Skip to main content

Nucleotide Exchange Factors for Hsp70 Molecular Chaperones

  • Chapter
Networking of Chaperones by Co-Chaperones

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Hsp70 molecular chaperones hydrolyze and re-bind ATP concomitant with the binding and release of aggregation-prone protein substrates. As a result, Hsp70s can enhance protein folding and degradation, the assembly of multi-protein complexes, and the catalytic activity of select enzymes. The ability of Hsp70 to perform these diverse functions is regulated by two other classes of proteins: Hsp40s (also known as J-domain-containing proteins) and Hsp70-specific nucleotide exchange factors (NEFs). Although a NEF for a prokaryotic Hsp70, DnaK has been known and studied for some time, eukaryotic Hsp70s NEFs were discovered more recently. Like their Hsp70 partners, the eukaryotic NEFs also play diverse roles in cellular processes, and recent structural studies have elucidated their mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee AS. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 1987; 12:20–23.

    Article  CAS  Google Scholar 

  2. Mayer MP, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol Life Sci 2005; 62(6):670–684.

    Article  CAS  PubMed  Google Scholar 

  3. Macario AJ, de Macario EC. The archaeal molecular chaperone machine: Peculiarities and paradoxes. Genetics 1999; 152(4):1277–1283.

    CAS  PubMed  Google Scholar 

  4. Zhu X, Zhao X, Burkholder WF et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 1996; 272(5268):1606–1614.

    Article  CAS  PubMed  Google Scholar 

  5. Palleros DR, Shi L, Reid Kl et al. hsp70-protein complexes. Complex stability and conformation of bound substrate protein. J Biol Chem 1994; 269(18):13107–13114.

    CAS  PubMed  Google Scholar 

  6. Schmid D, Baici A, Gehring H et al. Kinetics of molecular chaperone action. Science 1994; 263(5l49):971–973.

    Article  CAS  PubMed  Google Scholar 

  7. Prasad K, Heuser J, Eisenberg E et al. Complex formation between clathrin and uncoating AT-Pase. J Biol Chem 1994; 269(9):6931–6939.

    CAS  PubMed  Google Scholar 

  8. McCarty JS, Buchberger A, Reinstein J et al. The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 1995; 249(1):126–137.

    Article  CAS  PubMed  Google Scholar 

  9. Kelley WL. The J-domain family and the recruitment of chaperone power. Trends Biochem Sci 1998; 23(6):222–227.

    Article  CAS  PubMed  Google Scholar 

  10. Cheetham ME, Caplan AJ. Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function. Cell Stress Chaperones 1998; 3(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  11. Walsh P, Bursac D, Law YC et al. The J-protein family: Modulating protein assembly, disassembly and translocation. EMBO Rep 2004; 5(6):567–571.

    Article  CAS  PubMed  Google Scholar 

  12. Yochem J, Uchida H, Sunshine M et al. Genetic analysis of two genes, dnaj and dnaK, necessary for Escherichia coli and bacteriophage lambda DNA replication. Mol Gen Genet 1978; 164(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  13. Saito H, Uchida H. Initiation of the DNA replication of bacteriophage lambda in Escherichia coli K12. J Mol Biol 1977; 113(1):1–25.

    Article  CAS  PubMed  Google Scholar 

  14. Alfano C, McMacken R. Ordered assembly of nucleoprotein structures at the bacteriophage lambda replication origin during the initiation of DNA replication. J Biol Chem 1989; 264(18):10699–10708.

    CAS  PubMed  Google Scholar 

  15. Zylicz M, Ang D, Liberek K et al. Initiation of lambda DNA replication with purified host-and bacteriophage-encoded proteins: The role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 1989; 8(5):1601–1608.

    CAS  PubMed  Google Scholar 

  16. Liberek K, Marszalek J, Ang D et al. Escherichia coli Dnaj and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA 1991; 88(7):2874–2878.

    Article  CAS  PubMed  Google Scholar 

  17. Hohfeld J, Hartl FU. Post-translational protein import and folding. Curr Opin Cell Biol 1994; 6(4):499–509.

    Article  CAS  PubMed  Google Scholar 

  18. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92(3):351–366.

    Article  CAS  PubMed  Google Scholar 

  19. Deloche O, Ang D, Georgopoulos C. The GrpE family of proteins-an overview. In: Gething MJ, ed. Guidebook to Molecular Chaperones and Protein Folding Catalysts. Oxford University Press, 1997:133–137.

    Google Scholar 

  20. Takayama S, Sato T, Krajewski S et al. Cloning and functional analysis of BAG-1: A novel Bcl-2-binding protein with anti-cell death activity. Cell 1995; 80(2):279–284.

    Article  CAS  PubMed  Google Scholar 

  21. Hohfeld J, Jentsch S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 1997; 16(20):6209–6216.

    Article  CAS  PubMed  Google Scholar 

  22. Takayama S, Bimston DN, Matsuzawa S et al. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 1997; 16(16):4887–4896.

