Skip to main content

Challenges in Realizing a Chronic High-Resolution Retinal Prosthesis

  • Chapter
Artificial Sight

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margalit E and Sadda SR (2003) Retinal and optic nerve diseases. Artificial Organs 27:963–974

    Article  Google Scholar 

  2. Humayun MS, Prince M, De Juan Jr E, Barron Y, Moskowitz M, Klock IB, and Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Investigative Ophthalmology and Visual Sciences 40:143–148

    Google Scholar 

  3. Humayun MS, De Juan Jr E, Weiland JD, Dagnelie G, Katona S, Greenberg R, and Suzuki S (1999) Pattern electrical stimulation of the human retina. Vision Research 39:2569–2576

    Article  Google Scholar 

  4. Humayun MS, Greenberg RJ, Mech BV, Yanai D, Mahadevappa M, van Boemel G, Fujii GY, Weiland JD, and De Juan Jr E (2003) Chronically implanted intraocular retinal prosthesis in two blind subjects. In: Proceedings of ARVO Annual Meeting, April 2003.

    Google Scholar 

  5. Weiland JD, Yanai D, Mahadevappa M, Williamson R, Mech BV, Fujii GY, Little J, Greenberg RJ, De Juan Jr E, and Humayun MS (2004) Visual task performance in blind humans with retinal prosthetic implants. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS

    Google Scholar 

  6. Weiland JD, Liu W, and Humayun MS (2005) Retinal prosthesis. Annual Review of Biomedical Engineering 7:361–401

    Article  Google Scholar 

  7. Cha K, Horch K, and Normann RA (1992) Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Annals of Biomedical Engineering 20:439–449

    Article  Google Scholar 

  8. Cha K, Horch KW, Normann RA, and Boman DK (1992) Reading speed with a pixelized vision system. Journal of Optical Society of America A: Optics, Image Science and Vision 9:673–677

    Article  ADS  Google Scholar 

  9. Cha K, Horch KW, and Normann RA (1992) Mobility performance with a pixelized vision system. Vision Research 32:1367–1372

    Article  Google Scholar 

  10. Hayes JS, Yin JT, Piyathaisere DV, Weiland JD, Humayun MS, and Dagnelie G (2003) Visually guided performance of simple tasks using simulated prosthetic vision. Artificial Organs 27:1016–1028

    Article  Google Scholar 

  11. Liu W and Humayun MS (2004) Retinal prosthesis. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp 218–219

    Google Scholar 

  12. Kendir GA, Liu W, Wang G, Sivaprakasam M, Bashirullah R, Humayun MS, and Weiland JD (2005) An optimal design methodology for inductive power link with class-E amplifier. IEEE Transactions on Circuits and Systems – I 52:857–866

    Article  Google Scholar 

  13. Wang G, Liu W, Bashirullah R, Sivaprakasam M, Kendir GA, Ji Y, Humayun MS, and Weiland JD (2004) A closed loop transcutaneous power transfer system for implantable devices with enhanced stability. In: Proceedings of the IEEE International Symposium on Circuits and Systems. pp 17–20

    Google Scholar 

  14. Sivaprakasam M, Liu W, Humayun MS, and Weiland JD (2005) A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device. IEEE Journal of Solid-State Circuits 41:763–771

    Article  Google Scholar 

  15. Fink W, Tarbell M, Weiland JD, and Humayun MS (2004) DORA: Digital Object Recognition Audio-Assistant for the visually impaired. Investigative Ophthalmology and Visual Science 45:4201

    Google Scholar 

  16. http://www.mosis.org/products/fab/vendors/

    Google Scholar 

  17. Mahadevappa M, Weiland JD, Yanai D, Fine I, Greenberg RJ, and Humayun MS (2005) Perceptual thresholds and electrode impedance in 3 retinal prosthesis subjects. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13:201–206

    Article  Google Scholar 

  18. Soykan O (2002) Power sources for implantable medical devices. Medical Device Manufacturing and Technology

    Google Scholar 

  19. Grover FW (1973) Inductance Calculation Working Formulas and Tables. Instrument Society of America, Research Triangle Park, North Carolina.

    Google Scholar 

  20. Lee TH (1998) The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  21. Sullivan CR (1999) Optimal choice for number of strands in a litz-wire transformer winding. IEEE Transactions on Power Electronics 14:283–291

    Article  Google Scholar 

  22. Tang Z, Smith B, Schild JH, and Peckham PH (1995) Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Transactions on Biomedical Engineering 42:524–528

    Article  Google Scholar 

  23. Wang G, Liu W, Sivaprakasam M, and Kendir GA (2005) Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Transactions on Circuits and Systems-I 52:2109–2117

    Article  Google Scholar 

  24. Takahashi M, Watanabe K, Sato F, and Matsuki H (2001) Signal transmission system for high frequency magnetic telemetry for an artificial heart. IEEE transactions on Magnetics 372921–372924

    Google Scholar 

  25. Bashirullah R, Liu W, Ji Y, Kendir GA, Sivaprakasam M, Wang G, and Pundi B (2003) A smart bi-directional telemetry unit for retinal prosthetic device. In: Proceedings of International Symposium on Circuits and Systems. pp 5–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, W., Sivaprakasam, M., Wang, G., Zhou, M., Weiland, J.D., Humayun, M.S. (2007). Challenges in Realizing a Chronic High-Resolution Retinal Prosthesis. In: Humayun, M.S., Weiland, J.D., Chader, G., Greenbaum, E. (eds) Artificial Sight. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49331-2_7

Download citation

Publish with us

Policies and ethics