336–339

    PubMed  CAS  Google Scholar 

  • MacDonald F, Sutherland AD (1994) Important differences between the generation times of Listeria monocytogenes and List. innocua in two Listeria enrichment broths. J Dairy Res 61:433–436

    PubMed  CAS  Google Scholar 

  • MacGowan AP, Bowker K, McLauchlin J, Bennett PM, Reeves DS (1994) The occurrence and seasonal changes in the isolation of Listeria spp. in shop bought food stuffs, human faeces, sewage and soil from urban sources. Int J Food Microbiol 21:325–334

    PubMed  CAS  Google Scholar 

  • Markkula A, Autio T, Lunden J, Korkeala H (2005) Raw and processed fish show identical Listeria monocytogenes genotypes with pulsed-field gel electrophoresis. J Food Prot 68:1228–1231

    PubMed  Google Scholar 

  • McLauchlin J (1990) Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. Eur J Clin Microbiol Infect Dis 9:210–213

    PubMed  CAS  Google Scholar 

  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    PubMed  CAS  Google Scholar 

  • Miettinen H, Wirtanen G (2005) Prevalence and location of Listeria monocytogenes in farmed rainbow trout. Int J Food Microbiol 104:135–143

    PubMed  Google Scholar 

  • Murray EGD, Webb RA, Swann MBR (1926) A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J Pathol Bacteriol 29:407–439

    Google Scholar 

  • Nadon CA, Woodward DL, Young C, Rodgers FG, Wiedmann M (2001) Correlations between molecular subtyping and serotyping of Listeria monocytogenes. J Clin Microbiol 39:2704–2707

    PubMed  CAS  Google Scholar 

  • Nicholson FA, Groves SJ, Chambers BJ (2005) Pathogen survival during livestock manure storage and following land application. Bioresour Technol 96:135–143

    PubMed  CAS  Google Scholar 

  • Nightingale KK, Schukken YH, Nightingale CR, Fortes ED, Ho AJ, Her Z, Grohn YT, McDonough PL, Wiedmann M (2004) Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol 70:4458–4467

    PubMed  CAS  Google Scholar 

  • Nightingale KK, Fortes ED, Ho AJ, Schukken YH, Grohn YT, Wiedmann M (2005a) Evaluation of farm management practices as risk factors for clinical listeriosis and fecal shedding of Listeria monocytogenes in ruminants. J Am Vet Med Assoc 227:1808–1814

    Google Scholar 

  • Nightingale KK, Windham K, Martin KE, Yeung M, Wiedmann M (2005b) Select Listeria monocytogenes subtypes commonly found in foods carry distinct nonsense mutations in inlA, leading to expression of truncated and secreted internalin A, and are associated with a reduced invasion phenotype for human intestinal epithelial cells. Appl Environ Microbiol 71:8764–8772

    CAS  Google Scholar 

  • Nightingale KK, Windham K, Wiedmann M (2005) Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol 187:5537–5551

    PubMed  CAS  Google Scholar 

  • Norton DM, McCamey MA, Gall KL, Scarlett JM, Boor KJ, Wiedmann M (2001) Molecular studies on the ecology of Listeria monocytogenes in the smoked fish processing industry. Appl Environ Microbiol 67:198–205

    PubMed  CAS  Google Scholar 

  • Norton DM, Scarlett JM, Horton K, Sue D, Thimothe J, Boor KJ, Wiedmann M (2001) Characterization and pathogenic potential of Listeria monocytogenes isolates from the smoked fish industry. Appl Environ Microbiol 67:646–653

    PubMed  CAS  Google Scholar 

  • Olsen SJ, Patrick M, Hunter SB, Reddy V, Kornstein L, MacKenzie WR, Lane K, Bidol S, Stoltman GA, Frye DM, Lee I, Hurd S, Jones TF, LaPorte TN, Dewitt W, Graves L, Wiedmann M, Schoonmaker-Bopp DJ, Huang AJ, Vincent C, Bugenhagen A, Corby J, Carloni ER, Holcomb ME, Woron RF, Zansky SM, Dowdle G, Smith F, Ahrabi-Fard S, Ong AR, Tucker N, Hynes NA, Mead P (2005) Multistate outbreak of Listeria monocytogenes infection linked to delicatessen turkey meat. Clin Infect Dis 40:962–967

    PubMed  Google Scholar 

  • Piffaretti JC, Kressebuch H, Aeschbacher M, Bille J, Bannerman E, Musser JM, Selander RK, Rocourt J (1989) Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc Natl Acad Sci USA 86:3818–3822

