Skip to main content

The Role of Hsp70 and Its Co-Chaperones in Protein Misfolding, Aggregation and Disease

  • Chapter
Networking of Chaperones by Co-Chaperones

Abstract

Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the Hsp70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. Hsp70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has recently become evident that the Hsp70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several Hsp70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the Hsp70 chaperone system to human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barral JM, Broadley SA, Schaffar G et al. Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 2004; 15(l):17–29.

    Article  CAS  PubMed  Google Scholar 

  2. Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 2005; 6(1): 11–22.

    Article  CAS  PubMed  Google Scholar 

  3. Bonini NM. Chaperoning brain degeneration. Proc Natl Acad Sci USA 2002; 99(Suppl 4):16407–16411.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002; 296(5575):1991–1995.

    Article  CAS  PubMed  Google Scholar 

  5. Dobson CM. Protein folding and misfolding. Nature 2003; 426(6968):884–890.

    Article  CAS  PubMed  Google Scholar 

  6. Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J Mol Med 2003; 81(ll):678–699.

    Article  CAS  PubMed  Google Scholar 

  7. Ross CA, Poirier MA. Opinion: What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 2005; 6(ll):891–898.

    Article  CAS  PubMed  Google Scholar 

  8. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92(3):351–366.

    Article  CAS  PubMed  Google Scholar 

  9. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002; 295(5561):1852–1858.

    Article  CAS  PubMed  Google Scholar 

  10. Alberti S, Demand J, Esser C et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem 2002; 277(48):45920–45927.

    Article  CAS  PubMed  Google Scholar 

  11. Alberti S, Bohse K, Arndt V et al. The Co-chaperone HspBPl Inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 2004; 15(9):4003–4010.

    Article  CAS  PubMed  Google Scholar 

  12. Connell P, Ballinger CA, Jiang J et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 2001; 3(l):93–96.

    CAS  PubMed  Google Scholar 

  13. Chappie JP, van der SJ, Poopalasundaram S et al. Neuronal Dnaj proteins HSJla and HSJlb: A role in linking the Hsp70 chaperone machine to the ubiquitin-proteasome system? Biochem Soc Trans 2004; 32(Pt 4):640–642.

    Google Scholar 

  14. Cuervo AM, Stefanis L, Fredenburg R et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004; 305(5688).T292–1295.

    Article  Google Scholar 

  15. Cuervo AM. Autophagy: In sickness and in health. Trends Cell Biol 2004; l4(2):70–77.

    Article  Google Scholar 

  16. Westhoff B, Chappie JP, van der Spuy J et al. HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 2005; 15(11): 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  17. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001; 292(5521): 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  18. Arrasate M, Mitra S, Schweitzer ES et al. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431(7010):805–810.

    Article  CAS  PubMed  Google Scholar 

  19. Schaffar G, Breuer P, Boteva R et al. Cellular toxicity of polyglutamine expansion proteins: Mechanism of transcription factor deactivation. Mol Cell 2004; 15(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  20. Sakahira H, Breuer P, Hayer-Hartl MK et al. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci USA 2002; 99(Suppl 4): 16412–16418.

    Article  CAS  PubMed  Google Scholar 

  21. Nucifora Jr FC, Sasaki M, Peters MF et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001; 291(5512):2423–2428.

    Article  CAS  PubMed  Google Scholar 

  22. McCampbell A, Taylor JP, Taye AA et al. CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 2000; 9(14):2197–2202.

    Article  CAS  PubMed  Google Scholar 

  23. Kim S, Nollen EA, Kitagawa K et al. Polyglutamine protein aggregates are dynamic. Nat Cell Biol 2002; 4(10):826–831.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang J, Prasad K, Lafer EM et al. Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 2005; 20(4):513–524.

    Article  CAS  PubMed  Google Scholar 

  25. Cheetham ME, Caplan AJ. Structure, function and evolution of Dnaj: Conservation and adaptation of chaperone function. Cell Stress Chaperones 1998; 3(l):28–36.

    Article  CAS  PubMed  Google Scholar 

  26. Chappie JP, Cheetham ME. The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J Biol Chem 2003; 278(21):19087–19094.

    Article  Google Scholar 

  27. Chuang JZ, Zhou H, Zhu M et al. Characterization of a brain-enriched chaperone, MRJ, that inhibits Huntingtin aggregation and toxicity independently. J Biol Chem 2002; 277(22): 19831–19838.

    Article  CAS  PubMed  Google Scholar 

  28. Cummings CJ, Mancini MA, Antalffy B et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 1998; 19(2): 148–154.

    Article  CAS  PubMed  Google Scholar 

  29. Stenoien DL, Cummings CJ, Adams HP et al. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 1999; 8(5):731–741.

    Article  CAS  PubMed  Google Scholar 

  30. Chai Y, Koppenhafer SL, Bonini NM et al. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 1999; 19(23): 10338–10347.

