Skip to main content

Electrochemistry, Nanomaterials, and Nanostructures

  • Chapter

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter deals with the development of new methods for the design of more efficient electrochemical cells destined specifically for energy conversion and storage based on synthesis and design of functional electrodes and electrolytes. The main focus of this chapter is on novel strategies that exploit nanoscale architectures to enhance the efficiency of alternative energy conversion and storage devices as well as on the basic principles of electrochemistry governing the effects of nanoscale design on electrodes and electrolytes. In addition, the chapter provides a review of fundamental electron transfer concepts of relevance to electrochemistry in general and alternative energy devices in particular.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dresselhaus, M.S. and I.L. Thomas, Alternative energy technologies. Nature, 2001. 414: pp. 332–337

    Article  CAS  Google Scholar 

  2. Goodisman, J., Electrochemistry: Theoretical Foundation. 1987, Chichester: Wiley

    Google Scholar 

  3. Schmickler, W., Interfacial Electrochemistry. 1995, Oxford: Oxford University Press

    Google Scholar 

  4. Bard, A.J. and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2000, Chichester: Wiley

    Google Scholar 

  5. Bockris, J.O.M. and S.U.M. Khan, Surface Electrochemistry: A Molecular Level Approach. 1993, New York: Springer

    Book  Google Scholar 

  6. Bockris, J.O.M. and A.K.N. Reddy, Modern Electrochemistry. Vol.1. 1973, New York: A Plenum/Rosetta Edition

    Book  Google Scholar 

  7. Cao, G., Nanostructures and Nanomaterials: Synthesis, Properties and Applications. 2004, Singapore: Imperial College Press

    Book  Google Scholar 

  8. Adams, D.M., L. Brus, C.E.D. Chidsey, S. Creager, C. Creutz, C.R. Kagan, P.V. Kamat, M. Lieberman, S. Lindsay, R.A. Marcus, R.M. Metzger, M.E. Michel-Beyerle, J.R. Miller, M.D. Newton, D.R. Rolison, O. Sankey, K.S. Schanze, J. Yardley, and X.Y. Zhu, Charge transfer on the nanoscale: Current status. Journal of Physical Chemistry B, 2003. 107(28): pp. 6668–6697

    Article  CAS  Google Scholar 

  9. Zukalova, M., A. Zukal, L. Kavan, M.K. Nazeeruddin, P. Liska, and M. Gratzel, Organized mesoporous TiO 2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Letters, 2005. 5(9): pp. 1789–1792

    Article  CAS  Google Scholar 

  10. Li, N.C., C.R. Martin, and B. Scrosati, Nanomaterial-based Li-ion battery electrodes. Journal of Power Sources, 2001. 97–98: pp. 240–243

    Article  Google Scholar 

  11. Liu, Y., C. Compson, and M.L. Liu, Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2004. 138(1–2): pp. 194–198

    Article  CAS  Google Scholar 

  12. Sides, C.R., N.C. Li, C.J. Patrissi, B. Scrosati, and C.R. Martin, Nanoscale materials for lithium-ion batteries. Mrs Bulletin, 2002. 27(8): pp. 604–607

    Article  CAS  Google Scholar 

  13. Singhal, A., G. Skandan, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, and J.J. Xu, Nanostructured electrodes for next generation rechargeable electrochemical devices. Journal of Power Sources, 2004. 129(1): pp. 38–44

    Article  CAS  Google Scholar 

  14. Bishop, D., Nanotechnology and the end of Moore's Law? Bell Labs Technical Journal, 2005. 10(3): pp. 23–28

    Article  Google Scholar 

  15. Lai, L.B., D.H. Chen, and T.C. Huang, Preparation and electrocatalytic activity of Pt/Ti nanostructured electrodes. Journal of Materials Chemistry, 2001. 11(5): pp. 1491–1494

    Article  CAS  Google Scholar 

  16. An, K.H., K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, and Y.H. Lee, High-capacitance superca-pacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. Journal of the Electrochemical Society, 2002. 149(8): pp. A1058–A1062

    Article  CAS  Google Scholar 

  17. Frackowiak, E. and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39: pp. 937–950

    Article  CAS  Google Scholar 

  18. Fuertes, A.B., F. Pico, and J.M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. Journal of Power Sources, 2004. 133(2): pp. 329–336

    Article  CAS  Google Scholar 

  19. Kim, I.H., J.H. Kim, Y.H. Lee, and K.B. Kim, Synthesis and characterization of electro-chemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications. Journal of the Electrochemical Society, 2005. 152(11): pp. A2170–A2178

    Article  Google Scholar 

  20. Kim, I.H., J.H. Kim, and K.B. Kim, Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application. Electrochemical and Solid State Letters, 2005. 8(7): pp. A369–A372

    Article  CAS  Google Scholar 

  21. Liu, C.G., M. Liu, M.Z. Wang, and H.M. Cheng, Research and development of carbon materials for electrochemical capacitors — II — The carbon electrode. New Carbon Materials, 2002. 17(2): pp. 64–72

    CAS  Google Scholar 

  22. Wang, Q., J.E. Moser, and M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Journal of Physical Chemistry B, 2005. 109(31): pp. 14945–14953

    Article  CAS  Google Scholar 

  23. Xiao, Q.F. and X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta, 2003. 48(5): pp. 575–580

    Article  CAS  Google Scholar 

  24. Lee, K., R. Menon, C.O. Yoon, and A.J. Heeger, Reflectance of conducting polypyrrole: Observation of the metal insulator transition driven by disorder. Physical Review B, 1995. 52: pp. 4779

    Article  CAS  Google Scholar 

  25. Gray, F.M., Polymer Electrolytes. 1997, Cambridge: Royal Society of Chemistry

    Google Scholar 

  26. Bujdak, J., E. Hackett, and E.P. Giannelis, Chemical Materials, 2000. 12: pp. 2168

    Article  CAS  Google Scholar 

  27. Solomon, M.J., A.S. Almusallam, K.F. Seefeldt, A. Somwangthanaroj, and P. Varadan, Macromolecules, 2001. 34: pp. 7219

    Article  CAS  Google Scholar 

  28. Maier, J., Prog. Solid State Chem., 1995. 23: pp. 171–265

    Article  CAS  Google Scholar 

  29. Rhodes, C.P., J.W. Long, M.S. Doescher, J.J. Fontanella, and D.R. Rolison, Nanoscale polymer electrolytes: Ultrathin electrodeposited poly(phenylene oxide) with solid-state ionic conductivity. Journal of Physical Chemistry B, 2004. 108(35): pp. 13079–13087

    Article  CAS  Google Scholar 

  30. Petrii, O.A. and G.A. Tsirlina, Size effects in electrochemistry. Uspekhi Khimii, 2001. 70(4): pp. 330–344

    Google Scholar 

  31. Hagfeldt, A., G. Boschloo, H. Lindstrom, E. Figgemeier, A. Holmberg, V. Aranyos, E. Mag-nusson, and L. Malmqvist, A system approach to molecular solar cells. Coordination Chemistry Reviews, 2004. 248(13–14): pp. 1501–1509

