Skip to main content

Luminescence of Gold Nanoparticles

  • Chapter

Part of the book series: Optical Sciences ((SSOS,volume 133))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nanotechnology: A Realistic Market Evaluation, Business Communication Co. Inc., Norwalk (2004).

    Google Scholar 

  2. Nanotechnology Market Opportunities, Market Forecasts, and Market Strategies, 2004–2009, Winter Green Research, Lexington (2004).

    Google Scholar 

  3. Crichton, M., Prey. HarperCollins, New York (2002).

    Google Scholar 

  4. (a) Storrs, J.H., Nanofuture: What’s Next for Nanotechnology, Prometheus Books, New York (2005). (b) Schulte, J., Nanotechnology: Global Strategies, Industry Trends and Applications, Wiley, New York (2005). (c) Theodore, L., and Kunz, R.G., Nanotechnology: Environmental Implications and Solutions, Wiley–Interscience, New York (2005). (d) Yao, N., and Wang, Z.L., Handbook of Microscopy for Nanotechnology, Springer, New York (2005). (e) Mansoori, G.A., Principles of Nanotechnology: Molecular-Based Study of Condensed Matter in Small Systems, World Scientific, Singapore (2005). (f) Malsch, N.H., Biomedical Nanotechnology, CRC Press, London (2005). (g) Waite, S.R., Quantum Investing: Quantum Physics, Nanotechnology, and the Future of the Stock Market, Texere Publishing, Mason, Ohio (2004). (h) Lakhtakia, A., Handbook of Nanotechnology: Nanometer Structure Theory, Modeling, and Simulation, Wiley, New York (2004). (i) Wolf, E.L., Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, Wiley, New York (2004).

    Google Scholar 

  5. (a) Tsunoyama, H., Sakurai, H., Negishi, Y., and Tsukuda, T., Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water, J. Am. Chem. Soc. 127, 9374–9375 (2005). (b) Kisailus, D., Najarian, M., Weaver, J.C., and Morse, D.E., Functionalized gold nanoparticles mimic catalytic activity of a polysiloxane-synthesizing enzyme, Adv. Mater. 17, 1234–1239 (2005). (c) Esparza, R., Ascencio, J.A., Rosas, G., Sànchez Ramìrez, J.F., Pal, U., and Perez, R., Structure, stability and catalytic activity of chemically synthesized Pt, Au, and Au-Pt nanoparticles, J. Nanosci. Nanotechnol. 5, 641–647 (2005). (d) Pasquato, L., Pengo, P., and Scrimin, P., Functional gold nanoparticles for recognition and catalysis, J. Mater. Chem. 14, 3481–3487 (2004). (e) Campbell, C.T., Physics: The active site in nanoparticle gold catalysis, Science 306, 234–235 (2004). (f) Meyer, R., Lemire, C., Shaikhutdinov, K.S., and Freund, H.J., Surface chemistry of catalysis by gold, Gold Bull. 37, 72–124 (2004). (g) Haruta, M., Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications, Gold Bull. 37, 27–36 (2004). (h) Haruta, M., Catalysis by gold nanoparticles, in Encyclopedia of Nanoscience and Nanotechnology, Vol. 1, edited by H.S. Nalwa, American Scientific Publishers, Stevenson Ranch, California, pp. 655–664 (2004). (i) Vayenas, C.G., Wieckowski, A., and Savinova, E.R., Catalysis and Electrocatalysis at Nanoparticle Surfaces, Dekker, New York (2003).

    Google Scholar 

  6. (a) Giaever, I., and Zeller, H.R., Superconductivity of small tin particles measured by tunneling, Phys. Rev. Lett. 20, 1504–1507, (1968). (b) Kubo, R., Electronic properties of metallic fine particles I, J. Phys. Soc. Japan 17, 975–986 (1962). (c) Kubo, R., Electronic properties of metallic fine particles, Phys. Lett. 1, 49–50 (1962). (d) Fröhlich, H., The specific heat of small metallic particles at low temperatures, Physica 4, 406–412 (1937).