    CAS  PubMed  Google Scholar 

  31. Wyttenbach A, Carmichael J, Swartz J et al. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc Nad Acad Sci USA 2000; 97(6):2898–2903.

    Article  CAS  Google Scholar 

  32. Warrick JM, Chan HY, Gray-Board et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 1999; 23(4):425–428.

    Article  CAS  PubMed  Google Scholar 

  33. Chan HY, Warrick JM, Gray-Board et al. Mechanisms of chaperone suppression of polyglutamine disease: Selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 2000; 9(19):2811–2820.

    Article  CAS  PubMed  Google Scholar 

  34. Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000; 287(5459):1837–1840.

    Article  CAS  PubMed  Google Scholar 

  35. Cummings CJ, Sun Y, Opal P et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 2001; 10(14):1511–1518.

    Article  CAS  PubMed  Google Scholar 

  36. Hansson O, Nylandsted J, Castilho RF et al. Overexpression of heat shock protein 70 in R6/2 Huntington’s disease mice has only modest effects on disease progression. Brain Res 2003; 970(l–2):47–57.

    Article  Google Scholar 

  37. Jana NR, Dikshit P, Goswami A et al. Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 2005; 280(12):11635–11640.

    Article  CAS  PubMed  Google Scholar 

  38. Miller VM, Nelson RF, Gouvion CM et al. CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 2005; 25(40):9152–9161.

    Article  CAS  PubMed  Google Scholar 

  39. Hatakeyama S, Matsumoto M, Kamura T et al. U-box protein carboxyl terminus of Hsc70-interacting protein (CHIP) mediates poly-ubiquitylation preferentially on four-repeat Tau and is involved in neurodegeneration of tauopathy. J Neurochem 2004; 91 (2).299–307.

    Article  CAS  PubMed  Google Scholar 

  40. Petrucelli L, Dickson D, Kehoe K et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 2004; 13(7):703–714.

    Article  CAS  PubMed  Google Scholar 

  41. Sahara N, Murayama M, Mizoroki T et al. In vivo evidence of CHIP up-regulation attenuating tau aggregation. J Neurochem 2005; 94(5): 1254–1263.

    Article  CAS  PubMed  Google Scholar 

  42. Shimura H, Schwartz D, Gygi SP et al. CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 2004; 279(6):4869–4876.

    Article  CAS  PubMed  Google Scholar 

  43. Jana NR, Nukina N. BAG-1 associates with the polyglutamine-expanded huntingtin aggregates. Neurosci Lett 2005; 378(3):171–175.

    Article  CAS  PubMed  Google Scholar 

  44. Bailey CK, Andriola IF, Kampinga HH et al. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 2002; ll(5):515–523.

    Article  Google Scholar 

  45. Garrido C, Schmitt E, Cande C et al. HSP27 and HSP70: Potentially oncogenic apoptosis inhibitors. Cell Cycle 2003; 2(6):579–584.

    CAS  PubMed  Google Scholar 

  46. Townsend PA, Stephanou A, Packham G et al. BAG-1: A multi-functional pro-survival molecule. Int J Biochem Cell Biol 2005; 37(2):251–259.

    Article  CAS  PubMed  Google Scholar 

  47. Ehrnsperger M, Graber S, Gaestel M et al. Binding of nonnative protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 1997; 16(2):221–229.

    Article  CAS  PubMed  Google Scholar 

  48. Wyttenbach A, Sauvageot O, Carmichael J et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 2002; 11(9):1137–1151.

    Article  CAS  PubMed  Google Scholar 

  49. Cashikar AG, Duennwald M, Lindquist SL. A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hspl04. J Biol Chem 2005; 280(25):23869–23875.

    Article  CAS  PubMed  Google Scholar 

  50. Soti C, Nagy E, Giricz Z et al. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005.

    Google Scholar 

  51. Kieran D, Kalmar B, Dick JR et al. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 2004; 10(4):402–405.

    Article  CAS  PubMed  Google Scholar 

  52. Kleizen B, Braakman I. Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 2004; l6(4):343–349.

    Article  Google Scholar 

  53. Senderek J, Krieger M, Stendel C et al. Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 2005; 37(12): 1312–1314.

    Article  CAS  PubMed  Google Scholar 

  54. Anttonen AK, Mahjneh I, Hamalainen RH et al. The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 co-chaperone. Nat Genet 2005; 37(12): 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  55. Chung KT, Shen Y, Hendershot LM. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 2002; 277(49):47557–47563.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao L, Longo-Guess C, Harris BS et al. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a co-chaperone of BiP. Nat Genet 2005; 37(9):974–979.