    Article  CAS  Google Scholar 

  32. Li, N.C., C.J. Patrissi, G.L. Che, and C.R. Martin, Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. Journal of the Electrochemical Society, 2000. 147(6): pp. 2044–2049

    Article  CAS  Google Scholar 

  33. Schultze, J.W., A. Heidelberg, C. Rosenkranz, T. Schapers, and G. Staikov, Principles of electrochemical nanotechnology and their application for materials and systems. Electrochimica Acta, 2005. 51(5): pp. 775–786

    Article  CAS  Google Scholar 

  34. Davies, T.J., M.E. Hyde, and R.G. Compton, Nanotrench arrays reveal insight into graphite electrochemistry. Angewandte Chemie International Edition, 2005. 44(32): pp. 5121–5126

    Article  CAS  Google Scholar 

  35. Waje, M., C. Wang, J. Tang, and Y.S. Yan, Nanostructured electrodes for hydrogen fuel cells. Abstracts of Papers of the American Chemical Society, 2004. 227 U1082–U1082

    Google Scholar 

  36. Cai, C.D., J.Z. Zhou, L. Qi, Y.Y. Xi, B.B. Lan, L.L. Wu, and Z.H. Lin, Conductance of a single conducting polyaniline nanowire. Acta Physico-Chimica Sinica, 2005. 21(4): pp. 343–346

    CAS  Google Scholar 

  37. Park, S., Y. Xie, and M.J. Weaver, Electrocatalytic pathways on carbon-supported platinum nanoparticles: Comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir, 2002. 18(15): pp. 5792–5798

    Article  CAS  Google Scholar 

  38. Vinodgopal, K., M. Haria, D. Meisel, and P. Kamat, Fullerene-based carbon nanostructures for methanol oxidation. Nano Letters, 2004. 4(3): pp. 415–418

    Article  CAS  Google Scholar 

  39. Sun, N.X. and K. Lu, Physical Review B, 1997. 54: pp. 6058

    Article  Google Scholar 

  40. Park, S., P.X. Yang, P. Corredor, and M.J. Weaver, Transition metal-coated nanoparticle films: Vibrational characterization with surface-enhanced Raman scattering. Journal of the American Chemical Society, 2002. 124(11): pp. 2428–2429

    Article  CAS  Google Scholar 

  41. Park, S., A. Wieckowski, and M.J. Weaver, Electrochemical infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles. Journal of the American Chemical Society, 2003. 125(8): pp. 2282–2290

    Article  CAS  Google Scholar 

  42. Park, S. and M.J. Weaver, A versatile surface modification scheme for attaching metal nanoparticles onto gold: Characterization by electrochemical infrared spectroscopy. Journal of Physical Chemistry B, 2002. 106(34): pp. 8667–8670

    Article  CAS  Google Scholar 

  43. Park, S., S.A. Wasileski, and M.J. Weaver, Some interpretations of surface vibrational spectroscopy pertinent to fuel-cell electrocatalysis. Electrochimica Acta, 2002. 47(22–23): pp. 3611–3620

    Article  CAS  Google Scholar 

  44. Park, S., Y.T. Tong, A. Wieckowski, and M.J. Weaver, Infrared spectral comparison of electrochemical carbon monoxide adlayers formed by direct chemisorption and methanol dissociation on carbon-supported platinum nanoparticles. Langmuir, 2002. 18(8): pp. 3233–3240

    Article  CAS  Google Scholar 

  45. Park, S., Y. Tong, A. Wieckowski, and M.J. Weaver, Infrared reflection-absorption properties of platinum nanoparticle films on metal electrode substrates: control of anomalous opticaleffects. Electrochemistry Communications, 2001. 3(9): pp. 509–513

    Article  CAS  Google Scholar 

  46. Park, S., P.K. Babu, A. Wieckowski, and M.J. Weaver, Electrochemical infrared characterization of CO domains on ruthenium decorated platinum nanoparticles. Abstracts of Papers of the American Chemical Society, 2003. 225 U619–U619

    Google Scholar 

  47. Weaver, M.J. and S.H. Park, Vibrational and electrocatalytic characterization of Pt-group nanoparticle films. Abstracts of Papers of the American Chemical Society, 2002. 223: pp. U387–U387

    Google Scholar 

  48. Weaver, M.J., Surface-enhanced Raman spectroscopy as a versatile in situ probe of chemisorption in catalytic electrochemical and gaseous environments. Journal of Raman Spectroscopy, 2002. 33(5): pp. 309–317

    Article  CAS  Google Scholar 

  49. Brinker, C.J. and C.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol-Gel Processing. 1990, San Diego: Academic

    Google Scholar 

  50. Alivisatos, A.P., Science, 1996. 271: pp. 933

    Article  CAS  Google Scholar 

  51. Tamashiro, M.N., V.B. Henriques, and M.T. Lamy, Aqueous suspensions of charged spherical colloids: Dependence of the surface charge on ionic strength, acidity, and colloid concentration. Langmuir, 2005. 21(24): pp. 11005–11016

    Article  CAS  Google Scholar 

  52. Manciu, M. and E. Ruckenstein, The polarization model for hydration/double layer interactions: the role of the electrolyte ions. Advances in Colloid and Interface Science, 2004. 112(1–3): pp. 109–128

    Article  CAS  Google Scholar 

  53. Turkevish, J., Gold Bull., 1985. 18: pp. 86.

    Article  Google Scholar 

  54. Faraday, M., Philos. Trans., 1857. 147: pp. 145.

    Google Scholar 

  55. Grabar, K.C., P.C. Smith, M.D. Musik, J.A. Davis, D.G. Walter, M.A. Jackson, A.P. Guthrie, and M.J. Natan, Journal of American Chemical Society, 1996. 118: pp. 1148

    Article  CAS  Google Scholar 

  56. Hodes, G., Electrochemistry of Nanomaterials. 2001, Weinheim: Wiley

    Book  Google Scholar 

  57. Agrios, A.G. and P. Pichat, State of the art and perspectives on materials and applications of photocatalysis over TiO 2. Journal of Applied Electrochemistry, 2005. 35(7): pp. 655–663

    Article  CAS  Google Scholar 

  58. Wallace, J.M., B.M. Dening, K.B. Eden, R.M. Stroud, J.W. Long, and D.R. Rolison, Silver-colloid-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. Langmuir, 2004. 20(21): pp. 9276–9281

    Article  CAS  Google Scholar 

  59. Xiang, J., B. Liu, S.T. Wu, B. Ren, F.Z. Yang, B.W. Mao, Y.L. Chow, and Z.Q. Tian, A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angewandte Chemie International Edition, 2005. 44(8): pp. 1265–1268