    Google Scholar 

  7. (a) Shaw, C.F., III, Gold-based medicinal agents, Chem. Rev. 99, 2589–2600 (1999). (b) Higby, G.J., Gold in medicine: A review of its use in the West before 1900, Gold Bull. 15, 130–140 (1982). (c) Brown, D.H., and Smith, W.E., The chemistry of the gold drugs used in the treatment of rheumatoid arthritis, Chem. Soc. Rev. 9, 217–240 (1980). (d) Gibson, C.S., Gold in medicine, Chem. Prod. Chem. News 1, 35–36 (1938).

    Google Scholar 

  8. (a) Sato, K., Hosokawa, K., and Maeda, M. Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions, Nucleic Acids Res. 33, e4/1-e4/5 (2005). (b) Sonvico, F., Dubernet, C., Colombo, P., and Couvreur, P., Metallic colloid nanotechnology, applications in diagnosis and therapeutics, Curr. Pharm. Des. 11, 2091–2105 (2005). (c) Hyatt, A.D., and Eaton, B.T., Immuno-Gold Electron Microscopy in Virus Diagnosis and Research, CRC Press, Boca Raton (1993). (d) Eagle, H., Applications of colloid chemistry in the serum diagnosis of syphilis, J. Phys. Chem. 36, 259–267 (1932). (e) Kahn, R.L., Serum diagnosis for syphilis, in Colloid Chemistry: Theoretical and Applied, Vol. II, edited by J. Alexander, The Chemical Catalog Co., New York (1929).

    Google Scholar 

  9. Helcher, H.H., (1718). Aurum Potabile oder Gold Tinstur, Johann Herbord Klossen, Breslau (1718).

    Google Scholar 

  10. Faraday, M., Experimental relations of gold (and other metals) to light, Philos. Trans. 147, 145–181 (1857).

    Article  Google Scholar 

  11. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., and Whyman, R.J., Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system, J. Chem. Soc. Chem. Commun. 801–802 (1994).

    Google Scholar 

  12. (a) Fiorani, D., Surface Effects in Magnetic Nanoparticles, Springer, New York (2005). (b) Schmid, G., Nanoparticles: From Theory to Application, Wiley, New York (2004). (c) Rotello, V., Nanoparticles: Building Blocks for Nanotechnology, Springer, New York (2003). (d) Heilmann, A., Polymer Films with Embedded Metal Nanoparticles, Springer, New York (2002). (e) Feldheim, D.L., and Foss, C.A., Jr., Metal Nanoparticles: Synthesis, Characterization and Applications, Dekker, New York (2002). (f) Fendler, J.H., Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications, Wiley-VCH, Berlin (1998).

    Google Scholar 

  13. (a) Daniel, M.C., and Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104, 293–346 (2004). (b) Aslan, K., Zhang, J., Lakowicz, J.R., and Geddes, C.D., Saccharide sensing using gold and silver nanoparticles A review, J. Fluores. 14, 391–400 (2004). (c) Thomas, K.G., and Kamat, P.V. Chromophore-functionalized gold nanoparticles, Acc. Chem. Res. 36, 888–898 (2003). (d) Schmid, G., and Corain, B., Nanoparticulated gold: Syntheses, structures, electronics, and reactivities, Eur. J. Inorg. Chem. 17, 3081–3098 (2003). (e) Zhong, Z., Male, K.B., and Luong, J.H.T., More recent progress in the preparation of Au nanostructures, properties, and applications, Anal. Lett. 36, 3097–3118 (2003). (f) Jain, K.K., Nanodiagnostics: Application of nanotechnology in molecular diagnostics, Expert Rev. Mol. Diagn. 3, 153–161 (2003). (g) McMillan, R.A., and Andrew, R., Biomolecular templates: Nanoparticles align, Nature Mater. 2, 214–215 (2003). (h) Csaki, A., Moller, R., and Fritzsche, W., Gold nanoparticles as novel label for DNA diagnostics, Expert Rev. Mol. Diagn. 2, 187–193 (2002). (i) Brust, M., and Kiely, C.J., Some recent advances in nanostructure preparation from gold and silver particles: A short topical review, Colloids Surf. A 202, 175–186 (2002).

