Control of dispersion in photonic crystal fibers

  • P. J. Roberts
  • B. J. Mangan
  • H. Sabert
  • F. Couny
  • T. A. Birks
  • J. C. Knight
  • P. St. J. Russell
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

Photonic crystal fibers (PCFs) exploit the large index difference between air and glass to achieve modal properties unattainable by conventional fiber techniques.


Photonic Crystal Photonic Crystal Fiber Mode Area Hole Size Solid Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.A. Birks, D. Mogilevtsev, J.C. Knight and P.St.J. Russell, Dispersion compensation using single-material fibers, IEEE Photon. Technol. Lett., 11, 674 (1999).CrossRefADSGoogle Scholar
  2. 2.
    J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.St.J. Russell, Anomalous dispersion in photonic crystal fiber, IEEE Phot. Technol. Lett., 12, 807 (2000).CrossRefADSGoogle Scholar
  3. 3.
    J.K. Ranka, R.S. Windeler, and A.J. Stentz, Visible continuum generation in air-silica mi-crostructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett., 25, 25 (2000).CrossRefADSGoogle Scholar
  4. 4.
    S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, White-light supercontinuum generation with 60-ps pump pulses in a photonic crys-tal fiber, Opt. Lett., 26, 1356 (2001).CrossRefADSGoogle Scholar
  5. 5.
    J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 21, 1547 (1996).CrossRefADSGoogle Scholar
  6. 6.
    T.A. Birks, J.C. Knight, and P.St.J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., 13, 961 (1997).CrossRefADSGoogle Scholar
  7. 7.
    F. Poli, A. Cucinotta, S. Selleri, and L. Vincetti, Characterisation of microstructured optical fibers for wideband dispersion compensation, J. Opt. Soc. Am. A 20, 1958 (2003).CrossRefADSGoogle Scholar
  8. 8.
    F. Poli, A. Cucinotta, S. Selleri and A.H. Bouk, Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers, IEEE Photon. Technol. Lett., 16, 1065 (2004).CrossRefADSGoogle Scholar
  9. 9.
    L.P. Sheng, W.P. Huang, G.X. Chen, and S.S. Jian, Design and optimization of photonic crystal fibers for broad-band dispersion compensation, IEEE Phot. Techn. Lett., 15, 540 (2003).CrossRefADSGoogle Scholar
  10. 10.
    F. Gerome, J.-L. Auguste and J.-M. Blondy, Design of dispersion-compensating fibers based on dual-concentric-core photonic crystal fiber, Opt. Lett., 29, 2725 (2004).CrossRefADSGoogle Scholar
  11. 11.
    Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, Dual-core photonic crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett., 16, 1516 (2004).CrossRefADSGoogle Scholar
  12. 12.
    B. Zsigri, J. Laegsgaard, and A. Bjarklev, A novel photonic crystal fiber design for dispersion compensation, J. Opt. A: Pure Appl. Opt., 6, 717 (2004).CrossRefADSGoogle Scholar
  13. 13.
    A.J. Antos and D.K. Smith, Design and characterization of dispersion compensating fiber based on LP01 mode, IEEE J. Lightwave Technol., 12, 1739 (1994).CrossRefADSGoogle Scholar
  14. 14.
    L. Gr üner -Nielsen, S.N. Knudsen, T. Veng, B. Edvold, and C.C. Larsen, Design and Manu-facture of Dispersion Compensating Fiber for Simultaneous Compensation of Dispersion and Dispersion Slope,’ Tech. Dig. OFC’99, Paper WM13, p. 232, 1999.Google Scholar
  15. 15.
    L. Gr üner-Nielsen, S.N. Knudsen, P. Kristensen, T. Veng, B. Edvold, and T. Magnussen, Dispersion Compensating Fibers and Perspectives for Future Developments, Proc. Europ. Conf. Opt. Comm. ECOC’2000, Vol. 1, p. 91, 2000.Google Scholar
  16. 16.
    A. Birks, D. Mogilevtsev, J.C. Knight, P.St.J. Russell, J. Broeng, P.J. Roberts, J.A. West, D.C. Allan, and J.C. Fajardo, The analogy between photonic crystal fibers and step index fibers, in Optical Fiber Communication Conference, OSA Technical Digest, Optical Soc. of America, Wash. DC, p. 114, 1999.Google Scholar
  17. 17.
    J.C. Knight, T.A. Birks, P.St.J. Russell and J.P. deSandro, Properties of photonic crystal fiber and the effective index model, J. Opt. Soc. Am. A 15, 748 (1998).CrossRefADSGoogle Scholar
  18. 18.
    J.M. Pottage, D.M. Bird, T.D. Hedley, T.A. Birks, J.C. Knight, P.St.J. Russell, and P.J. Roberts, Robust photonic band gaps for hollow core guidance in PCF made from high index glass, Opt. Express, 1, 285 (2003).Google Scholar
  19. 19.
    S.G. Johnson and J.D. Joannopoulos, Block-iterativefrequency-domainmethodsforMaxwell’s equations in a planewave basis, Opt. Express, 8, 173 (2001).CrossRefADSGoogle Scholar
  20. 20.
    D. Mogilevtsev, T.A. Birks, and P.St.J. Russell, Localized function method for modeling defect modes in 2-D photonic crystals, J. Lightwave Technol., 17, 2078 (1999).CrossRefADSGoogle Scholar
