Advertisement

High-order mode based dispersion compensating modules using spatial mode conversion

  • M. Tur
  • D. Menashe
  • Y. Japha
  • Y. Danziger
Chapter
  • 968 Downloads
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

High-Order Mode Dispersion Compensating Modules (HOM-DCM) using spatial optical transformations for mode conversion are reviewed. It is shown that mode transformers using this technology can be designed to transform the LP01 mode of SMF fibers to the LP02 mode of specially designed dispersion compensating High-Order Mode Fiber (HOMF), with typical insertion loss of ~1 dB, and typical extinction ratio to other modes less than –20 dB.TheHOMFitself can provide high negative dispersion [typically in the range of 400–600 ps/(nm km)], and high negative dispersion slope, allowing efficient compensation of all types of transmission fiber. Combining two mode transformers with HOMF and possibly trim fiber for fine-tuning, results, for example, in a HOM-DCM that compensates 100 km LEAF R ® fiber, with Insertion loss < 3.5 dB, and Multi-Path Interference (MPI)< –36 dB. MPI phenomena in HOM-DCMs is characterized, and shown to comprise both coherent and incoherent parts, and to result from both the mode transformers and fiber coupling within the HOMF. MPI values of < –36 dB have been shown to allow error free transmission of 10 Gb/s signals over up to 6000 km. Finally, a number of applications well suited to the properties of HOM-DCMs are reviewed.

Keywords

Dispersion Curve Mode Coupling Insertion Loss Extinction Ratio Polarization Mode Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.D. Poole, J.M. Wiesenfeld, A.R. McCormick, and K.T. Nelson, “Broadband dispersion compensation by using high-order spatial mode in a two-mode fiber”, Opt. Lett. 17, 985-987 (1992).CrossRefADSGoogle Scholar
  2. 2.
    C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, and A.M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff ”, J. Lightwave Technol. 12, 1745-1758 (1994).ADSGoogle Scholar
  3. 3.
    M. Eguchi, M. Koshiba, and Y. Tsuji, “Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core”, J. Lightwave Technol. 14, 2387 (1996).CrossRefADSGoogle Scholar
  4. 4.
    J.A. Buck, Fundamentals of optical fibers (John Wiley, 1995).Google Scholar
  5. 5.
    A.H. Gnauck and R.M. Jopson, “Dispersion compensation for optical fiber sytems”, in Optical fiber Telelcommunications, IIIA (Academic Press, 1997).Google Scholar
  6. 6.
    G.P. Agrawal, Fiber-optic communication systems (Wiley-Interscience, 1997).Google Scholar
  7. 7.
    H.G. Park and B.Y. Kim, “Intermodal coupler using permanently photoinduced grating in two-mode optical fibre”, Electron. Lett. 25, 797-799 (1989).CrossRefGoogle Scholar
  8. 8.
    S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, R.G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s”, IEEE Photon. Technol. Lett. 13, 632-634 (2001).CrossRefADSGoogle Scholar
  9. 9.
    S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers”, Opt. Lett. 27, 698 (2002).CrossRefADSGoogle Scholar
  10. 10.
    S. Choi, W. Shin, and K. Oh, “Higher-order-mode dispersion compensation technique based on mode converter using hollow optical fiber”, in Proc. Optical Fiber Communication Con-ference 2002, pp. 177-178.Google Scholar
  11. 11.
    R. Oron,Y. Danziger, N. Davidson,A.A. Friesem, and E. Hasman, “Transverse Mode Selec-tion with Phase Elements”, Conference on Lasers and Electro-Optics Europe (CLEO/Europe), p. 365, September 1998.Google Scholar
  12. 12.
    J.W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).Google Scholar
  13. 13.
    M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).Google Scholar
  14. 14.
    J. Bengtsson and M. Johansson, “Fan-out diffractive optical elements designed for increased fabrication tolerances to linear relief depth errors”, Appl. Opt. 41, 281-289 (2002).CrossRefADSGoogle Scholar
  15. 15.