    Google Scholar 

  14. Mie, G., Contributions to the optics of turbid media, especially colloidal metal solutions, Ann. Phys. 25, 377–445 (1908).

    Article  MATH  Google Scholar 

  15. (a) Devarajan, S., and Sampath, S., Electrochemistry with nanoparticles, in Chemistry of Nanomaterials, edited by C.N.R. Rao, A. Mueller, and A.K. Cheetham, Wiley-VCH, Weinheim, pp. 646–687 (2004). (b) Liljeroth, P., Quinn, B.M., Ruiz, V., and Kontturi, K., Charge injection and lateral conductivity in monolayers of metallic nanoparticles, Chem. Commun. 1570–1571 (2003). (c) Hicks, J.F., Miles, D.T., and Murray, R.W., Quantized double-layer charging of highly monodisperse metal nanoparticles, J. Am. Chem. Soc. 124, 13322–13328 (2002). (d) Chen, S., Pei, R., Zhao, T., and Dyer, D.J., Gold nanoparticle assemblies by metal ion–pyridine complexation and their rectified quantized charging in aqueous solutions, J. Phys. Chem. B 106, 1903–1908 (2002). (e) Chen, S., and Murray, R.W., Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles, J. Phys. Chem. B 103, 9996–10000 (1999). (f) Chen, S., Ingram, R.S., Hostetler, M.J., Pietron, J.J., Murray, R.W., Schaaff, T.G., Khoury, J.T., Alvarez, M.M., and Whetten, R.L., Gold nanoelectrodes of varied size: Transition to molecule-like charging, Science 280, 2098–2101 (1998).

    Google Scholar 

  16. Quinn, B.M., Liljeroth, P., Ruiz, V., Laaksonen, T., and Kontturi, K., Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles, J. Am. Chem. Soc. 125, 6644–6645 (2003).

    Article  Google Scholar 

  17. (a) Chen, S., Murray, R.W., and Feldberg, S.W., Quantized capacitance charging of monolayer-protected Au clusters, J. Phys. Chem. B 102, 9898–9907 (1998). (b) Hofstetter, W., and Zwerger, W., Single-electron box and the helicity modulus of an inverse square XY model, Phys. Rev. Lett. 78, 3737–3740 (1997). (c) Hartmann, E., Marquardt, P., Ditterich, J., Radojkovic, P., and Steinberger, H., Characterisation and utilization of the context-dependent physical properties of nanoparticles for nanostructures investigated by scanning tunneling microscopy, Appl. Surf. Sci. 107, 197–202 (1996). (d) Amman, M., Wilkins, R., Ben-Jacob, E., Maker, P.D., and Jaklevic, R.C., Analytic solution for the current–voltage characteristic of two mesoscopic tunnel junctions coupled in series, Phys. Rev. B 43, 1146–1149 (1991).