    Article  CAS  PubMed  Google Scholar 

  57. Davey KM, Parboosingh JS, McLeod DR et al. Mutation of DNAJC19, a human homolog of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. J Med Genet 2005.

    Google Scholar 

  58. Taylor SW, Fahy E, Zhang B et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol 2003; 21(3):281–286.

    Article  CAS  PubMed  Google Scholar 

  59. Mokranjac D, Sichting M, Neupert W et al. Timl4, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 2003; 22(19):4945–4956.

    Article  CAS  PubMed  Google Scholar 

  60. Truscott KN, Voos W, Frazier AE et al. A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J Cell Biol 2003; 163(4):707–713.

    Article  CAS  PubMed  Google Scholar 

  61. D’Silva PD, Schilke B, Walter W et al. J protein co-chaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc Natl Acad Sci USA 2003; 100(24): 13839–13844.

    Article  PubMed  Google Scholar 

  62. Bione S, DAdamo P, Maestrini E et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996; 12(4):385–389.

    Article  CAS  PubMed  Google Scholar 

  63. Brandner K, Mick DU, Frazier AE et al. Tazl, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: Implications for Barth Syndrome. Mol Biol Cell 2005; 16(11):5202–5214.

    Article  CAS  PubMed  Google Scholar 

  64. Hayashi M, Imanaka-Yoshida K, Yoshida T et al. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 2005.

    Google Scholar 

  65. Duchniewicz M, Germaniuk A, Westermann B et al. Dual role of the mitochondrial chaperone Mdjlp in inheritance of mitochondrial DNA in yeast. Mol Cell Biol 1999; 19(12):8201–8210.

    CAS  PubMed  Google Scholar 

  66. Engert JC, Berube P, Mercier J et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 2000; 24(2): 120–125.

    Article  CAS  PubMed  Google Scholar 

  67. Grynberg M, Erlandsen H, Godzik A. HEPN: A common domain in bacterial drug resistance and human neurodegenerative proteins. Trends Biochem Sci 2003; 28(5):224–226.

    Article  CAS  PubMed  Google Scholar 

  68. Sohocki MM, Bowne SJ, Sullivan LS et al. Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat Genet 2000; 24(l):79–83.

    CAS  PubMed  Google Scholar 

  69. van der Spuy J, Chappie JP, Clark BJ et al. The Leber congenital amaurosis gene product AIPL1 is localized exclusively in rod photoreceptors of the adult human retina. Hum Mol Genet 2002; 11(7):823–831.

    Article  PubMed  Google Scholar 

  70. van der Spuy J, Kim JH, Yu YS et al. The expression of the Leber congenital amaurosis protein AIPL1 coincides with rod and cone photoreceptor development. Invest Ophthalmol Vis Sci 2003; 44(12):5396–5403.

    Article  PubMed  Google Scholar 

  71. Carver LA, Bradfield CA. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J Biol Chem 1997; 272(17): 11452–11456.

    Google Scholar 

  72. Kuzhandaivelu N, Cong YS, Inouye C et al. XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation. Nucleic Acids Res 1996; 24(23): 4741–4750.

    Article  CAS  PubMed  Google Scholar 

  73. Ma Q, Whitlock Jr JP. A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem 1997; 272(l4):8878–8884.

    CAS  PubMed  Google Scholar 

  74. Yano M, Terada K, Mori M. AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins. J Cell Biol 2003; 163(l):45–56.

    Article  CAS  PubMed  Google Scholar 

  75. Akey DT, Zhu X, Dyer M et al. The inherited blindness associated protein AIPL1 interacts with the cell cycle regulator protein NUB1. Hum Mol Genet 2002; ll(22):2723–2733.

    Article  Google Scholar 

  76. Hipp MS, Raasi S, Groettrup M et al. NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT 10 and accelerates its degradation. J Biol Chem 2004; 279(16): 16503–16510.

    Article  CAS  PubMed  Google Scholar 

  77. Kamitani T, Kito K, Fukuda-Kamitani T et al. Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J Biol Chem 2001; 276(49):46655–46660.

    Article  Google Scholar 

  78. Kito K, Yeh ET, Kamitani T. NUB1, a NEDD8-interacting protein, is induced by interferon and down-regulates the NEDD8 expression. J Biol Chem 2001; 276(23):20603–20609.

    Article  CAS  PubMed  Google Scholar 

  79. Tanaka T, Kawashima H, Yeh ET et al. Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L. J Biol Chem 2003; 278(35):32905–32913.