    Article  CAS  Google Scholar 

  60. Wasileski, S.A. and M.J. Weaver, Influence of solvent co-adsorption on the bonding and vibrational behavior of carbon monoxide on Pt(111) electrodes. Abstracts of Papers of the American Chemical Society, 2003. 225: pp. U682

    Google Scholar 

  61. Schindler, W., M. Hugelmann, and P. Hugelmann, In situ scanning probe spectroscopy at nanoscale solid/liquid interfaces. Electrochimica Acta, 2005. 50(15): pp. 3077–3083

    Article  CAS  Google Scholar 

  62. Han, D.H. and S.M. Park, Electrochemistry of conductive polymers. 32. Nanoscopic examination of conductivities of polyaniline films. Journal of Physical Chemistry B, 2004. 108(37): pp. 13921–13927

    Article  CAS  Google Scholar 

  63. Gutierrez-Tauste, D., I. Zumeta, E. Vigil, M.A. Hernandez-Fenollosa, X. Domenech, and J.A. Ayllon, New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation. Journal of Photochemistry and Photobiology Chemistry, 2005. 175(2–3): pp. 165–171

    Article  CAS  Google Scholar 

  64. Altair, Hosokawa, Rutgers work on nanostructured electrodes. American Ceramic Society Bulletin, 2004. 83(10): pp. 3–3

    Google Scholar 

  65. Gomez, R. and P. Salvador, Photovoltage dependence on film thickness and type of illumination in nanoporous thin film electrodes according to a simple diffusion model. Solar Energy Materials and Solar Cells, 2005. 88(4): pp. 377–388

    Article  CAS  Google Scholar 

  66. Gomez, R., J. Solla-Gullon, J.M. Perez, and A. Aldaz, Nanoparticles-on-electrode approach for in situ surface-enhanced Raman spectroscopy studies with platinum-group metals: examples and prospects. Journal of Raman Spectroscopy, 2005. 36(6–7): pp. 613–622

    Article  CAS  Google Scholar 

  67. Lakard, B., J.C. Jeannot, M. Spajer, G. Herlem, M. de Labachelerie, P. Blind, and B. Fahys, Fabrication of a miniaturized cell using microsystern technologies for electrochemical applications. Electrochimica Acta, 2005. 50(9): pp. 1863–1869

    Article  CAS  Google Scholar 

  68. Jang, S.Y., M. Marquez, and G.A. Sotzing, Writing of conducting polymers using nanoelec-trochemistry. Synthetic Metals, 2005. 152(1–3): pp. 345–348

    Article  CAS  Google Scholar 

  69. Sides, C.R. and C.R. Martin, Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Advanced Materials, 2005. 17(1): pp. 125–128

    Article  CAS  Google Scholar 

  70. Xu, Q. and M.A. Anderson, J. Am. Ceram. Soc., 1994. 77: pp. 1939.

    Article  CAS  Google Scholar 

  71. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414: pp. 338–344

    Article  Google Scholar 

  72. Uvarov, N.F. and V.V. Boldyrev, Size effects in chemistry of heterogeneous systems. Russian Chemical Review, 2001. 70(4): pp. 265–284

    Article  CAS  Google Scholar 

  73. Rhodes, C.P., J.W. Long, M.S. Doescher, B.M. Dening, and D.R. Rolison, Charge insertion into hybrid nanoarchitectures: mesoporous manganese oxide coated with ultrathin poly(phenylene oxide). Journal of Non-Crystalline Solids, 2004. 350: pp. 73–79

    Article  CAS  Google Scholar 

  74. Kuznetsov, A.M. and J. Ulstrup, Electrochemica Acta, 2000. 45: pp. 2339

    Article  CAS  Google Scholar 

  75. Fawcett, W.R., J. Lipkowski and P.N. Ross, Editors. Electrocatalysis 1998, Wiley: New York. pp. 323

    Google Scholar 

  76. Aral, B.K. and D.M. Kalyon, Effects of temperature and surface roughness on time-dependent development of wall slip in torsional flow of concentrated suspensions. Journal of Rheology, 1994. 38: pp. 957–972

    Article  CAS  Google Scholar 

  77. Roberts, G.P. and H.A. Barnes, New measurements of the flow-curves for Carbopol dispersions without slip artifacts. Rheological Acta, 2001. 40: pp. 499

    Article  CAS  Google Scholar 

  78. Leger, L., H. Hervert, G. Massey, and E. Durlist, Journal of Physics: Condensed Matter, 1997. 9: pp. 7719

    Article  CAS  Google Scholar 

  79. Arico, A.S., P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005. 4(5): pp. 366–377

    Article  CAS  Google Scholar 

  80. Nanu, M., J. Schoonman, and A. Goossens, Solar-energy conversion in TiO2/CuInS2 nanocomposites. Advanced Functional Materials, 2005. 15(1): pp. 95–100

    Article  CAS  Google Scholar 

  81. Sides, C.R., F. Croce, V.Y. Young, C.R. Martin, and B. Scrosati, A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochemical and Solid State Letters, 2005. 8(9): pp. A484– A487

    Article  CAS  Google Scholar 

  82. Finke, A., P. Poizot, C. Guery, and J.M. Tarascon, Characterization and Li reactivity of elec-trodeposited copper–tin nanoalloys prepared under spontaneous current oscillations. Journal of the Electrochemical Society, 2005. 152(12): pp. A2364–A2368

    Article  CAS  Google Scholar 

  83. Zuppiroli, L., M.N. Bussac, S. Paschem, O. Chauvet, and L. Forro, Hopping in disordered conducting polymers. Physical Review B, 1994. 50: pp. 5196

    Article  CAS  Google Scholar 

  84. Xia, Y., P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Advanced Materials, 2003. 15: pp. 353

    Article  CAS  Google Scholar 

  85. Hart, R.W., H.S. White, B. Dunn, and D.R. Rolison, 3-D microbatteries. Electrochemistry Communications, 2003. 5(2): pp. 120–123

    Article  CAS  Google Scholar 

  86. Bueno, P.R., E.R. Leite, T.R. Giraldi, L.O.S. Bulhões, and E. Longo, Nanostructured Li ion insertion electrodes. 2. Tin dioxide nanocrystalline layers and discussion on Nanoscale Effect. Journal of Physical Chemistry B, 2003. 107: pp. 8878–8883

    Article  CAS  Google Scholar 

  87. Nanu, M., J. Schoonman, and A. Goossens, Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Letters, 2005. 5(9): pp. 1716–1719

    Article  CAS  Google Scholar 

  88. Pietron, J.J., R.M. Stroud, and D.R. Rolison, Using three dimensions in catalytic mesoporous nanoarchitectures. Nano Letters, 2002. 2(5): pp. 545–549

    Article  CAS  Google Scholar 

  89. Rolison, D.R., Catalytic nanoarchitectures — The importance of nothing and the unimportance of periodicity. Science, 2003. 299(5613): pp. 1698–1701