    Article  CAS  PubMed  Google Scholar 

  23. Takayama S, Xie Z, Reed JC. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 1999; 274(2):781–786.

    Article  CAS  PubMed  Google Scholar 

  24. Zeiner M, Gebauer M, Gehring U. Mammalian protein RAP46: An interaction partner and modulation of 70 kDa heat shock proteins. EMBO J 1997; l6(18):5483–5490.

    Article  Google Scholar 

  25. Brehmer D, Rudiger S, Gassier CS et al. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 2001; 8(5):427–432.

    Article  CAS  PubMed  Google Scholar 

  26. Takayama S, Reed JC. Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 2001; 3(10):E237–24l.

    Article  CAS  PubMed  Google Scholar 

  27. Alberti S, Esser C, Hohfeld J. BAG-1—a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 2003; 8(3):225–231.

    Article  PubMed  Google Scholar 

  28. Sondermann H, Scheufler C, Schneider C et al. Structure of a Bag/Hsc70 complex: Convergent functional evolution of Hsp70 nucleotide exchange factors. Science 2001; 291(5508):1553–1557.

    Article  CAS  PubMed  Google Scholar 

  29. Sondermann H, Ho AK, Listenberger LL et al. Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snllp as an Hsp70 co-chaperone in Saccharomyces cerevisiae. J Biol Chem 2002; 277(36):33220–33227.

    Article  CAS  PubMed  Google Scholar 

  30. Ho AK, Raczniak GA, Ives EB et al. The integral membrane protein snllp is genetically linked to yeast nuclear pore complex function. Mol Biol Cell 1998; 9(2):355–373.

    CAS  PubMed  Google Scholar 

  31. Fewell SW, Travers KJ, Weissman JS et al. The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 2001; 35:149–191.

    Article  CAS  PubMed  Google Scholar 

  32. Nishikawa SI, Fewell SW, Kato Y et al. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 2001; 153(5):1061–1070.

    Article  CAS  PubMed  Google Scholar 

  33. McCracken AA, Brodsky JL. Assembly of ER-associated protein degradation in vitro: Dependence on cytosol, calnexin, and ATP. J Cell Biol 1996; 132(3):291–298.

    Article  CAS  PubMed  Google Scholar 

  34. Boisrame A, Beckerich JM, Gaillardin C. Slslp, an endoplasmic reticulum component, is involved in the protein translocation process in the yeast Yarrowia lipolytica. J Biol Chem 1996; 271(20):11668–11675.

    Article  CAS  PubMed  Google Scholar 

  35. Kabani M, Beckerich JM, Gaillardin C. Sls1 stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol Cell Biol 2000; 20(18):6923–6934.

    Article  CAS  PubMed  Google Scholar 

  36. Tyson JR, Stirling CJ. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 2000; 19(23):6440–6452.

    Article  CAS  PubMed  Google Scholar 

  37. Chung KT, Shen Y, Hendershot LM. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 2002; 277(49):47557–47563.

    Article  CAS  PubMed  Google Scholar 

  38. Easton DP, Kaneko Y, Subjeck JR. The hsp 110 and Grpl 70 stress proteins: Newly recognized relatives of the Hsp70s. Cell Stress Chaperones 2000; 5(4):276–290.

    Article  CAS  PubMed  Google Scholar 

  39. Steel GJ, Fullerton DM, Tyson JR et al. Coordinated activation of Hsp70 chaperones. Science 2004; 303(5654):98–101.

    Article  CAS  PubMed  Google Scholar 

  40. Yamagishi N, Ishihara K, Hatayama T. Hspl05alpha suppresses Hsc70 chaperone activity by inhibiting Hsc70 ATPase activity. J Biol Chem 2004; 279(40):41727–41733.

    Article  CAS  PubMed  Google Scholar 

  41. Kabani M, Beckerich JM, Brodsky JL. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssalp. Mol Cell Biol 2002; 22(13):4677–4689.

    Article  CAS  PubMed  Google Scholar 

  42. Raynes DA, Guerriero Jr V. Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem 1998; 273(49):32883–32888.

    Article  CAS  PubMed  Google Scholar 

  43. Kabani M, McLellan C, Raynes DA et al. HspBPl, a homologue of the yeast Fesl and Slsl proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 2002; 531(2):339–342.

    Article  CAS  PubMed  Google Scholar 

  44. Shomura Y, Dragovic Z, Chang HC et al. Regulation of Hsp70 function by HspBPl: Structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 2005; 17(3):367–379.

    CAS  PubMed  Google Scholar 

  45. Gehring U. Biological activities of HAP46/BAG-1. The HAP46/BAG-1 protein: Regulator of HSP70 chaperones, DNA-binding protein and stimulator of transcription. EMBO Rep 2004; 5(2):148–153.

    Article  CAS  PubMed  Google Scholar 

  46. Luders J, Demand J, Hohfeld J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 2000; 275(7):4613–4617.

    Article  CAS  PubMed  Google Scholar 

  47. Travers KJ, Patil CK, Wodicka L et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000; 101(3):249–258.

    Article  CAS  PubMed  Google Scholar 

  48. Boisrame A, Kabani M, Beckerich JM et al. Interaction of Kar2p and Slslp is required for efficient cotranslational translocation of secreted proteins in the yeast Yarrowia lipolytica. J Biol Chem 1998; 273(47):30903–30908.