    PubMed  CAS  Google Scholar 

  • Pritchard TJ, Flanders KJ, Donnelly CW (1995) Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants. Int J Food Microbiol 26:375–384

    PubMed  CAS  Google Scholar 

  • Ralovich B, Audurier A, Hajtos I, Berkessy E, Pitron-Szemeredi M (1986) Comparison of Listeria serotypes and phage types isolated from sheep, other animals and humans. Acta Microbiol Hung 33:9–17

    PubMed  CAS  Google Scholar 

  • Reij MW, Den Aantrekker ED (2004) Recontamination as a source of pathogens in processed foods. Int J Food Microbiol 91:1–11

    PubMed  CAS  Google Scholar 

  • Roberts AJ, Wiedmann M (2003) Pathogen, host and environmental factors contributing to the pathogenesis of listeriosis. Cell Mol Life Sci 60:904–918

    PubMed  CAS  Google Scholar 

  • Roberts A, Chan Y, Wiedmann M (2005) Definition of genetically distinct attenuation mechanisms in naturally virulence-attenuated Listeria monocytogenes by comparative cell culture and molecular characterization. Appl Environ Microbiol 71:3900–3910

    PubMed  CAS  Google Scholar 

  • Roberts A, Nightingale K, Jeffers G, Fortes E, Kongo JM, Wiedmann M (2006) Genetic and phenotypic characterization of Listeria monocytogenes lineage III. Microbiology 152:685–693

    PubMed  CAS  Google Scholar 

  • Roche SM, Gracieux P, Milohanic E, Albert I, Virlogeux-Payant I, Temoin S, Grepinet O, Kerouanton A, Jacquet C, Cossart P, Velge P (2005) Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of Listeria monocytogenes. Appl Environ Microbiol 71:6039–6048

    PubMed  CAS  Google Scholar 

  • Rocourt J, Cossart P (1997) Listeria monocytogenes. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology, fundamentals and frontiers. 1st edn. ASM Press, Washington, DC, pp. 337–352

    Google Scholar 

  • Rorvik LM, Caugant DA, Yndestad M (1995) Contamination pattern of Listeria monocytogenes and other Listeria spp. in a salmon slaughterhouse and smoked salmon processing plant. Int J Food Microbiol 25:19–27

    PubMed  CAS  Google Scholar 

  • Rorvik LM, Skjerve E, Knudsen BR, Yndestad M (1997) Risk factors for contamination of smoked salmon withListeria monocytogenes during processing. Int J Food Microbiol 37:215–219

    PubMed  CAS  Google Scholar 

  • Rorvik LM, Aase B, Alvestad T, Caugant DA (2003) Molecular epidemiological survey of Listeria monocytogenes in broilers and poultry products. J Appl Microbiol 94:633–640

    PubMed  CAS  Google Scholar 

  • Ryser E (1999) Listeriosis in animals. In: Ryser ET, Marth EH (eds) Listeria, listeriosis, and food safety. 2nd edn. Marcel Decker, New York, pp. 229–358

    Google Scholar 

  • Ryser E (1999) Foodborne listeriosis. In: Ryser ET, Marth EH (eds) Listeria, listeriosis, and food safety. 2nd edn. Marcel Decker, New York, pp. 299–358

    Google Scholar 

  • Ryser ET, Arimi SM, Bunduki MM, Donnelly CW (1996) Recovery of different Listeria ribotypes from naturally contaminated, raw refrigerated meat and poultry products with two primary enrichment media. Appl Environ Microbiol 62:1781–1787

    PubMed  CAS  Google Scholar 

  • Ryser ET, Arimi SM, Donnelly CW (1997) Effects of pH on distribution of Listeria ribotypes in corn, hay, and grass silage. Appl Environ Microbiol 63:3695–3697

    PubMed  CAS  Google Scholar 

  • Salcedo C, Arreaza L, Alcala B, de la Fuente L, Vazquez JA (2003) Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. J Clin Microbiol 41:757–762

    PubMed  CAS  Google Scholar 

  • Samelis J, Metaxopoulous J (1999) Incidence and principal sources of Listeria spp. and L. monocytogenes contamination in processed meats and a meat processing plant. Food Microbiology 16:465–477

    Google Scholar 

  • Sammarco ML, Ripabelli G, Fanelli I, Grasso GM (2005) Prevalence of Listeria spp. in dairy farm and evaluation of antibiotic-resistance of isolates. Ann Ig 17:175–183

