Skip to main content

Coherent Synthesis of Multicolor Femtosecond Pulses

  • Chapter
  • 1577 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 132))

Abstract

The attosecond pulse generation is realized in XUV region by using high-order harmonics [1],[2]. The pulse duration in visible and infrared region is approaching to the monocycle limit [3]. For further pulse shortening in the visible and infrared region, the coherent addition of the different-color pulses is the candidate for the generation of the monocycle pulse. A subfemtosecond pulse train may also be generated by using Fourier synthesis of multicolor pulses [4],[5]. The schematic of Fourier synthesis is shown in Fig. 1. Fourier synthesis of multicolor pulses may generate not only attosecond pulse train but also desired shape of the electric field such as triangle or rectangle shapes. This can be called as an optical function generator. The optical phase relation of different-color pulses have to be locked in order to realize it.

Schematic of Fourier synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Hentschel, R. Kienberger, Ch. Spielmann, et al.: Nature 414, 509 (2001).

    Article  ADS  Google Scholar 

  2. T. Sekikawa, A. Kosuge, T. Kanai, and S. Watanabe: Nature 432, 605 (2004).

    Article  ADS  Google Scholar 

  3. K. Yamane, T. Kito, R. Morita, and M. Yamashita: In Conf. Lasers and Electro-Optics, Optical Society of America, Washington, DC, (2004), postdeadline paper PDC2.

    Google Scholar 

  4. T. W. Hänsen: Opt. Comm. 80, 71 (1990).

    Article  Google Scholar 

  5. K. Shimoda: Jpn. J. Appl. Phys. 34, 3566 (1995).

    Article  ADS  Google Scholar 

  6. Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka: Appl. Phys. Lett. 83, 839 (2003).

    Article  ADS  Google Scholar 

  7. A. Bartels, N. R. Newbury, I. Thomann, L. Hollberg, and S. Diddams: Opt. Lett. 29, 403 (2004).

    Article  ADS  Google Scholar 

  8. J. Kim, T. R. Schibli, L. Matos, H. Byunn, and F. X. Kärtner: In Joint Conference on Ultrafast Optics V and Applications of High Field and Short Wavelength Sources XI (2005), paper M3-5.

    Google Scholar 

  9. T. R. Schibli, J. Kim, O. Kuzucu, et al.: Opt. Lett. 28, 947 (2003).

    Article  ADS  Google Scholar 

  10. Y. Kobayashi, K. Torizuka, and Z. Wei: Opt. Lett. 28, 746 (2003).

    Article  ADS  Google Scholar 

  11. D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka: Opt. Lett. 30, 1408 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kobayashi, Y., Yoshitomi, D., Kakehata, M., Takada, H., Torizuka, K. (2007). Coherent Synthesis of Multicolor Femtosecond Pulses. In: Watanabe, S., Midorikawa, K. (eds) Ultrafast Optics V. Springer Series in Optical Sciences, vol 132. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49119-6_12

Download citation

Publish with us

Policies and ethics