    Google Scholar 

  18. (a) Speets, E.A., Dordi, B., Ravoo, B.J., Oncel, N., Hallbaeck, A.S., Zandvliet, H.J.W., Poelsema, B., Rijnders, G., Blank, D.H.A., and Reinhoudt, D.N., Noble metal nanoparticles deposited on self-assembled monolayers by pulsed laser deposition show Coulomb blockade at room temperature, Small 1, 395–398 (2005). (b) Yang, Y., and Nogami, M., Room temperature single electron transistor with two-dimensional array of Au-SiO2 core-shell nanoparticles, Sci. Tech. Adv. Mater. 6, 71–75 (2005). (c) Chaki, N.K., Singh, P., Dharmadhikari, C.V., and Vijayamohanan, K.P., Single-electron charging features of larger, dodecanethiol-protected gold nanoclusters: Electrochemical and scanning tunneling microscopy studies, Langmuir 20, 10208–10217 (2004). (d) Khomutov, G.B., Kislov, V.V., Gainutdinov, R.V., Gubin, S.P., Obydenov, A.Y., Pavlov, S.A., Sergeev-Cherenkov, A.N., Soldatov, E.S., Tolstikhina, A.L., and Trifonov, A.S., The design, fabrication and characterization of controlled-morphology nanomaterials and functional planar molecular nanocluster-based nanostructures, Surf. Sci. 532–535, 287–293 (2003). (e) Chaki, N.K., Gopakumar, T.G., Maddanimath, T., Aslam, M., and Vijayamohanan, K., Effect of chain length on the tunneling conductance of gold quantum dots at room temperature, J. Appl. Phys. 94, 3663–3666 (2003). (f) Suganuma, Y., Trudeau, P.E., and Dhirani, A.A., Probing correlated current and force effects of nanoparticle charge states by hybrid STM-AFM, Phys. Rev. B 66, 241405/1-241405/4 (2002). (g) Rolandi, M., Scott, K., Wilson, E.G., and Meldrum, F.C., Manipulation and immobilization of alkane-coated gold nanocrystals using scanning tunneling microscopy, J. Appl. Phys. 89, 1588–1595 (2001). (h) Ingram, R.S., Hostetler, M.J., Murray, R.W., Schaaff, T.G., Khoury, J., Whetten, R.L., Bigioni, T.P., Guthrie, D.K., and First, P.N., 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM Coulomb staircases, J. Am. Chem. Soc. 119, 9279–9280 (1997).

    Google Scholar 

  19. (a) Schmid, G., and Simon, U., Gold nanoparticles: Assembly and electrical properties in 1–3 dimensions, Chem. Commun. 697–710 (2005). (b) Boyen, H.G., Ethirajan, A., Kastle, G., Weigl, F., Ziemann, P., Schmid, G., Garnier, M.G., Buttner, M., and Oelhafen, P., Alloy formation of supported gold nanoparticles at their transition from clusters to solids: Does size matter? Phys. Rev. Lett. 94, 016804/1-016804/4 (2005). (c) Torma, V., Vidoni, O., Simon, U., and Schmid, G., Charge-transfer mechanisms between gold clusters, Eur. J. Inorg. Chem. 1121–1127 (2003). (d) Boyen, H.G., Kaestle, G., Weigl, F., Koslowski, B., Dietrich, C., Ziemann, P., Spatz, J.P., Riethmueller, S., Hartmann, C., Moeller, M., Schmid, G., Garnier, M.G., and Oelhafen, P., Oxidation-resistant gold-55 clusters, Science 297, 1533–1536 (2002). (e) Schmid, G., Metals, in Nanoscale Materials in Chemistry, edited by Wiley, K.J. Klabunde, New York, pp. 15–59 (2001). (f) Sawitowski, T., Miquel, Y., Heilmann, A., and Schmid, G., Optical properties of quasi one-dimensional chains of gold nanoparticles, Adv. Func. Mater. 11, 435–440 (2001).

    Google Scholar 

  20. Prodi, L., Luminescent chemosensors: From molecules to nanoparticles, New J. Chem. 29, 20–31 (2005).

    Article  Google Scholar 

  21. Turkevitch, J., Stevenson, P.C., and Hillier, J., Nucleation and growth process in the synthesis of colloidal gold, Discuss. Faraday Soc. 11, 55–75 (1951).

    Article  Google Scholar 

  22. (a) Iwamoto, M., Kuroda, K., Kanzow, J., Hayashi, S., and Faupel, F., Size evolution effect of the reduction rate on the synthesis of gold nanoparticles, Adv. Powder Technol. 16, 137–144 (2005). (b) Donkers, R.L., Song, Y., and Murray, R.W., Substituent effects on the exchange dynamics of ligands on 1.6 nm diameter gold nanoparticles, Langmuir 20, 4703–4707 (2004). (c) Chen, S., Templeton, A.C., and Murray, R.W., Monolayer-protected cluster growth dynamics, Langmuir 16, 3543–3548 (2000).