    Article  CAS  Google Scholar 

  90. Löffler, M.-S., H. Natter, R. Hempelmann, and K. Wippermann, Electrochemica Acta, 2003. 48: pp. 3047

    Article  CAS  Google Scholar 

  91. Li, N., L. Shi, W. Lu, X. Huang, and L. Chen, Journal of Electrochemical Society, 2001. 147: pp. A915

    Article  Google Scholar 

  92. de Levie, R., On porous electrodes in electrolyte solutions. Electrochimica Acta, 1963. 8: pp. 751–780

    Article  Google Scholar 

  93. Gabrielli, C., O. Haas, and H. Takenoutti, Impedance analysis of electrodes modified with a reversible redox polymer film. Journal of Applied Electrochemistry, 1987. 17: pp. 82

    Article  CAS  Google Scholar 

  94. Gabrielli, C., H. Takenoutti, O. Haas, and A. Tsukada, Impedance investigation of the charge transport in film-modified electrodes. Journal of Electroanalytical Chemistry, 1991. 302: pp. 59–89

    Article  CAS  Google Scholar 

  95. Gassa, L.M., J.R. Vilche, M. Ebert, K. Jüttner, and W.J. Lorenz, Electrochemical impedance spectroscopy on porous electrodes. Journal of Applied Electrochemistry, 1990. 20: pp. 677–685

    Article  CAS  Google Scholar 

  96. Lasia, A., Hydrogen evolution/oxidation reactions on porous electrodes. Journal of Electro-analytical Chemistry, 1998. 454: pp. 115–121

    Article  CAS  Google Scholar 

  97. Macdonald, J.R., Impedance Spectroscopy. 1987, New York: Wiley

    Google Scholar 

  98. Ohmori, T., T. Kimura, and H. Masuda, Impedance measurements of a platinum cylindrical porous electrode replicated from anodic porous alumina. Journal of the Electrochemical Society, 1997. 144: pp. 1286

    Article  CAS  Google Scholar 

  99. Rangarajan, S.K., Theory of flooded porous electrodes. Journal of Electroanalytical Chemistry, 1969. 22: pp. 89–104

    Article  CAS  Google Scholar 

  100. Raistrick, I.D., Impedance studies of porous electrodes. Electrochimica Acta, 1990. 35: pp. 1579–1586

    Article  CAS  Google Scholar 

  101. Paasch, G., K. Micka, and P. Gersdorf, Theory of the electrochemical impedance of macro-homogeneous porous electrodes. Electrochimica Acta, 1993. 38(18): pp. 2653–2662

    Article  CAS  Google Scholar 

  102. Schoonman, J., Nanoionics. Solid State Ionics, 2003. 157: pp. 319–326

    Article  CAS  Google Scholar 

  103. Guo, Y.G., J.S. Lee, and J. Maier, AgI nanoplates with mesoscopic superionic conductivity at room temperature. Advanced Materials, 2005. 17(23): pp. 2815–2819

    Article  CAS  Google Scholar 

  104. Bhattacharyya, A.J., J. Fleig, Y.G. Guo, and J. Maier, Local conductivity effects in polymer electrolytes. Advanced Materials, 2005. 17(21): pp. 2630

    Article  CAS  Google Scholar 

  105. Snaith, H.J., S.M. Zakeeruddin, L. Schmidt-Mende, C. Klein, and M. Gratzel, Ion-coordinating sensitizer in solid-state hybrid solar cells. Angewandte Chemie International Edition, 2005. 44(39): pp. 6413–6417

    Article  CAS  Google Scholar 

  106. Rhodes, C.P., J.W. Long, and D.R. Rolison, Direct electrodeposition of nanoscale solid polymer electrolytes via electropolymerization of sulfonated phenols. Electrochemical and Solid State Letters, 2005. 8(11): pp. A579–A584

    Article  CAS  Google Scholar 

  107. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414: pp. 359–367

    Article  CAS  Google Scholar 

  108. Chadwick, A.V., Solid progress in ion conduction. Nature, 2000. 408: pp. 925–926

    Article  CAS  Google Scholar 

  109. Steele, B.C.H. and A. Heinzel, Material for fuel-cell technologies. Nature, 2001. 414: pp. 345–352

    Article  CAS  Google Scholar 

  110. Sata, N., K. Eeberman, K. Eberl, and J. Maier, Nature, 2000. 408: pp. 946–949

    Article  CAS  Google Scholar 

  111. Hoffler, H.J., R.S. Averback, H. Hahn, and H. Gleiter, Journal of Applied Physics, 1993. 74: pp. 3832

    Article  Google Scholar 

  112. Schlapbach, L. and A. Züttel, Hydrogen-storage materials for mobile applications. Nature, 2001. 414: pp. 353–358

    Article  CAS  Google Scholar 

  113. Bueno, P.R. and E.R. Leite, Nanostructured Li ion insertion electrodes. 1. Discussion on fast transport and short path for ion diffusion. Journal of Physical Chemistry B, 2003. 107: pp. 8868–8877

    Article  CAS  Google Scholar 

  114. Grugeon, S., S. Laruelle, L. Dupont, F. Chevallier, P.L. Taberna, P. Simon, L. Gireaud, S. Lascaud, E. Vidal, B. Yrieix, and J.M. Tarascon, Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries. Chemistry of Materials, 2005. 17(20): pp. 5041–5047

    Article  CAS  Google Scholar 

  115. Delacourt, C., L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M. Taras-con, and C. Masquelier, Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M= Fe, Mn) electrode materials. Journal of the Electrochemical Society, 2005. 152(5): pp. A913–A921

    Article  CAS  Google Scholar 

  116. Scrosati, B., Power sources for portable electronics and hybrid cars: Lithium batteries and fuel cells. Chemical Record, 2005. 5(5): pp. 286–297

    Article  CAS  Google Scholar 

  117. Thackeray, M.M., C.S. Johnson, J.T. Vaughey, N. Li, and S.A. Hackney, Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2005. 15(23): pp. 2257–2267

    Article  CAS  Google Scholar 

  118. Courtney, I.A. and J.R. Dahn, Journal of Power Sources, 1997. 144: pp. 2045

    CAS  Google Scholar 

  119. Besenhard, J.O., J. Yang, and M. Winter, Journal of Power Sources, 1997. 68: pp. 87

    Article  CAS  Google Scholar 

  120. Idota, Y., T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaki, Tin-based amorphous oxide: A high capacity lithium-ion storage material. Science, 1997. 276: pp. 1395

    Article  CAS  Google Scholar 

  121. Huang, H., Anode materials for lithium-ion batteries. 1999, Delft University of Technology

    Google Scholar 

  122. Winter, M., J.O. Besenhard, M.E. Spahr, and P. Novák, Insertion electrode materials for rechargeable lithium batteries. Advanced Materials, 1998. 10(10): pp. 725–763