    R.G. Dorsch, A.W. Lohmann, and S. Sinzinger, “Fresnel ping-pong algorithm for 2-plane computer-generated hologram display”, Appl. Opt. 33, 869-875 (1994).CrossRefADSGoogle Scholar
  16. 16.
    L. Gruner-Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C. Larsen, and H. Damsgaard, “Dispersion Compensating Fibers”, Opt. Fiber Technol. 6, 164-180 (2000).CrossRefADSGoogle Scholar
  17. 17.
    M.J. Li, “Recent progress in fiber dispersion compensators”, Paper Th.M.1.1., ECOC 2001, Amsterdam.Google Scholar
  18. 18.
    U. Levy and M. Tur, “Projected Zero Dispersion—A Concept for Link Design”, Tech. Digest of NFOEC 2002, p. 1527.Google Scholar
  19. 19.
    M. Wandel, T. Veng, Q. Le, and L. Gr üner-Nielsen, “Dispersion compensating fibre with a high figure of merit”, Proceedings of 2001 European Conference on Optical Communica-tions, Paper PD.A.1.4.Google Scholar
  20. 20.
    M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le, and L. Gr üner-Nielsen, “Dispersion compensating fibers for non-zero dispersion fibers”, OFC 2002, Paper WU1.Google Scholar
  21. 21.
    Allan W. Snyder and John D. Love, Optical Waveguide Theory (Kluwer Academic, 1983).Google Scholar
  22. 22.
    D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory”, IEEE J. Quantum Electron. 29, 2957-2961 (1993).CrossRefADSGoogle Scholar
  23. 23.
    D. Marcuse, “Microdeformation losses of single-mode fibers”, Appl. Opt. 23, 1082 (1984).CrossRefADSGoogle Scholar
  24. 24.
    A. Bjarklev, “Microdeformation losses of single-mode fibers with step-index profiles”, J. Lightwave Technol. 4, 341 (1986).CrossRefADSGoogle Scholar
  25. 25.
    C.B. Probst, A. Bjarklev, and S.B. Andreasen, “Experimental verification of microbending theory using mode coupling to discrete cladding modes”, J. Lightwave Technol. 7, 55 (1989).CrossRefADSGoogle Scholar
  26. 26.
    D Derickson, Fiber Optic test and measurement (Prentice-Hall, New Jersey, 1998).Google Scholar
  27. 27.
    J.A. Buck, Fundamentals of optical fibers (Wiley, New York, 1995).Google Scholar
  28. 28.
    L. Gruner-Nielsen, Yujun Qian, B. Palsdottir, P.B. Gaarde, S. Dyrbol, and T. Veng, “Module for simultaneous C+L-band dispersion compensation and Raman amplification”, Optical Fiber Communication Conference (OFC), TuJ6, Anaheim, California (2002)Google Scholar
  29. 29.
    J.L. Gimlet and N.K. Chaung, “Effects of phase to intensity noise generated by multiple reflection on Gigabit per second DFB laser transmission systems”, J. Lightwave Technol. 7,888 (1989).CrossRefADSGoogle Scholar
  30. 30.
    S. Burtsev, W. Pelouch, and P. Gavrilovic, “Multi-path interference noise in multi-span trans-mission links using lumped Raman amplifiers”, Optical Fiber Communication Conference and Exhibit (OFC), TuR4, Anaheim, California (2002).Google Scholar
  31. 31.
    P.J. Legg, M. Tur, and I. Andonovic, “Solution paths to limit interferometric noise induced performance degredation in ASK/Direct detection lightwave networks”, J. Lightwave Tech-nol. 14, 1943 (1996).CrossRefADSGoogle Scholar
  32. 32.
    S. Ramachandran, J.W. Nicholson, S. Ghalmi, and M. F. Yan, “Measurement of multipath interference in the coherent crosstalk regime”, IEEE Photon. Technol. Lett. 15, 1171-1173 (August 2003).CrossRefADSGoogle Scholar
  33. 33.