    Google Scholar 

  23. (a) Guo, R., Song, Y., Wang, G., and Murray, R.W., Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J. Am. Chem. Soc. 127, 2752–2757 (2005). (b) Hostetler, M.J., Templeton, A.C., and Murray, R.W., Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules, Langmuir 15, 3782–3789 (1999). (c) Ingram, R.S., Hostetler, M.J., and Murray, R.W., Poly-hetero-ω-functionalized alkanethiolate-stabilized gold cluster compounds, J. Am. Chem. Soc. 119, 9175–9178 (1997).

    Google Scholar 

  24. George, T.K., Zajicek, J., and Kamat, P.V., Surface binding properties of tetraoctylammonium bromide capped gold nanoparticles, Langmuir 18, 3722–3727 (2002).

    Article  Google Scholar 

  25. Fitzmaurice, D., Rao, S.N., Preece, J.A., Stoddart, J.F., Wenger, S., and Zaccheroni, N., Heterosupramolecular chemistry: Programmed pseudorotaxane assembly at the surface of a nanocrystal, Angew. Chem. Int. Ed. Engl. 38, 1147–1150 (1999).

    Article  Google Scholar 

  26. (a) Ghosh, S.K., Nath, S., Kundu, S., Esumi, K., and Pal, T., Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids, J. Phys. Chem. B 108, 13963–13971 (2004). (b) Link, S., and El-Sayed, M.A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B 103, 4212–4217(1999).

    Google Scholar 

  27. Buining, P.A., Humbel, B.M., Philipse, A.P., and Verkeij, A.J., Preparation of functional silane-stabilized gold colloids in the (sub)nanometer size range, Langmuir 13, 3921–3926 (1997).

    Article  Google Scholar 

  28. Templeton, A.C., Cliffel, D.E., and Murray, R.W., Redox and fluorophore functionalization of water soluble tiopronin-protected gold clusters, J. Am. Chem. Soc. 121, 7081–7089 (1999).

    Article  Google Scholar 

  29. Aguila, A., and Murray, R.W., Monolayer-protected clusters with fluorescent dansyl ligands, Langmuir 16, 5949–5954 (2000).

    Article  Google Scholar 

  30. Gu, T., Whitesell, J.K., and Fox, M.A., Energy transfer from a surface-bound arene to the gold core in ω-fluorenyl-alkane-1-thiolate monolayer-protected gold clusters, Chem. Mater. 15(6), 1358–1366 (2003).

    Article  Google Scholar 

  31. Hu, J., Zhang, J., Liu, F., Kittredge, K., Whitesell, J.K., and Fox, M.A., Competitive photochemical reactivity in a self-assembled monolayer on a colloidal gold cluster, J. Am. Chem. Soc. 123, 1464–1470 (2001).

    Article  Google Scholar 

  32. Zhang, J., Whitesell, J.K., and Fox, M.A., Photophysical behavior of variously sized colloidal gold clusters capped with monolayers of an alkylstilbenethiolate, J. Phys. Chem. B 107, 6051–6055 (2003).

    Article  Google Scholar 

  33. Dulkeith, E., Ringler, M., Klar, T.A., Feldmann, J., Javier, A.M., and Parak, W.J., Gold nanoparticles quench fluorescence by phase induced radiative rate suppression, Nano Lett. 5, 585–589 (2005).

    Article  ADS  Google Scholar 

  34. Gersten, J., and Nitzan, A., Spectroscopic properties of molecules interacting with small dielectric particles, J. Chem. Phys. 75, 1139–1152 (1981).

    Article  ADS  Google Scholar 

  35. Dulkeith, E., Morteani, A.C., Niedereichholz, T., Klar, T.A., Feldmann, J., Levi, S.A., van Veggel, F.C.J.M., Reinhoudt, D.N., Moller, M., and Gittins, D.I., Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects, Phys. Rev. Lett. 89, 203002/1–203002/4 (2002).

    Article  ADS  Google Scholar 

  36. Hiroshi, I., Yukiyasu, K., Takeshi, H., Yoshiyuki, E., Yoshinobu, N., Iwao, Y., and Shunichi, F., Metal and size effects on structures and photophysical properties of porphyrin-modified metal nanoclusters, J. Mater. Chem. 13, 2890–2898 (2003).