    PubMed  CAS  Google Scholar 

  • Sanaa M, Poutrel B, Menard JL, Serieys F (1993) Risk factors associated with contamination of raw milk by Listeria monocytogenes in dairy farms. J Dairy Sci 76:2891–2898

    PubMed  CAS  Google Scholar 

  • Sauders BD (2005) Molecular epidemiology, diversity, distribution, and ecology of Listeria. PhD Thesis, Cornell University, Ithaca, NY

    Google Scholar 

  • Sauders BD, Wiedmann M (in press) Ecology of Listeria species and L. monocytogenes in the natural environment. In: Ryser ET, Marth EH (eds) Listeria, listeriosis, and food safety. 3rd edn. Marcel Decker, New York

    Google Scholar 

  • Sauders BD, Fortes ED, Morse DL, Dumas N, Kiehlbauch JA, Schukken Y, Hibbs JR, Wiedmann M (2003) Molecular subtyping to detect human listeriosis clusters. Emerg Infect Dis 9:672–680

    PubMed  CAS  Google Scholar 

  • Sauders BD, Mangione K, Vincent C, Schermerhorn J, Farchione CM, Dumas NB, Bopp D, Kornstein L, Fortes ED, Windham K, Wiedmann M (2004) Distribution of Listeria monocytogenes molecular subtypes among human and food isolates from New York State shows persistence of human disease-associated Listeria monocytogenes strains in retail environments. J Food Prot 67:1417–1428

    PubMed  CAS  Google Scholar 

  • Sauders BD, Pettit D, Currie B, Suits P, Evans A, Stellrecht K, Dryja DM, Slate D, Wiedmann M (2005) Low prevalence of Listeria monocytogenes in human stool. J Food Prot 68:178–181

    PubMed  Google Scholar 

  • Sauders BD, Durak MZ, Fortes E, Windham K, Schukken Y, Lembo AJ, Jr, Akey B, Nightingale KK, Wiedmann M (2006) Molecular characterization of Listeria monocytogenes from natural and urban environments. J Food Prot 69:93–105

    PubMed  CAS  Google Scholar 

  • Schlech III WF, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV, Wort AJ, Hightower AW, Johnson SE, King SH, Nicholls ES, Broome CV (1983) Epidemic listeriosis—evidence for transmission by food. N Engl J Med 308:203–206

    Google Scholar 

  • Schlech III WF, Schlech IV WF, Haldane H, Mailman TL, Warhuus M, Crouse N, Haldane DJM (2005) Does sporadic Listeria gastroenteritis exist? A 2-year population-based survey in Nova Scotia, Canada. Clin Infect Dis 41:778–784

    Google Scholar 

  • Schuchat A, Deaver K, Hayes PS, Graves L, Mascola L, Wenger JD (1993) Gastrointestinal carriage of Listeria monocytogenes in household contacts of patients with listeriosis. J Infect Dis 167:1261–1262

    PubMed  CAS  Google Scholar 

  • Sim J, Hood D, Finnie L, Wilson M, Graham C, Brett M, Hudson JA (2002) Series of incidents of Listeria monocytogenes non-invasive febrile gastroenteritis involving ready-to-eat meats. Lett Appl Microbiol 35:409–413

    PubMed  CAS  Google Scholar 

  • Skovgaard N, Morgen CA (1988) Detection of Listeria spp. in faeces from animals, in feeds, and in raw foods of animal origin. Int J Food Microbiol 6:229–242

    PubMed  CAS  Google Scholar 

  • Thimothe J, Nightingale KK, Gall K, Scott VN, Wiedmann M (2004) Tracking of Listeria monocytogenes in smoked fish processing plants. J Food Prot 67:328–341

    PubMed  Google Scholar 

  • Tompkin RB (2002) Control of Listeria monocytogenes in the food-processing environment. J Food Prot 65:709–725

    PubMed  CAS  Google Scholar 

  • Unnerstad H, Romell A, Ericsson H, Danielsson-Tham ML, Tham W (2000) Listeria monocytogenes in faeces from clinically healthy dairy cows in Sweden. Acta Vet Scand 41:167–171

    PubMed  CAS  Google Scholar 

  • Van Coillie E, Werbrouck H, Heyndrickx M, Herman L, Rijpens N (2004) Prevalence and typing of Listeria monocytogenes in ready-to-eat food products on the Belgian market. J Food Prot 67:2480–2487

    PubMed  Google Scholar 

  • Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    PubMed  CAS  Google Scholar 