    Article  CAS  Google Scholar 

  123. Li, N., C.R. Martin, and B. Scrosati, Electrochem. Solid-State Letters, 2000. 3: pp. 316

    Article  CAS  Google Scholar 

  124. Li, N. and C.R. Martin, Journal of Electrochemical Society, 2001: pp. A164

    Google Scholar 

  125. Martin, C.R., N. Li, and B. Scrosati, Nanomaterial-based Li-ion battery electrodes. Journal of Power Sources, 2001. 97–98: pp. 240–243

    Google Scholar 

  126. Long, J.W., B. Dunn, D.R. Rolison, and H.S. White, Three-dimensional battery architectures. Chemical Reviews, 2004. 104(10): pp. 4463–4492

    Article  CAS  Google Scholar 

  127. Liu, Y., S.W. Zha, and M.L. Liu, Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD). Advanced Materials, 2004. 16(3): pp. 256–260

    Article  CAS  Google Scholar 

  128. Gratzel, M., Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 2005. 44(20): pp. 6841–6851

    Article  CAS  Google Scholar 

  129. Miyake, M., T. Torimoto, T. Sakata, H. Mori, and H. Yoneyama, Photoelectrochemical characterization of nearly monodisperse CdS nanoparticles-immobilized gold electrodes. Lang-muir, 1999. 15: pp. 1503–1507

    Article  CAS  Google Scholar 

  130. Drouard, S., S.G. Hickey, and D.J. Riley, CdS nanoparticle-modified electrodes for photochemical studies. Chemical Communications, 1: 1999 67

    Google Scholar 

  131. Conway, B.E., Electrochemical Supercapacitors. 1999, New York: Kluwer/Prenum

    Google Scholar 

  132. Endo, M., T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, and M.S. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. Journal of Electrochemical Society, 2001. 148: pp. A910–A914

    Article  CAS  Google Scholar 

  133. Qu, D. and H. Shi, Studies of activated carbon used in double-layer capacitors. Journal of Power Sources, 1998. 74: pp. 99–107

    Article  CAS  Google Scholar 

  134. Salitra, G., A. Soffer, L. Eliad, Y. Cohen, and D. Aurbach, Carbon electrodes for double-layer capacitors. I. Relations between ion and pore dimensions. Journal of Electrochemical Society, 2000. 147: pp. 2486–2493

    Article  CAS  Google Scholar 

  135. Shiraishi, S., H. Kurihara, H. Tsubota, A. Oya, Y. Soneda, and Y. Yamada, Electrochem. and Solid State Letters, 2001. 4: pp. A5–A8

    Article  CAS  Google Scholar 

  136. Endo, M., Y.J. Kim, T. Takeda, T. Maeda, T. Hayashi, K. Kashiba, H. Hara, and M.S. Dres-selhaus, Journal of Electrochemical Society, 2001. 148: pp. A1135–A1140

    Article  CAS  Google Scholar 

  137. Weng, T.-C. and H. Teng, Journal of Electrochemical Society, 2001. 148: pp. A368–A373

    Article  CAS  Google Scholar 

  138. Schmitt, C., H. Pröbstle, and J. Fricke, Journal of Non-Crystalline Solids, 2001. 285: pp. 277–282

    Article  CAS  Google Scholar 

  139. Niu, C., E.K. Sichel, R. Hoch, D. Moy, and H. Tennent, Applied Physics Letters, 1997. 70: pp. 1480–1482

    Article  CAS  Google Scholar 

  140. Diederich, L., E. Barborini, P. Piseri, A. Podesta`, P. Milani, A. Schneuly, and R. Gallay, Applied Physics Letters. 75: pp. 2662–2664

    Google Scholar 

  141. Instrumental Method in Electrochemistry, Ed. Southampton Electrochemistry Group. 1985, Chichester: Ellis Horwood Ltd

    Google Scholar 

  142. Epelboin, I. and M. Keddam, Journal of Electrochemical Society. 1970. 117: pp. 1052

    Article  Google Scholar 

  143. Gabrielli, G., Identification of Electrochemical Processes by Frequency Response Analysis. 1980, Farnborough U. K.: Solartron

    Google Scholar 

  144. Gabrielli, G., Use and Applications of Electrochemical Impedance Techniques. 1990, Farn-borough U. K.: Solartron

    Google Scholar 

  145. Gerisher, H. and W. Mehl, Z. Elektrochem, 1955 59: pp. 1049

    Google Scholar 

  146. Girault, H.H., Electrochimie physique et analytique. 2001, Presses Polytechniques et Univer-sitaires Romandes: Lausanne, Suisse

    Google Scholar 

  147. Levich, V.D., Physicochemical Hydrodynamics. 1962, Englewood Cliffs, NJ: Prentice Hall

    Google Scholar 

  148. Macdonald, D.D., Transient Techniques in Electrochemistry. 1977, New York: Plenum

    Book  Google Scholar 

  149. Newman, J., Electrochemical Systems. 1973, Englewood Cliffs, NJ: Prentice Hall

    Google Scholar 

  150. Randles, J.E.B., Transactions of Faraday Society, 1948. 44: pp. 327

    Article  CAS  Google Scholar 

  151. Rubinstein, I., Physical electrochemistry. 1995, New York: Marcel Dekker

    Google Scholar 

  152. Sluyters-Rembach, M. and J.H. Sluyters, in Electroanalytical Chemistry, A.J. Bard, Editor. 1970, Marcel Dekker: New York

    Google Scholar 

  153. Yeager, E., J. O'M. Bockris, B.E. Conway, and S. Sarangapani, Comprehensive treatise of Electrochemistry. 1984, New York: Plenum

    Google Scholar 

  154. Bisquert, J., G. Garcia Belmonte, and F. Fabregat Santiago. Coupled ion-electron transport in illuminated TiO2 nanoporous electrodes. in 12th International Conference on Photoelec-trochemical Conversion and Storage of Solar Energy. 1998. Berlin

    Google Scholar 

  155. Bisquert, J., G. Garcia-Belmonte, F. Fabregat-Santiago, and A. Compte, Anomalous transport effects in the impedance of porous electrodes. Electrochemistry Communications, 1999. 1: pp. 429–435

    Article  CAS  Google Scholar 

  156. Candy, J.-P., P. Fouilloux, M. Keddam, and H. Takenouti, The characterization of porous electrodes by impedance mesurements. Electrochimica Acta, 1981. 26: pp. 1029

    Article  CAS  Google Scholar 

  157. Fievet, P., M. Mullet, and J. Pagetti, Impedance measurements for determination of pore texture of a carbon membrane. Journal of Membrane Science, 1998. 149: pp. 143–150

    Article  CAS  Google Scholar 

  158. Keddam, M., C. Rakotomavo, and H. Takenoutti, Impedance of a porous electrode with an axial gradient of concentration. Journal of Applied Electrochemistry, 1984. 14: pp. 437