    Article  Google Scholar 

  37. Canepa, M., Fox, M.A., and Whitesell, J.K., The influence of core size on electronic coupling in shell-core nanoparticles: Gold clusters capped with pyrenoxylalkylthiolate, Photochem. Photobiol. Sci. 2, 1177–1180 (2003).

    Article  Google Scholar 

  38. Pucci, A., Tirelli, N., Willneff, E.A., Schroeder, S.L.M., Galembeck, F., and Ruggeri, G., Evidence and use of metal–chromophore interactions: Luminescence dichroism of terthiophene-coated gold nanoparticles in polyethylene oriented films, J. Mater. Chem. 14, 3495–3502 (2004).

    Article  Google Scholar 

  39. Ipe, B.I., Thomas, K.G., Barazzouk, S., Hotchandani, S., and Kamat, P.V., Photoinduced charge separation in a fluorophore-gold nanoassembly, J. Phys. Chem. B 106, 18–21 (2002).

    Article  Google Scholar 

  40. Ipe, B.I., and Thomas, K.G., Investigations on nanoparticle–chromophore and interchromophore interactions in pyrene-capped gold nanoparticles, J. Phys. Chem. B 108, 13265–13272 (2004).

    Article  Google Scholar 

  41. Kamat, P.V., Barazzouk, S., and Hotchandani, S., Electrochemical modulation of fluorophore emission on a nanostructured gold film, Angew. Chem. Int. Ed. Engl. 41, 2764–2767 (2002).

    Article  Google Scholar 

  42. Kuwahara, Y., Akiyama, T., and Yamada, S., Facile fabrication of photoelectrochemical assemblies consisting of gold nanoparticles and a tris(2,2’-bipyridine)ruthenium(II)-viologen linked thiol, Langmuir 17, 5714–5716 (2001).

    Article  Google Scholar 

  43. Sudeep, P.K., Ipe, B.I., Thomas, K.G., George, M.V., Barazzouk, S., Hotchandani, S., and Kamat, P.V. Fullerene-functionalized gold nanoparticles. A self-assembled photoactive antenna-metal nanocore assembly, Nano Lett. 2, 29–35 (2002).

    Article  ADS  Google Scholar 

  44. Shon, Y.S., and Choo, H., [60]Fullerene-linked gold nanoparticles: Synthesis and layer-by-layer growth on a solid surface, Chem. Commun. 2560–2561 (2002).

    Google Scholar 

  45. Fengjun, D., Yiyun, Y., Sungho, H., Young-Seok, S., and Shaowei, C., Fullerene-functionalized gold nanoparticles: Electrochemical and spectroscopic properties, Anal. Chem. 76, 6102–6107 (2004).

    Article  Google Scholar 

  46. Liu, L., Wang, T., Li, J., Guo, Z.X., Dai, L., Zhang, D., and Zhu, D., Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker, Chem. Phys. Lett. 367, 747–752 (2002).

    Article  Google Scholar 

  47. Boal, A.K., and Rotello, V.M., Radial control of recognition and redox processes with multivalent nanoparticle hosts, J. Am Chem. Soc 124, 5019–5024 (2002).

    Article  Google Scholar 

  48. Yu, C.M.M., and Katz, A., Steady-state fluorescence-based investigation of the interaction between protected thiols and gold nanoparticles, Langmuir 18, 2413–2420 (2002).

    Article  Google Scholar 

  49. Yu, C.M.M., and Katz, A., Synthesis and characterization of gold-silica nanoparticles incorporating a mercaptosilane core–shell interface, Langmuir 18, 8566–8572 (2002).

    Article  Google Scholar 

  50. (a) Montalti, M., Prodi, L., Zaccheroni, N., and Battistini, G., Modulation of the photophysical properties of gold nanoparticles by accurate control of the surface coverage, Langmuir 20, 7884–7886 (2004). (b) Montalti, M., Prodi, L., Zaccheroni, N., Beltrame, M., Morotti, T., and Quici, S., Stabilization of terpyridine covered gold nanoparticles by metal ions complexation, New J. Chem. 31, 102–108 (2007).