  21. 21.
    R. Ghosh, A. Kumar, J.P. Meunier, and E. Marin, Modal Characteristics of Few-mode Silica-Based Photonic Crystal Fibers, Opt. Quant. Electron., 32, 963 (2000).CrossRefGoogle Scholar
  22. 22.
    S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, Modeling of photonic crystal optical fibers with finite elements, IEEE Trans. Magn. (USA), 38, 1261 (2002).CrossRefADSGoogle Scholar
  23. 23.
    N. Guan; S. Habu, S.K. Takenaga, K. Himeno, and A. Wada, Boundary element method for analysis of holey optical fibers J. Lightwave Technol., 21, 1787 (2003).CrossRefADSGoogle Scholar
  24. 24.
    T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke and L.C. Botten, Multipole method for microstructured optical fibers: 1. Formulation, J. Opt. Soc. Am. B, 19, 2322 (2002).CrossRefADSGoogle Scholar
  25. 25.
    L. Farr, J.C. Knight, B.J. Mangan, and P.J. Roberts, ‘Low loss photonic crystal fiber, Euro-pean Conference on Optical Communication (ECOC 2002), Copenhagen Denmark, post-deadline paper PD13, 2002.Google Scholar
  26. 26.
    P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, T.A. Birks, J.C. Knight, and P.St.J. Russell, Ultimate low loss of hollow-core photonic crystal fibers, Opt. Express, 13, 236 (2005).CrossRefADSGoogle Scholar
  27. 27.
    M. Wandel, T. Veng, Q. Le, and L. Gr üner-Nielsen; Dispersion compensating fiber with a high figure of merit, Proceedings of 2001 European Conference on Optical Communications, Paper PD.A.1.4, 2001.Google Scholar
  28. 28.
    C.D. Poole, J.M. Wiesenfeld, A.R. McCormick, and K.T. Nelson, Broadband dispersion compensation by using high-order spatial mode in a two-mode fiber, Opt. Lett., 17, 985 (1992).CrossRefADSGoogle Scholar
  29. 29.
    C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, and A.M. Vengsarkar, Optical fiber-based dispersion compensation using higher order modes near cutoff, J.l Lightwave Technol., 12, 1745 (1994).ADSGoogle Scholar
  30. 30.
    S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, and R.G. Huff, L. Gruner-Nielsen, All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s, IEEE Phot. Techn. Lett., 13, 632 (2001).CrossRefADSGoogle Scholar
  31. 31.
    B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russell, Slope-matched dispersion-compensating photonic crystal fiber, Technical Digest Conference on Lasers and Electro-Optics, CLEO’04, San Francisco, California, U.S.A., May 2004, post-deadline paper CPDD3, 2004.Google Scholar
  32. 32.
    M. Fuochi, J.R. Hayes, K. Furusawa, W. Belardi, J.C. Baggett, T.M. Munro, and D.J. Richard-son, Polarization mode dispersion reduction in spun large mode area silica holey fibers, Opt. Express, 12, 1972-77 (2004).CrossRefADSGoogle Scholar
  33. 33.
    J.L. Gimlet and N.K. Chaung, Effects of phase to intensity noise generated by multiple reflection on Gigabit per second DFB laser transmission systems, J. Lightwave Technol., 7, 888 (1989).CrossRefADSGoogle Scholar
  34. 34.
    C.J.S. de Matos, J.R. Taylor, T.P. Hansen, K.P. Hansen and J. Broeng, All-fiber chirped pulse amplification using highly dispersive air-core photonic bandgap fiber, Opt. Express, 11,2832 (2003).CrossRefADSGoogle Scholar
  35. 35.
    H. Lim and F.W. Wise, Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber, Opt. Express, 12, 2231 (2004).CrossRefADSGoogle Scholar
  36. 36.
    W. Gobel, A. Nimmerjahn, and F. Helmchen, Distortion-free delivery of nanojoule fem-tosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber, Opt. Lett., 29, 1285 (2004).CrossRefADSGoogle Scholar
  37. 37.
    G. Humbert, J.C. Knight, G. Bouwmans, P.St.J. Russell, D.P. Williams, P.J. Roberts and B.J. Mangan 2004, Hollow core photonic crystal fibers for beam delivery, Opt. Express, 12, 1477 (2004).CrossRefADSGoogle Scholar
  38. 38.
    B.J. Mangan, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, Low loss (1.7 dB/km) hollow core photonic bandgap fiber, OFC 2004, postdeadline paper #24, 2004.Google Scholar
  39. 39.
    Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R.T. Chen, M.Y. Chen, G. Brost, and C. Lee, Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna, IEEE Photon. Technol. Lett., 17, 187 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • P. J. Roberts
    • 1
    • 2
  • B. J. Mangan
    • 1
  • H. Sabert
    • 1
  • F. Couny
    • 1
    • 2
  • T. A. Birks
    • 2
  • J. C. Knight
    • 2
  • P. St. J. Russell
    • 2
  1. 1.Blaze PhotonicsUniversity of Bath CampusClaverton DownUK
  2. 2.University of BathClaverton DownUK

Personalised recommendations