    Article  CAS  PubMed  Google Scholar 

  80. Tanji K, Tanaka T, Kamitani T. Interaction of NUB1 with the proteasome subunit S5a. Biochem Biophys Res Commun 2005; 337(1):116–120.

    Article  CAS  PubMed  Google Scholar 

  81. van der Spuy J, Cheetham ME. The Leber congenital amaurosis protein AIPL1 modulates the nuclear translocation of NUB 1 and suppresses inclusion formation by NUB1 fragments. J Biol Chem 2004; 279(46):48038–48047.

    Article  PubMed  Google Scholar 

  82. Ramamurthy V, Roberts M, van den AF et al. AIPL1, a protein implicated in Leber’s congenital amaurosis, interacts with and aids in processing of farnesylated proteins. Proc Natl Acad Sci USA 2003; 100(22):12630–12635.

    Article  CAS  PubMed  Google Scholar 

  83. Dyer MA, Donovan SL, Zhang J et al. Retinal degeneration in Aipll-deficient mice: A new genetic model of Leber congenital amaurosis. Brain Res Mol Brain Res 2004; 132(2):208–220.

    Article  CAS  PubMed  Google Scholar 

  84. Liu X, Bulgakov OV, Wen XH et al. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc Natl Acad Sci USA 2004; 101(38):13903–13908.

    Article  CAS  PubMed  Google Scholar 

  85. Ramamurthy V, Niemi GA, Reh TA et al. Leber congenital amaurosis linked to AIPL1: A mouse model reveals destabilization of cGMP phosphodiesterase. Proc Natl Acad Sci USA 2004; 101(38):13897–13902.

    Article  CAS  PubMed  Google Scholar 

  86. Qin N, Baehr W. Expression and mutagenesis of mouse rod photoreceptor cGMP phosphodiesterase. J Biol Chem 1994; 269(5):3265–3271.

    CAS  PubMed  Google Scholar 

  87. Hansen JJ, Durr A, Cournu-Rebeix I et al. Hereditary spastic paraplegia SPG 13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 2002; 70(5):1328–1332.

    Article  CAS  PubMed  Google Scholar 

  88. Kim JC, Ou YY, Badano JL et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci 2005; 118(Pt 5):1007–1020.

    Article  CAS  PubMed  Google Scholar 

  89. Ross AJ, May-Simera H, Eichers ER et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 2005; 37(10): 1135–1140.

    Article  CAS  PubMed  Google Scholar 

  90. Katsanis N, Beales PL, Woods MO et al. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat Genet 2000; 26(l):67–70.

    CAS  PubMed  Google Scholar 

  91. Stone DL, Slavotinek A, Bouffard GG et al. Mutation of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome. Nat Genet 2000; 25(l):79–82.

    CAS  PubMed  Google Scholar 

  92. Martin N, Jaubert J, Gounon P et al. A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nat Genet 2002; 32(3):443–447.

    Article  CAS  PubMed  Google Scholar 

  93. Parvari R, Hershkovitz E, Grossman N et al. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet 2002; 32(3):448–452.

    Article  CAS  PubMed  Google Scholar 

  94. Schwann U, Lenzner S, Dong J et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 1998; 19(4):327–332.

    Article  Google Scholar 

  95. Grayson C, Bartolini F, Chappie JP et al. Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum Mol Genet 2002; ll(24):3065–3074.

    Article  Google Scholar 

  96. Chappie JP, Hardcastle AJ, Grayson C et al. Mutations in the N-terminus of the X-linked retinitis pigmentosa protein RP2 interfere with the normal targeting of the protein to the plasma membrane. Hum Mol Genet 2000; 9(13):1919–1926.

    Article  Google Scholar 

  97. Bartolini F, Bhamidipati A, Thomas S et al. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J Biol Chem 2002; 277(17): 14629–14634.

    Article  CAS  PubMed  Google Scholar 

  98. Litt M, Kramer P, LaMorticella DM et al. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 1998; 7(3):471–474.

    Article  CAS  PubMed  Google Scholar 

  99. Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet 2003; ll(10):784–793.

    Article  Google Scholar 

  100. Vicart P, Caron A, Guicheney P et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 1998; 20(l):92–95.

    Article  CAS  PubMed  Google Scholar 

  101. Evgrafov OV, Mersiyanova I, Irobi J et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 2004; 36(6):602–606.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

van der Spuy, J., Cheetham, M.E., Chappie, J.P. (2007). The Role of Hsp70 and Its Co-Chaperones in Protein Misfolding, Aggregation and Disease. In: Networking of Chaperones by Co-Chaperones. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49310-7_11

Download citation

Publish with us

Policies and ethics