    Y. Shen, K. Lu, and W. Gu, “Coherent and incoherent crosstalk in WDM optical networks”, J. Lightwave Technol. 17, 756 (1999).ADSGoogle Scholar
  34. 34.
    S. Ramachandran, S. Ghalmi, J. Bromage, S. Chandrasekhar, and L.L. Buhl, “Evolution and Systems Impact of Coherent Distributed Multipath Interference”, IEEE Photon. Technol. Lett. 17, 238 (2005).CrossRefADSGoogle Scholar
  35. 35.
    H. Takahashi, O. Kazuhiro, and T. Hiromu, “Impact of crosstalk in an arrayed waveguide multiplexer on NxN Optical Interconnection”, J. Lightwave Technol. 14, 1097 (1996).CrossRefADSGoogle Scholar
  36. 36.
    C.X. Yu, W. Wang, and S.D. Brorson, “System degredation due to multipath coherent crosstalk in WDM network nodes”, J. Lightwave Technol. 16, 1380 (1998).CrossRefADSGoogle Scholar
  37. 37.
    S.D. Dods and A.J. Lowery, “Temporal Statistics of Crosstalk-Induced Errors in WDM Optical Networks”, NFOEC 2001, Session C5, pp. 876-879 (2001).Google Scholar
  38. 38.
    A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy, and M. Tur, ‘Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre’, Electron. Lett. 35 (23), 1946-1947 (2000).CrossRefGoogle Scholar
  39. 39.
    R.I. Killey, V. Mikhailov, S. Appathurai, and P. Bayvel, “Investigation of Nonlinear Distor-tion in 40-Gb/s Transmission With Higher Order Mode Fiber Dispersion Compensators”, J. Lightwave Technol. 20, 2282 (2002).CrossRefADSGoogle Scholar
  40. 40.
    C. Meyer, S. Lobo S, D. Le Guen, F. Merlaud, L. Bill ès, and T. Georges, “High spectral efficiency wideband terrestrial ULH RZ transmission over LEAF○R with realistic industrial margins”, paper 1.1.2, ECOC 2002.Google Scholar
  41. 41.
    L.D. Garrett, M. Eiselt, J. Weisenfeld, R. Tkach, D. Menashe, U. Levy, Y. Danziger, and M. Tur, “ULH DWDM Transmission with HOM-Based Dispersion Compensation”, The 29th European Conference on Optical Communication (ECOC), Rimini, Italy, September 2003.Google Scholar
  42. 42.
    L.D. Garrett, M.H. Eiselt, J.M. Weisenfeld, M.R. Young, and R. Tkach, “Bidirectional ULH transmission of 160-gb/s full-duplex capacity over 5000 km in a fully bidirectional recirculating loop”, IEEE Photon. Technol. Lett. 16, 1757-1759 (2004).CrossRefADSGoogle Scholar
  43. 43.
    B. Zhu, L. Leng, L.E. Nelson, L. Gruner-Nielsen, Y. Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir, and R.L. Lingle Jr., “3.2Tb/s (80 /spl times/ 42.7 Gb/s) transmission over 20 /spl times/ 100 km of non-zero dispersion fiber with simultaneous C + L-band dispersion compensation”, paper FC8, Optical Fiber Communication Conference and Exhibit, (OFC), 2002.Google Scholar
  44. 44.
    K. Mukasa, H. Moridaira, T. Yagi, and K. Kokura, “New type of dispersion management transmission line with MDFSD for long-haul 40 GB/s transmission”, paper ThGG2, Optical Fiber Communication Conference (OFC), Anaheim, California, 2002.Google Scholar
  45. 45.
    H. Bissessur, A. Hugbart, C. Bastide, S. Gauchard, and S. Ruggeri, “Transmission of 32 × 43 Gb/s over 27 × 100 km of TeraLight fiber with low-cost EDFA amplification”, Paper ThE3, Optical Fiber Communication Conference (OFC), Los Angeles, California, 2004.Google Scholar
  46. 46.