    Article  CAS  Google Scholar 

  159. Kramer, M. and M. Tomkiewicz, Porous electrodes. I. Numerical simulation using random network and single-pore models. Journal of the Electrochemical Society, 1984. 131: pp. 1283–1288

    Article  CAS  Google Scholar 

  160. Lasia, A., Impedance of porous electrodes. Journal of Electroanalytical Chemistry, 1995. 397: pp. 27–33

    Article  Google Scholar 

  161. Lasia, A., Porous electrodes in the presence of a concentration gradient. Journal of Electro-analytical Chemistry, 1997. 428: pp. 155–164

    Article  CAS  Google Scholar 

  162. Lasia, A., Nature of two semicircles observed on the complex plane plots on porous electrodes in the presence of a concentration gradient. MMM, Journal of Electroanalytical Chemistry

    Google Scholar 

  163. Liu, M. and Z. Wu, Significance of interfaces in solid-state cells with porous electrodes of mixed ionic–electronic conductors. Solid State Ionics, 1998. 107: pp. 105–110

    Article  CAS  Google Scholar 

  164. McHardy, J., J.M. Baris, and P. Stonehart, Investigation of hydrophobic porous electrodes. I. Differential capacitance by a low frequency a. c. impedance technique. Journal of Applied Electrochemistry, 1976. 6: pp. 371–376

    Article  CAS  Google Scholar 

  165. Meyers, J.P., M. Doyle, R.M. Darling, and J. Newman, The impedance response of a porous electrode composed of intercalation particles. Journal of the Electrochemical Society, 2000. 147: pp. 2930–2940

    Article  CAS  Google Scholar 

  166. Newman, J.S. and C.W. Tobias, Theoretical analysis of current distribution in porous electrodes. Journal of the Electrochemical Society, 1962. 1962: pp. 1183

    Article  Google Scholar 

  167. Nguyen, P.H. and G. Paasch, Transfer matrix method for the electrochemical impedance of inhomogeneous porous electrodes and membranes. Journal of Electroanalytical Chemistry, 1999. 460(18): pp. 63–79

    Article  CAS  Google Scholar 

  168. Posey, F.A. and T. Morozumi, Theory of potentiostatic and galvanostatic charging of the double layer in porous electrodes. Journal of the Electrochemical Society, 1966. 113: pp. 176–184

    Article  CAS  Google Scholar 

  169. Prins-Jansen, J.A., G.A.J.M. Plevier, K. Hemmes, and J.H.W. Wit, An ac-impedance study of dense and porous electrodes in molten-carbonated fuel cells. Electrochimica Acta, 1996. 41: pp. 1323–1329

    Article  CAS  Google Scholar 

  170. Rossberg, K., G. Paasch, L. Dunsch, and S. Ludwig, The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films. Journal of Electroanalytical Chemistry, 1998. 443: pp. 49

    Article  CAS  Google Scholar 

  171. Song, H.-K., Y.-H. Jung, K.-H. Lee, and L.H. Dao, Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution. Electrochimica Acta, 1999. 44: pp. 3513–3519

    Article  CAS  Google Scholar 

  172. Bisang, J.M., K. Jüttner, and G. Kreysa, Potential and current distribution in porous electrodes under charge-transfer kinetic control. Electrochimica Acta, 1994. 39(8/9): pp. 1297– 1302

    Article  CAS  Google Scholar 

  173. Bisquert, J., Influence of the boundaries in the impedance of porous film electrodes. Physical Chemistry Chemical Physics, 2000. 2: pp. 4185–4192

    Article  CAS  Google Scholar 

  174. Choi, Y.-M. and S.-I. Pyun, Effects of intercalation-induced stress on lithium transport through porous LiCoO2 electrode. Solid State Ionics, 1997. 99: pp. 173–183

    Article  CAS  Google Scholar 

  175. Hitz, C. and A. Lasia, Experimental study and modeling of impedance of the her on porous Ni electrodes. Journal of Electroanalytical Chemistry, 2001. 500: pp. 213–222

    Article  CAS  Google Scholar 

  176. Lasia, A., Nature of the two semi-circles observed on the complex plane plots on porous electrodes in the presence of a concentration gradient. Journal of Electroanalytical Chemistry, 2001. 500: pp. 30–35

    Article  CAS  Google Scholar 

  177. Lindbergh, G., Experimental determination of the effective electrolyte conductivity in porous lead electrodes in the lead-acid battery. Electrochimica Acta, 1997. 42(8): pp. 1239–1246

    Article  CAS  Google Scholar 

  178. Liu, C., J.E. Szecsody, J.M. Zachara, and W.P. Ball, Use of the generalized integral transform method for solving equations of solute transport in porous media. Advances in Water Resourses, 2000. 23: pp. 483–492

    Article  CAS  Google Scholar 

  179. Lundqvist, A. and G. Lindbergh, Kinetic study of a porous metal hydride electrode. Elec-trochimica Acta, 1999. 44: pp. 2523–2542

    Article  CAS  Google Scholar 

  180. Pell, W.G. and B.E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge. Journal of Power Sources, 2001. 96: pp. 57–67

    Article  CAS  Google Scholar 

  181. Perez, J., E.R. Gonzalez, and E.A. Ticianelli, Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochimica Acta, 1998. 44: pp. 1329–1339

    Article  CAS  Google Scholar 

  182. Song, H.-K., H.-Y. Hwang, K.-H. Lee, and L.H. Dao, The effect of pore size distribution on the frequency dispersion of porous electrodes. Electrochimica Acta, 2000. 45: pp. 2241–2257

    Article  CAS  Google Scholar 

  183. Srikumar, A., T.G. Stanford, and J.W. Weidner, Linear sweep voltammetry in flooded porous electrodes at low sweep rates. Journal of Electroanalytical Chemistry, 1998. 458: pp. 161– 173

    Article  CAS  Google Scholar 

  184. Yang, T.-H. and S.I. Pyun, A study of the hydrogen absorption reaction into alfa- and beta-LaNi5Hx porous electrodes by using electrochemical impedance spectroscopy. Journal of Power Sources, 1996. 62: pp. 175–178

    Article  CAS  Google Scholar 

  185. Bisang, J.M., K. Jüttnerr, and G. Kreysa, Electrochemica Acta, 1994. 39: pp. 1297

    Article  CAS  Google Scholar 

  186. Posey, F.A., Journal of Electrochemical Society, 1964. 111: pp. 1173

    Article  CAS  Google Scholar 

  187. Scott, K., Journal of Applied Electrochemistry, 1983. 13: pp. 709

    Article  CAS  Google Scholar 

  188. Tilak, B.V., S. Vankatesh, and S.K. Rangarajan, Journal of Electrochemical Society, 1989. 136: pp. 1977

    Article  CAS  Google Scholar 

  189. Bisquert, J., G. Garcia-Belmonte, P.R. Bueno, E. Longo, and L.O.S. Bulhões, Impedance of constant phase element (CPE) -blocked diffusion in film electrodes. Journal of Electroanalyt-ical Chemistry, 1998. 452: pp. 229–234

