Skip to main content

Electrophysiology of Natural and Artificial Vision

  • Chapter
  • 927 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network-Computation in Neural Systems. 9 (4): R53–78.

    Article  MATH  MathSciNet  Google Scholar 

  2. Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nature Neuroscience 7 (5): 446–51.

    Article  Google Scholar 

  3. Granit R (1933) The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiology 77: 207–239.

    Google Scholar 

  4. Marmor MF (1989). An international standard for electroretinography. Documenta Ophthalmologica. 73 (4): 299–302.

    Article  Google Scholar 

  5. Marmor MF (1995) An updated standard for clinical electroretinography. Archives of Ophthalmology. 113 (11): 1375–6.

    Google Scholar 

  6. Marmor MF & Zrenner E (1999) Standard for clinical electroretinography (1999 update). International Society for Clinical Electrophysiology of Vision. Documenta Ophthalmologica 97 (2): 143–56.

    Article  Google Scholar 

  7. Fishman GA & Sokol S (1990) Electrophysiologic Testing in Disorders of the Retina, Optic Nerve, and Visual Pathway. American Academy of Ophthalmology (Pub).

    Google Scholar 

  8. Lam BL (2005) Electrophysiology of Vision: Clinical Testing and Applications. Taylor and Francis Group, Boca Raton (Pub)

    Google Scholar 

  9. Pepperberg DR, Birch DG & Hood DC (1997) Photoresponses of human rods in vivo derived from paired-flash electroretinograms. Visual Neuroscience 14: 73–82.

    Article  Google Scholar 

  10. Hetling JR & Pepperberg DR (1999) Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired-flash electroretinograms. Journal of Physiology (London) 516: 593–609.

    Article  Google Scholar 

  11. Bearse MA Jr. & Sutter EE (1996) Imaging localized retinal dysfunction with the multifocal electroretinogram. Journal of the Optical Society of America, A, Optics, Image Science, & Vision. 13 (3): 634–40.

    Article  ADS  Google Scholar 

  12. Enroth-Cugell C & Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187: 517–552.

    Google Scholar 

  13. Passaglia CL, Troy JB, Ruttiger L & Lee BB (2002) Orientation sensitivity of ganglion cells in primate retina. Vision Research. 42 (6): 683–94.

    Article  Google Scholar 

  14. Baig-Silva MS, Hathcock CD & Hetling JR (2005) A preparation for studying electrical stimulation of the retina in vivo in rat. Journal of Neural Engineering 2: S29–S38.

    Article  ADS  Google Scholar 

  15. Yang, X-L (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Progress in Neurobiology 73: 127–150.

    Article  Google Scholar 

  16. Robson JG & Frishman LJ (1999) Dissecting the dark-adapted electroretinogram. Documentia Ophthalmologica 95: 187–215.

    Article  Google Scholar 

  17. Xu L, Ball SL, Alexander KR & Peachey NS (2003) Pharmacological analysis of the rat cone electroretinogram. Visual Neuroscience 20: 297–306.

    Article  Google Scholar 

  18. Hetling JR & Baig-Silva MS (2004) Neural prostheses for vision: Designing a functional interface with retinal neurons. Neurological Research, 26: 21–34.

    Article  Google Scholar 

  19. Hafezi F, Grimm C, Simmen BC, et al. (2000) Molecular ophthalmology: an update on animal models for retinal degeneration and dystrophies. Br J Ophthalmol. 84: 922–927.

    Google Scholar 

  20. Jones BW & Marc RE (2005) Retinal remodeling during retinal degeneration. Experimental Eye Research 81: 123–137.

    Article  Google Scholar 

  21. Machida S, Kondo M, Jamison JA, et al. (2000) P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci. 41: 3200–3209.

    Google Scholar 

  22. Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22: 607–655.

    Article  Google Scholar 

  23. Meyer RD, Cogan SF, Nguyen TH, Rauh RD (2001) Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans Neural Syst Rehabil Eng 9: 2–11.

    Article  Google Scholar 

  24. Slaughter MM & Miller RF (1981) 2-amino-4-phosphonobutyric acid: A new pharmacological tool for retina research. Science 211: 182–185.

    Article  ADS  Google Scholar 

  25. Brandstätter JH, Koulen P, Kuhn R, van der Putten H & Wässle H (1996) Compartmental localization of a metabotropic glutamate receptor (mGluR7): two different active sites at a retinal synapse. Journal of Neuroscience 16: 4749–4756.

    Google Scholar 

  26. Murakami M, Otsuka T & Shimazaki H (1975) Effects of aspartate and glutamate on the bipolar cells in the carp retina. Vision Research 15: 456–458.

    Article  Google Scholar 

  27. Slaughter MM & Miller RF (1983) An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science 219: 1230–1232.

    Article  ADS  Google Scholar 

  28. Davies J (1982) Conformational aspects of the actions of some piperidine dicarboxylic acids at excitatory amino acid receptors in the mammalian and amphibian spinal cord. Neurochemical Research 7(9): 1119–33.

    Article  Google Scholar 

  29. Hashimoto K & Kan M (1998) Presynaptic origin of paired-pulse depression at climbing fibre Purkinje cell synapses in the rat cerebellum. Journal of Physiology 506.2: 391–405.

    Article  Google Scholar 

  30. Massey SC & Miller RF (1990) N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. Journal of Neurophysiology 63: 16–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hetling, J.R. (2007). Electrophysiology of Natural and Artificial Vision. In: Humayun, M.S., Weiland, J.D., Chader, G., Greenbaum, E. (eds) Artificial Sight. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49331-2_20

Download citation

Publish with us

Policies and ethics