    Google Scholar 

  51. Werts, M.H.V., Zaim, H., and Blanchard-Desce, M., Excimer probe of the binding of alkyl disulfides to gold nanoparticles and subsequent monolayer dynamics, Photochem. Photobiol. Sci. 3, 29–32 (2004).

    Article  Google Scholar 

  52. Montalti, M., Prodi, L., Zaccheroni, N., Baxter, R., Teobaldi, G., and Zerbetto, F., Kinetics of place-exchange reactions of thiols on gold nanoparticles, Langmuir 19, 5172–5174 (2003).

    Article  Google Scholar 

  53. (a) Marcaccio, M., Margotti, M., Montalti, M., Paolucci, F., Prodi, L., and Zaccheroni, N., Self-assembly of monolayer-coated silver nanoparticles on gold electrodes. An electrochemical investigation, Collect. Czech. Chem. Commun. 68, 1395–1406 (2003). (b) Hicks, J.F., Zamborini, F.P., Osisek, A.J., and Murray, R.W., The dynamics of electron self-exchange between nanoparticles, J. Am. Chem. Soc. 123, 7048–7053 (2001).

    Google Scholar 

  54. (a) Deng, Z., Tian, Y., Lee, S.-H., Ribbe, A.E., and Mao, C., DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays, Angew. Chem. Int. Ed. Engl. 44, 3582–3585 (2005). (b) Guarise, C., Pasquato, L., and Scrimin, P., Reversible aggregation/deaggregation of gold nanoparticles induced by a cleavable dithiol linker, Langmuir 21, 5537–5541 (2005). (c) Wessels, J.M., Nothofer, H.-G., Ford, W.E., von Wrochem, F., Scholz, F., Vossmeyer, T., Schroedter, A., Weller, H., and Yasuda, A., Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies, J. Am. Chem. Soc. 126, 3349–3356 (2004). (d) Ryan, D., Rao, S.N., Rensmo, H., Fitzmaurice, D., Preece, J.A., Wenger, S., Stoddart, J.F., and Zaccheroni, N., Heterosupramolecular chemistry: Recognition initiated and inhibited silver nanocrystal aggregation by pseudorotaxane assembly, J. Am. Chem. Soc. 122, 6252–6257 (2000).

    Google Scholar 

  55. Liu, Y., Wang, H., Chen, Y., Ke, C.F., and Liu, M., Supramolecular aggregates constructed from gold nanoparticles and L-Try-CD polypseudorotaxanes as captors for fullerenes, J. Am. Chem. Soc. 127, 657–666 (2005).

    Article  Google Scholar 

  56. (a) Zhang, J., Malicka, J., Gryczynski, I., and Lakowicz, J.R., Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles, J. Phys. Chem. B 109, 7643–7648 (2005). (b) Geddes, C.D., and Lakowicz, J. (Eds.), Radiative Decay Engineering, Springer, New York (2005). (c) Lukomska, J., Malicka, J., Gryczynski, I., and Lakowicz, J.R., Fluorescence enhancements on silver colloid coated surfaces, J. Fluores. 14, 417–423 (2004).

    Google Scholar 

  57. Thomas, K.G., and Kamat, P.V., Making gold nanoparticles glow. Enhanced emission from a surface-bound fluoroprobe, J. Am. Chem. Soc. 122, 2655–2656 (2000).

    Article  Google Scholar 

  58. Hernàndez, F.E., Yu, S., Garcìa, M., and Campiglia, A.D., Fluorescence lifetime enhancement of organic chromophores attached to gold nanoparticles, J. Phys. Chem. B 19, 9499–9504 (2005).

    Article  Google Scholar 

  59. Makarova, O.V., Ostafin, A.E., Miyoshi, H., Norris, J.R., J.r., and Meisel, D., Adsorption and encapsulation of fluorescent probes in nanoparticles, J. Phys. Chem. B 103, 9080–9084 (1999).