  • Vela AI, Fernandez-Garayzabal JF, Vazquez JA, Latre MV, Blanco MM, Moreno MA, de La Fuente L, Marco J, Franco C, Cepeda A, Rodriguez Moure AA, Suarez G, Dominguez L (2001) Molecular typing by pulsed-field gel electrophoresis of Spanish animal and human Listeria monocytogenes isolates. Appl Environ Microbiol 67:5840–5843

    PubMed  CAS  Google Scholar 

  • Ward TJ, Gorski L, Borucki MK, Mandrell RE, Hutchins J, Pupedis K (2004) Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J Bacteriol 186:4994–5002

    PubMed  CAS  Google Scholar 

  • Watkins J, Sleath KP (1981) Isolation and enumeration of Listeria monocytogenes from sewage, sewage sludge and river water. J Appl Bacteriol 50:1–9

    PubMed  CAS  Google Scholar 

  • Weber A, Potel J, Schafer-Schmidt R, Prell A, Datzmann C (1995) Studies on the occurrence of Listeria monocytogenes in fecal samples of domestic and companion animals. Zentralbl Hyg Umweltmed 198:117–123

    PubMed  CAS  Google Scholar 

  • Weis J, Seeliger HP (1975) Incidence of Listeria monocytogenes in nature. Appl Microbiol 30:29–32

    PubMed  CAS  Google Scholar 

  • Welshimer HJ (1960) Survival of Listeria monocytogenes in soil. J Bacteriol 80:316–320

    PubMed  CAS  Google Scholar 

  • Welshimer HJ (1968) Isolation of Listeria monocytogenes from vegetation. J Bacteriol 95:300–303

    PubMed  CAS  Google Scholar 

  • Welshimer HJ, Donker-Voet J (1971) Listeria monocytogenes in nature. Appl Microbiol 21:516–519

    PubMed  CAS  Google Scholar 

  • Wesley IV (1999) Listeriosis in Animals. In: Ryser ET, Marth EH (eds) Listeria, listeriosis, and food safety. 2nd edn. Marcel Decker, New York, pp. 39–73

    Google Scholar 

  • Wiedmann M (2002a) Molecular subtyping methods for Listeria monocytogenes. J AOAC Int 85:524–531

    CAS  Google Scholar 

  • Wiedmann M (2002b) Subtyping technologies for bacterial foodborne pathogens. Nutr Rev 60:201–208

    Google Scholar 

  • Wiedmann M, Czajka J, Bsat N, Bodis M, Smith MC, Divers TJ, Batt CA (1994) Diagnosis and epidemiological association of Listeria monocytogenes strains in two outbreaks of listerial encephalitis in small ruminants. J Clin Microbiol 32:991–996

    PubMed  CAS  Google Scholar 

  • Wiedmann M, Bruce JL, Knorr R, Bodis M, Cole EM, McDowell CI, McDonough PL, Batt CA (1996) Ribotype diversity of Listeria monocytogenes strains associated with outbreaks of listeriosis in ruminants. J Clin Microbiol 34:1086–1090

    PubMed  CAS  Google Scholar 

  • Wiedmann M, Arvik T, Bruce JL, Neubauer J, del Piero F, Smith MC, Hurley J, Mohammed HO, Batt CA (1997) Investigation of a listeriosis epizootic in sheep in New York state. Am J Vet Res 58:733–737

    PubMed  CAS  Google Scholar 

  • Wiedmann M, Bruce J, Keating C, Johnson A, McDonough P, Batt C (1997) Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65:2707–2716

    PubMed  CAS  Google Scholar 

  • Windham K, Nightingale K, Wiedmann M (2005) Molecular evolution and diversity of foodborne pathogens. In: Shetty K, Pometto A, Paliyath G (eds) Food biotechnology. CRC Press, Boca Raton, pp. 1259–1291

    Google Scholar 

  • Yokoyama E, Saitoh T, Maruyama S, Katsube Y (2005) The marked increase of Listeria monocytogenes isolation from contents of swine cecum. Comp Immunol Microbiol Infect Dis 28:259–268

    PubMed  Google Scholar 

  • Yu LS, Fung DY (1993) Five-tube most-probable-number method using the Fung-Yu tube for enumeration of Listeria monocytogenes in restructured meat products during refrigerated storage. Int J Food Microbiol 18:97–106

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Oliver, H.F., Wiedmann, M., Boor, K.J. (2007). Environmental Reservoir and Transmission into the Mammalian Host. In: Goldfine, H., Shen, H. (eds) Listeria monocytogenes: Pathogenesis and Host Response. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49376-3_6

Download citation

Publish with us

Policies and ethics