    Article  CAS  Google Scholar 

  190. Bisquert, J., G. Garcia-Belmonte, F. Fabregat-Santiago, and P.R. Bueno, Theoretical models for ac impedance of diffusion layers exhibiting low frequency dispersion. Journal of Electro-analytical Chemistry, 1999. 475: pp. 152

    Article  CAS  Google Scholar 

  191. de Levie, R., in Advances in Electrochemistry and Electrochemical Engineering, P. Delahay, Editor. 1967, Interscience: New York

    Google Scholar 

  192. Grebenkov, Transport Laplacien Aux Interfaces Irregulieres: Etude Theorique, Numerique Et Experimentale. 2004, E'cole Polytechnique: Paris

    Google Scholar 

  193. Paasch, G. and P.H. Nguyen, Electrochem. Appl., 1997. 1: pp. 7

    Google Scholar 

  194. Pakossy, T., Solid State Ionics, 1997. 94: pp. 123

    Article  Google Scholar 

  195. Presa, M.J.R., R.I. Tucceri, M.I. Florit, and D. Posadas, Constant phase element behavior in the poly(o-toluidine) impedance response. Journal of Electroanalytical Chemistry, 2001. 502: pp. 82–90

    Article  Google Scholar 

  196. Sadkowski, A., On the ideal polarisability of electrode displaying CPE-type capacitance dispersion. Journal of Electroanalytical Chemistry, 2000. 481: pp. 222–226

    Article  CAS  Google Scholar 

  197. Sadkowski, A., Response to the ‘Comments on the ideal polarisability of electrodes displaying CPE-type capacitance’ by G. Láng, K. E. Heusler. Journal of Electroanalytical Chemistry, 2000. 481: pp. 232–236

    Article  CAS  Google Scholar 

  198. Zoltowski, P., On the electrical capacitance of interfaces exhibiting constant phase element behaviour. Journal of Electroanalytical Chemistry, 1998. 443: pp. 149–154

    Article  CAS  Google Scholar 

  199. Zoltowski, P., Comments on the paper ‘On the ideal polarisability of electrodes displaying CPE-type capacitance’ by A. Sadkowski. Journal of Electroanalytical Chemistry, 2000. 481: pp. 230–231

    Article  CAS  Google Scholar 

  200. Beaulieu, L.Y., D. Larcher, R.A. Dunlap, and J.R. Dahn, Journal of Electrochemical Society, 2000. 147: pp. 3206

    Article  CAS  Google Scholar 

  201. Peter, L.M., E.A. Ponomarev, G. Franco, and N.J. Shaw, Electrochemica Acta, 1999. 45: pp. 549–560

    Article  CAS  Google Scholar 

  202. Peter, L.M. and J. Vanmaekelbergh, in Advances in Electrochemical Science and Engineering, R.C. Alkire and D.M. Kolb, Editors. 1999, New York: Wiley

    Google Scholar 

  203. Motheo, A.J., A. Sadkowski, and R.S. Neves, Journal of Electroanalytical Chemistry, 1998. 455: pp. 107

    Article  Google Scholar 

  204. Macdonald, J.R. and D.R. Franceschetti, in Impedance Spectroscopy, J.R. Macdonald, Editor. 1987, Wiley: New York. pp. 84–132

    Google Scholar 

  205. Sapoval, B., J.-N. Chazalviel, and J. Peyriére, Electrical response of fractal and porous interfaces. Physical Review A, 1988. 38(11): pp. 5867–5887

    Article  CAS  Google Scholar 

  206. Keiser, H., K.D. Beccu, and M.A. Gutjahr, Electrochimica Acta, 1976. 21: pp. 539

    Article  CAS  Google Scholar 

  207. Diard, J.P., B. Le Gorrec, and C. Montella, Linear diffusion impedance. General expression and applications. Journal of Electroanalytical Chemistry, 1999. 471: pp. 126–131

    Article  CAS  Google Scholar 

  208. Deslouis, C., C. Gabrielli, M. Keddam, A. Khalil, R. Rosset, B. Tribollet, and M. Zidoune, Impedance techniques at partially blocked electrodes by scale deposition. Electrochimica Acta, 1997. 42(8): pp. 1219–1233

    Article  CAS  Google Scholar 

  209. Láng, G. and K.L. Heusler, Comments on the ideal polarisability of electrodes displaying CPE-type capacitance dispersion. Journal of Electroanalytical Chemistry, 2000. 481: pp. 227–229

    Article  Google Scholar 

  210. Kerner, Z. and T. Pajkossy, Impedance of rough capacitive electrodes: the role of surface disorder. Journal of Electroanalytical Chemistry, 1998. 448: pp. 139–142

    Article  CAS  Google Scholar 

  211. Láng, G. and K.E. Heusler, Remarks of the energetics of interfaces exhibiting constant phase element behaviour. Journal of Electroanalytical Chemistry, 1998. 457: pp. 257–260

    Article  Google Scholar 

  212. Liu, S.H., Fractal model for the ac response of a rough interface. Physical Review Letters, 1985. 55: pp. 529–532

    Article  CAS  Google Scholar 

  213. Göhr, H. and C.A. Schiller, Electrochimica Acta, 1993. 38: pp. 1961

    Article  Google Scholar 

  214. Eloot, K., F. Debuyck, M. Moors, and A.P. van Peterghem, Journal of Applied Electrochemistry, 1995. 25: pp. 334

    CAS  Google Scholar 

  215. Eloot, K., F. Debuyck, M. Moors, and A.P. van Peterghem, Journal of Applied Electrochemistry, 1995. 25: pp. 326

    CAS  Google Scholar 

  216. Södergren, S., A. Hagfeldt, J. Olsson, and S.E. Lindquist, Journal of Physical Chemistry B, 1998. 98: pp. 5552–5556

    Google Scholar 

  217. Cao, F., G. Oskam, and P.C. Searson, Journal of Physical Chemistry B, 1996. 100: pp. 17021– 17027

    Article  CAS  Google Scholar 

  218. Vanmaekelbergh, J. and P.E. de Jongh, Journal of Physical Chemistry B, 1999. 103: pp. 747–750

    Article  CAS  Google Scholar 

  219. de Jongh, P.E. and J. Vanmaekelbergh, Journal of Physical Chemistry B, 1997. 101: pp. 2716–2722

    Article  Google Scholar 

  220. de Jongh, P.E. and J. Vanmaekelbergh, Physical Review Letters, 1996. 77: pp. 3427–3440

    Article  Google Scholar 

  221. Sidebottom, D.L., P.F. Green, and R.K. Brow, Anomalous-diffusion model of ionic transport in oxide glasses. Physical Review B, 1995. 51: pp. 2770