    Article  CAS  PubMed  Google Scholar 

  49. Frydman J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu Rev Biochem 2001; 70:603–647.

    Article  CAS  PubMed  Google Scholar 

  50. Ahner A, Whyte FM, Brodsky JL. Distinct but overlapping functions of Hsp70, Hsp90, and an Hsp70 nucleotide exchange factor during protein biogenesis in yeast. Arch Biochem Biophys 2005; 435(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  51. Li J, Qian X, Sha B. The crystal structure of the yeast Hsp40 Ydjl complexed with its peptide substrate. Structure (Camb) 2003; 11(12):1475–1483.

    Article  CAS  Google Scholar 

  52. Lu Z, Cyr DM. Protein folding activity of Hsp70 is modified differentially by the hsp40 co-chaperones Sisl and Ydjl. J Biol Chem 1998; 273(43):27824–27830.

    Article  CAS  PubMed  Google Scholar 

  53. Raynes DA, Graner MW, Bagatell R et al. Increased expression of the Hsp70 co-chaperone HspBPl in tumors. Tumour Biol 2003; 24(6):281–285.

    Article  CAS  PubMed  Google Scholar 

  54. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005; 10(2):86–103.

    Article  CAS  PubMed  Google Scholar 

  55. Harrison CJ, Hayer-Hartl M, Di Liberto M et al. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 1997; 276(5311):431–435.

    Article  CAS  PubMed  Google Scholar 

  56. Schonfeld HJ, Schmidt D, Schroder H et al. The DnaK chaperone system of Escherichia coli: Quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem 1995; 270(5):2183–2189.

    Article  CAS  PubMed  Google Scholar 

  57. Wu B, Wawrzynow A, Zylicz M et al. Structure-function analysis of the Escherichia coli GrpE heat shock protein. EMBO J 1996; 15(18):4806–4816.

    CAS  PubMed  Google Scholar 

  58. Flaherty KM, DeLuca-Flaherty C, McKay DB. Three-dimensional structure of the AT-Pase frag of a 70K heat-shock cognate protein. Nature 1990; 346(6285):623–628.

    Article  CAS  PubMed  Google Scholar 

  59. Briknarova K, Takayama S, Brive L et al. Structural analysis of BAG1 co-chaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol 2001; 8(4):349–352.

    Article  CAS  PubMed  Google Scholar 

  60. Sondermann H, Scheufler C, Schneider C et al. Structure of a Bag/Hsc70 complex: Convergent functional evolution of Hsp70 nucleotide exchange factors. Science 2001; 291(5508):1553–1557.

    Article  CAS  PubMed  Google Scholar 

  61. Brive L, Takayama S, Briknarova K et al. The carboxyl-terminal lobe of Hsc70 ATPase domain is sufficient for binding to BAG1. Biochem Biophys Res Commun 2001; 289(5):1099–1105.

    Article  CAS  PubMed  Google Scholar 

  62. Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science 2001; 294(5545):1299–1304.

    Article  CAS  PubMed  Google Scholar 

  63. Brehmer D, Rüdiger S, Gässier CS et al. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 2001; 8(5):427–432.

    Article  CAS  PubMed  Google Scholar 

  64. Alberti S, Bohse K, Arndt V et al. The Co-chaperone HspBPl inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 2004; 15:4003–4010.

    Article  CAS  PubMed  Google Scholar 

  65. Connell P, Ballinger CA, Jiang J et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 2001; 3(1):93–96.

    Article  CAS  PubMed  Google Scholar 

  66. Meacham GC, Patterson C, Zhang W et al. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 2001; 3(1):100–105.

    Article  CAS  PubMed  Google Scholar 

  67. Grimshaw JPA, Jelesarov I, Sigenthaler RK et al. Thermosensor action of GrpE. J Biol Chem 2003; 278(21):19048–19053.

    Article  CAS  PubMed  Google Scholar 

  68. Siegenthaler RK, Christen P. The importance of having thermosensor control in the DnaK chaper-one system. J Biol Chemone2005; 280(15):14395–14401.

    Google Scholar 

  69. Zhao L, Longo-Guess C, Harris BS et al. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a co-chaperone of BiP. Nat Genetics 2005, 37(9):974–979.

    Article  CAS  Google Scholar 

  70. Kraulis P. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Cryst 1991; 24:946–950.

    Article  Google Scholar 

  71. Merritt EA, Bacon DJ. Raster3D photorealistic graphics. Methods Enzymol 1997; 277:505–524.

    Article  CAS  PubMed  Google Scholar 

  72. Gouet P, Courcelle E, Stuart DI et al. ESPript: Multiple sequence alignments in PostScript. Bioinformatics 1999; 15:305–308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Brodsky, J.L., Bracher, A. (2007). Nucleotide Exchange Factors for Hsp70 Molecular Chaperones. In: Networking of Chaperones by Co-Chaperones. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49310-7_1

Download citation

Publish with us

Policies and ethics