    Article  Google Scholar 

  60. Chandrasekharan, N., Kamat, P.V., Hu, J., and Jones, G., II, Dye capped gold nanoclusters: Photoinduced changes in gold/rhodamine 6G nanoassemblies, J. Phys. Chem. B 104, 11103–11109 (2000).

    Article  Google Scholar 

  61. Barazzouk, S., Kamat, P.V., and Hotchandani, S., Photoinduced electron transfer between chlorophyll a and gold nanoparticles, J. Phys. Chem. B 109, 716–723 (2005).

    Article  Google Scholar 

  62. Huang, T., and Murray, R.W., Quenching of [Ru(bpy)3]2+ fluorescence by binding to Au nanoparticles, Langmuir 18, 7077–7081 (2002).

    Article  Google Scholar 

  63. Mooradian, A., Photoluminescence of metals, Phys. Rev. Lett. 22, 185–187 (1969).

    Article  ADS  Google Scholar 

  64. Boyd, G.T., Yu, Z.H., and Shen, Y.R., Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Phys. Rev. B 33, 7923–7936 (1986).

    Article  ADS  Google Scholar 

  65. Apell, P., Monreal, R., and Lundqvist, S., Photoluminescence of noble metals, Phys. Scr. 38, 174–179 (1988).

    Article  ADS  Google Scholar 

  66. Wilcoxon, J.P., Martin, J.E., Parsapour, F., Wiedenman, B., and Kelley, D.F., Photoluminescence from nanosize gold clusters, J. Chem. Phys. 108, 9137–9143 (1998).

    Article  ADS  Google Scholar 

  67. Schaaff, T.G., Shafigullin, M.N., Khoury, J.T., Vezmar, I., Whetten, R.L., Cullen, W.G., First, P.N., Wing, C., Ascensio, J., and Yacaman, M.J., Isolation of smaller nanocrystal-Au molecules: Robust quantum effects in optical spectra, J. Phys. Chem. B 101, 7885–7891 (1997).

    Article  Google Scholar 

  68. Bigioni, T.P., Whetten, R.L., and Dag, O., Near-infrared luminescence from small gold nanocrystals, J. Phys. Chem. B 104, 6983–6986 (2000).

    Article  Google Scholar 

  69. Mohamed, M.B., Volkov, V., Link, S., and El-Sayed, M.A., The ‘lightning’ gold nanorods: Fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317, 517–523 (2000).

    Article  ADS  Google Scholar 

  70. Huang, T., and Murray, R.W., Visible luminescence of water-soluble monolayer-protected gold clusters, J. Phys. Chem. B 105, 12498–12502 (2001).

    Article  Google Scholar 

  71. Link, S., Beeby, A., Fitzgerald, S., El-Sayed, M.A., Schaaff, T.G., and Whetten, R.L., Visible to infrared luminescence from a 28-atom gold cluster, J. Phys. Chem. B 106, 3410–3415 (2002).

    Article  Google Scholar 

  72. Link, S., El-Sayed, M.A., Schaaff, T. G., and Whetten, R.L., Transition from nanoparticle to molecular behaviour: a femtosecond transient absorption study of a size-selected 28 atom gold cluster, Chem. Phys. Lett. 356, 240–246 (2002).

    Article  ADS  Google Scholar 

  73. Lee, D., Donkers, R.L., Wang, G., Harper, A.S., and Murray, R.W., Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles, J. Am. Chem. Soc. 12, 6193–6199 (2004).

    Article  Google Scholar 

  74. Wang, G., Huang, T., Murray, R.W., Menard, L., and Nuzzo, R.G., Near-IR luminescence of monolayer-protected metal clusters, J. Am. Chem. Soc. 127, 812–813 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LCC

About this chapter

Cite this chapter

Prodi, L., Battistini, G., Dolci, L.S., Montalti, M., Zaccheroni, N. (2007). Luminescence of Gold Nanoparticles. In: Frontiers in Surface Nanophotonics. Optical Sciences, vol 133. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48951-3_5

Download citation

Publish with us

Policies and ethics