    Article  CAS  Google Scholar 

  222. Maass, P., J. Petersen, A. Bunde, W. Dieterich, and H.E. Roman, Non-Debye relaxation in structurally disordered ionic conductors: Effect of Coulombic interaction. Physical Review Letters, 1991. 66: pp. 52

    Article  Google Scholar 

  223. Bisquert, J., G. Garcia-Belmonte, F. Fabregat-Santiago, and A. Compte, Anomalous transport effects in the impedance of porous film electrodes. Electrochemistry Communications, 1999. 1: pp. 429–435

    Article  CAS  Google Scholar 

  224. Garcia-Belmonte, G., J. Bisquert, E.C. Pereira, and F. Fabregat-Santiago, Anomalous transport on polymeric porous film electrodes in the dopant-induced insulator-to-conductor tansition analyzed by electrochemical impedance. Applied Physics Letters, 2001. 78(13): pp. 1885–1887

    Article  CAS  Google Scholar 

  225. Bässler, H., Charge transport in disordered organic photoconductors. Physics Status Solidii (b), 1993. 175: pp. 15–56

    Article  Google Scholar 

  226. Bässler, H., P.M. Borsenberger, and R.J. Perry, Charge transport in poly(methyl-phenylsilane): the case of superimposed disorder and polaron effects. Journal of Polymer Science: Part B: Polymer Physics, 1994. 32: pp. 1677–1685

    Article  Google Scholar 

  227. Bernasconi, J., H.U. Beyeler, S. Strässler, and S. Alexander, Anomalous frequency-dependent conductivity in disordered one-dimensional systems. Physical Review Letters, 1979. 42: pp. 819

    Article  CAS  Google Scholar 

  228. Bisquert, J. and G. Garcia-Belmonte, Scaling properties of thermally stimulated currents in disordered systems. Journal of Non-Crystalline Solids, 1999. 260: pp. 109–115

    Article  CAS  Google Scholar 

  229. Borsenberger, P.M., L. Pautmeier, and H. Bässler, Charge transport in disordered molecular solids. The Journal of Chemical Physics, 1991. 94: pp. 5447–5454

    Article  CAS  Google Scholar 

  230. Bouchaud, J.P. and A. Georges, Anomalous diffusion in disordered media: statistical mecha-nismis, models and physical applications. Physics Reports, 1990. 195: pp. 127–293

    Article  Google Scholar 

  231. Brown, R. and B. Esser, Kinetic networks and order-statistics for hopping in disordered systems. Philosophical Magazine B, 1995. 72: pp. 125–148

    Article  CAS  Google Scholar 

  232. Bunde, A. and P. Maass, Diffusion in disordered systems: non-Debye relaxation due to long-range interactions. Journal of Non-Crystalline Solids, 1991. 131–133: pp. 1022

    Article  Google Scholar 

  233. Dieterich, W., D. Knödler, and P. Pendzig, Relaxation of charged particles in disordered systems. Journal of Non-Crystalline Solids, 1994. 172: pp. 1237

    Article  Google Scholar 

  234. Dyre, J.C., A simple model of a.c. conductivity in disordered solids. Physics Letters, 1985. 108A: pp. 457

    Google Scholar 

  235. Dyre, J.C., The random free-energy barrier model for ac conductivity in disordered solids. Journal of Applied Physics, 1988. 64: pp. 2456

    Article  Google Scholar 

  236. Dyre, J.C. and T.B. Schroder, Universality of ac conduction in disordered solids. Reviews of Modern Physics, 2000. 72: pp. 873

    Article  Google Scholar 

  237. Dyre, J.C. and T.B. Schroder, Effective one-dimensionality of universal ac hopping condution in the extreme disorder limit. Physical Review B, 1996. 54: pp. 14884–14887

    Article  CAS  Google Scholar 

  238. Dyre, J.C. and J.M. Jacobsen, Universality of anomalous diffusion in extremely disordered systems. Chemical Physics, 1996. 212: pp. 61

    Article  CAS  Google Scholar 

  239. Dyre, J.C., Universal low-temperature ac conductivity of macrossopially disordered non-metals. Physical Review B, 1993. 48: pp. 12511–12526

    Article  CAS  Google Scholar 

  240. Dyre, J., Univeral ac conductivity in nonmetallic disordered solids at low temperatures. Physical Review B, 1993. 47: pp. 9128

    Article  Google Scholar 

  241. Dyre, J.C., Some remarks on ac conduction in disordered solids. Journal of Non-Crystalline Solids, 1991. 135: pp. 219

    Article  Google Scholar 

  242. Lee, P.A. and T.V. Ramakrishnan, Disordered electronic systems. Reviews of Modern Physics, 1985. 57: pp. 287–337

    Article  CAS  Google Scholar 

  243. Macdonald, J.R., Analysis of ac conduction in disordered solids. Journal of Applied Physics, 1989. 65: pp. 4845–4853

    Article  Google Scholar 

  244. Mott, N.F., Electrons in disordered structures. Advances in Physics, 1967. 16: pp. 49

    Article  CAS  Google Scholar 

  245. Moura, F.A.B.F. and M.L. Lyra, Delocalization in the 1D Anderson model with long-range correlated disorder. Physical Review Letters, 1998. 81: pp. 3735

    Article  Google Scholar 

  246. Scher, H. and M. Lax, Stochastic transport in a disordered solid. I. Theory. Physical Review B, 1973. 7: pp. 4491–4502

    Article  CAS  Google Scholar 

  247. Scher, H. and M. Lax, Stochastic transport in a disordered solid. II. Impuruty conduction. Physical Review B, 1973. 7: pp. 4502–4519

    Article  CAS  Google Scholar 

  248. Ziman, J.M., Models of Disorder. 1979, Cambridge: Cambridge University. Press. pp. 370–385

    Google Scholar 

  249. Sheng, P. and J. Klafter, Hopping conductivity in granular disordered systems. Physical Review B, 1983. 27: pp. 2583–2586

    Article  Google Scholar 

  250. Schroder, T.B. and J.C. Dyre, Scaling and universality of ac conduction in disordered solids. Physical Review Letters, 2000. 84: pp. 310

    Article  CAS  Google Scholar 

  251. Schirmacher, W., Anomalous diffusion in disordered systems: an effective medium description. Berichte der Bunsengesellschaft fur Physical Chemie, 1991. 95: pp. 368–376

    Article  CAS  Google Scholar 

  252. Gefen, Y., A. Aharony, and S. Alexander, Anomalous diffusion on percolating clusters. Physical Review Letters, 1983. 50: pp. 77–80

    Article  Google Scholar 

  253. Wang, Q., S. Ito, M. Gratzel, F. Fabregat Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bueno, P.R., Gabrielli, C. (2009). Electrochemistry, Nanomaterials, and Nanostructures. In: Leite, E.R. (eds) Nanostructured Materials for Electrochemical Energy Production and Storage. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49323-7_3

Download citation

Publish with us

Policies and ethics