Skip to main content

Artificial Vision: Vision of a Newcomer

  • Chapter
Artificial Sight

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 925 Accesses

Abstract

The Japanese Consortium for an Artificial Retina has developed a new stimulating method named Suprachoroidal-Transretinal Stimulation (STS). Using STS, electrically evoked potentials (EEPs) were effectively elicited in Royal College of Surgeons (RCS) rats and in rabbits and cats with normal vision, using relatively small stimulus currents, such that the spatial resolution appeared to be adequate for a visual prosthesis. The histological analysis showed no damage to the rabbit retina when electrical currents sufficient to elicit distinct EEPs were applied. It was also shown that transcorneal electrical stimulation (TES) to the retina prevented the death of retinal ganglion cells (RGCs). STS, which is less invasive than other retinal prostheses, could be one choice to achieve artificial vision, and the optimal parameters of electrical stimulation may also be effective for the neuroprotection of residual RGCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Humayun MS (2001) Intraocular retinal prosthesis. Trans Am Ophthalmol Soc, 99:271–300.

    Google Scholar 

  2. Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, Piyathaisere DV, O’Hearn TM, Liu W, Lazzi G, Dagnelie G, Scribner DA, de Juan E, Jr, Humayun MS (2002) Retinal prosthesis for the blind. Survey of ophthalmology 47:335–356.

    Article  Google Scholar 

  3. Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025.

    Article  ADS  Google Scholar 

  4. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Opthalmic Res 29:281–289.

    Article  Google Scholar 

  5. Humayun MS, Probst R, de Juan E, Jr, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 114:40–46.

    Google Scholar 

  6. Majji AB, Humayun MS, Weiland JD, Suzuki S, D’anna SA, de Juan E, Jr (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40:2073–2081.

    Google Scholar 

  7. Nadig MN (1999) Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity. Clinical Neurophysiology 110:1545–1553.

    Article  Google Scholar 

  8. Walter P, Heimann K (2000) Evoked cortical potential after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp ophthalmol 238:315–318.

    Article  Google Scholar 

  9. Chow AY, Chow VY (1997) Subretinal electrical Stimulation of the rabbit retina. Neuroscience letters 225:13–16.

    Article  Google Scholar 

  10. Chow AY, Pardue MT, Perlman JI, Ball SL, Chow VY, Helting JR, Peyman GA, Liang C, Stubbs EB, Jr, Peachey NS (2002) Subretinal implantation of semiconductor-based photodiodes: Durability of novel implant designs. J Rehabilitation Res Develop 39:313–322.

    Google Scholar 

  11. Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239:961–967.

    Article  Google Scholar 

  12. Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39:2555–2567.

    Article  Google Scholar 

  13. Walter P, Szurman P, Viobig M, Berk H, Ludtke-Handjery H-C, Deng HR, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19:546–552.

    Article  Google Scholar 

  14. Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004) Electrophysiological Studies on the Feasibility of Suprachoroidal-Transretinal Stimulation for Artificial Vision in Normal and RCS Rats. Invest Ophthalmol Vis Sci 45:560–566.

    Article  Google Scholar 

  15. Nakauchi K, Fujikado T, Kanda H, Morimoto T, Choi JS, Ikuno Y, Sakaguchi H, Kamei M, Ohji M, Yagi T, Nishimura S, Sawai H, Fukuda Y, Tano Y (2005) Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes. Graefes Arch Clin Exp Ophthalmol, 243:169–174.

    Article  Google Scholar 

  16. Dawson WW, Radtke ND (1977) The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 16:249–252.

    Google Scholar 

  17. McCreery DB, Agnew WF, Yuen TG, Bullara L (1990) Charge density and charge per phase as cofacters in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37:996–1001.

    Article  Google Scholar 

  18. Zhang LI, Poo MM (2001) Electrical activity and development of neural circuits Nat. Neurosci. 4(Suppl): 1207–1214.

    Google Scholar 

  19. Leake PA, Hradek GT, Rebscher SJ, Snyder RL (1991) Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear Res 54:251–257.

    Article  Google Scholar 

  20. Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by cochlear inplant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 412:543–562.

    Article  Google Scholar 

  21. Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 91:1632–1636.

    Article  Google Scholar 

  22. Kermer P, Kloecker N, Labes M, Baehr M (1998) Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J Neurosci 18:4656–4662.

    Google Scholar 

  23. Shen S, Wiemelt AP, McMorris FA, Barres BA (1999) Retinal ganglion cells lose trophic responsiveness after axotomy. Neuron 23:285–295.

    Article  Google Scholar 

  24. Morimoto T, Miyoshi T, Fujikado T, Tano Y, Fukuda Y (2002) Electrical stimulation enhanced the survival of axotomized retinal ganglion cells in vivo. Neuroreport 13:227–230.

    Article  Google Scholar 

  25. Morimoto T, Miyoshi T, Matsuda S, Tano Y, Fujikado T, Fukuda Y (2005) Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogeneous retinal IGF-1 system. Inv Ophthal Vis Sci 46:2147–2155.

    Article  Google Scholar 

  26. Potts AM, Inoue J, Buffum D (1968) The electrically evoked response of the visual system (EER). Invest Ophthalmol 7:269–278.

    Google Scholar 

  27. Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12:4381–4390.

    Article  Google Scholar 

  28. Morimoto T, Choi JS, Miyoshi T, Fujikado T, Fukuda Y Tano Y, Fujikado T (2005) Effects of transcorneal electrical stimulation on the survival of photoreceptors in RCS rats, ARVO 2005 46: E-Abstract.

    Google Scholar 

  29. Paedue MT, Phillips MJ, Yin H, Sippy BD, Webb-Wood S, Chow AY, Ball SL (2005) Neuroprotective effect of subretinal implants in the RCS rat. Inv Ophthal Vis Sci 46:674–682.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fujikado, T., Sawai, H., Tano, Y. (2007). Artificial Vision: Vision of a Newcomer. In: Humayun, M.S., Weiland, J.D., Chader, G., Greenbaum, E. (eds) Artificial Sight. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49331-2_2

Download citation

Publish with us

Policies and ethics