    F. Forghieri, R.W. Tkach, andA.R. Chraplyvy, in "Optical Fiber Telecommunications, IIIA", edited by I.P. Kaminow and T.L. Koch, pp. 196-264 (Academic Press, 1997).Google Scholar
  47. 47.
    G.P. Agrawal, Non-Linear Fiber Optics, 2nd ed. (Academic Press, 1997).Google Scholar
  48. 48.
    M. Tur, E. Herman, and Y. Danziger, “Nonlinear properties of dispersion management modules employing high-order mode fibers”, Optical Fiber Communication Conference and Exhibit (OFC), TuS5-1-TuS5-3, (2001.Google Scholar
  49. 49.
    M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin Scattering in High-Order Mode Fibers Employed in Dispersion Management Modules”, IEEE Photon. Technol. Lett. 14, 1282-1284 (2002).CrossRefADSGoogle Scholar
  50. 50.
    O. Mor, B. Moav, A. Ben-Dor, M. Tur, S. Steinblatt, U. Levy, and D. Menashe, “Reduced non-linearities in high order mode dispersion compensation modules”, The 7th European/French-Israeli Symposium on Nonlinear and Quantum Optics (EURISNO/FRISNO), Les Houches, France, February 2003.Google Scholar
  51. 51.
    S. Ramachandran, G. Raybon, B. Mikkelsen, A. Yan, L. Cowsar, and R.J. Essiambre, “1700 km transmission at 40 Gbit/s with 100 km amplifier spacing enabled by higher-order-mode dispersion compensation”, Electron. Lett. 37, 1352-1354 (2001).CrossRefGoogle Scholar
  52. 52.
    E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (Wiley, 1994).Google Scholar
  53. 53.
    S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable Dispersion Compensators Utilizing Higher Order Mode Fibers”, IEEE Photon. Technol. Lett. 15, 727 (2003).CrossRefADSGoogle Scholar
  54. 54.
    S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarcello, W. Reed, P. Wisk, and J. Fleming, “Multiple Span Dispersion Compensation Using All-Fiber Higher Order Mode Dispersion Compensators”, The 28th European Conference on Optical Communication (ECOC), Paper P1.33, Copenhagen, Denmark, September, 2002.Google Scholar
  55. 55.
    J. Fatome, S. Pitois, P. Tchofo Dinda, and G. Millot, “Experimental demonstration of 160-GHz densely dispersion-managed soliton transmission in a single channel over 896 km of commercial fibers”, Opt. Express 11, 1553-1558 (2003).ADSCrossRefGoogle Scholar
  56. 56.
    H. Zmuda and E.N. Toughlian, Photonic Aspects of Modern RADAR (Artech House, 1994).Google Scholar
  57. 57.
    R. Soref, “Optical dispersion technique for time-delay beam steering”, Appl. Opt. 31, 7395-7397 (1992).CrossRefADSGoogle Scholar
  58. 58.
    O. Raz, R. Rotman, Y. Danziger, and M. Tur, “Implementation of Photonic True Time Delay Using High-Order-Mode Dispersion Compensating Fibers”, IEEE Photon. Technol. Lett. 16,1367-1369 (May 2004).CrossRefADSGoogle Scholar
  59. 59.
    J.L. Corral, J. Marti, and J.M. Fuster, “General Expressions for IM/DD Dispersive Analog Optical Links With External Modulation or Optical Up-Conversion in a Mach-Zehnder Electrooptical Modulator”, IEEE Trans. Microwave Theory Technol. 49, 1958-1975 (2001).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Tur
    • 1
  • D. Menashe
    • 2
  • Y. Japha
    • 3
  • Y. Danziger
  1. 1.School of Electrical EngineeringTel-Aviv UniversityIsrael
  2. 2.RED-C Optical NetworksAtidim Tech. ParkIsrael
  3. 3.Department of PhysicsBen-Gurion University of the NegevIsrael

Personalised recommendations