Advertisement

Static and tunable dispersion management with higher order mode fibers

  • Siddharth Ramachandran
  • Man F. Yan
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

Few mode fibers have recently attracted a lot of attention, because of the prospect of enhanced design flexibility, unique modal properties, and the existence of several simultaneous light-paths in them. After the pioneering experiments by Craig Poole from Bell Labs in 1993, an application that faded away but saw a re-emergence in 2000–2003 was higher order mode dispersion compensation. In this scheme, mode converters are used to selectively propagate the signal in a higher order mode of a few-mode fiber.

Demonstrations over the last few years have shown that this novel technology can provide several benefits over the conventional dispersion compensating fiber, such as lower nonlinearity, higher dispersions, potentially lower loss, and most interestingly, a format to realize tunable dispersion compensation devices. It also has attendant tradeoffs arising from the need to manage modal interference, and a complex architecture that may make it more costly. This talk will review the physics and technology of the higher order mode dispersion compensator and discuss its future directions.

Keywords

Grating Period Dispersion Compensator Polarization Mode Dispersion Mode Converter Relative Intensity Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Vengsarkar, A.E. Miller and W.A. Reed, “Highly efficient single-mode fiber for broad-band dispersion compensation,” Proc. Opt. Fiber Commun. - 1993, pp. 56-59.Google Scholar
  2. 2.
    A.J. Antos and D.K. Smith, “Design and characterization of dispersion compensating fiber based on LP01 mode,” IEEE J. Lightwave Technol. 12, 1739-1745 (1994).CrossRefADSGoogle Scholar
  3. 3.
    L. Gruner-Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C. Larsen and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 49-60 (2000).CrossRefGoogle Scholar
  4. 4.
    C.K. Madsen, “Integrated waveguide allpass filter tunable dispersion compensators,” Proc. Opt. Fiber Conf.2002, TuT-1.Google Scholar
  5. 5.
    C.R. Doerr, L.W. Stultz, S. Chandrasekhar, L. Buhl and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing thermooptic lens,” Proc. Opt. Fiber Conf. 2002, FA6.Google Scholar
  6. 6.
    L. M. Lunardi, D.J. Moss, S. Chandrasekhar and L.L. Buhl, “An etalon-based tunable dis-persion compensator (TDC) Device for 40-gbit/s applications,” Proc. European Conf. Opt. Commun. 2002, 5.4.6Google Scholar
  7. 7.
    M. Shirasaki and S. Cao, “Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array,” Proc. Opt. Fiber Conf. 2001, TuS-1.Google Scholar
  8. 8.
    B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen and B. Mikkelsen, “Integrated Tunable Fiber Gratings for Dispersion Management in High-Bit Rate Systems,” J. Lightwave Technol. 18, 1419 (2000).ADSGoogle Scholar
  9. 9.
    X-J. Cai, K.-M. Feng, A.E. Willner, V. Grubsky, D.S. Starodubov and J. Feinberg, “Si-multaneous Tunable Dispersion Compensation of Many WDM Channels Using a Sampled Nonlinearly Chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 11, 1455 (1999).CrossRefADSGoogle Scholar
  10. 10.
    J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Claeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal and K. Thyagarajan, “-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689-1691 (2000).CrossRefGoogle Scholar
  11. 11.
    L. Gruner-Nielsen and B. Edvold, “Status and future promises for dispersion compensating fibres,” Proc. European Conf. Opt. Commun. - 2002, 6.1.1.Google Scholar
  12. 12.
    C.D. Poole, J.M. Weisenfeld, D.J. DiGiovanni and A.M. Vengsarkar, “ Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746-1758 (1994).CrossRefADSGoogle Scholar
  13. 13.
    A.W. Snyder and J.D. Love, Optical Waveguide Theory (London, U.K.: Chapman & Hall, 1983).Google Scholar
  14. 14.
    M.E. Lines, W.A. Reed, D.J. Di Giovanni and J.R. Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009-1010 (1999).CrossRefGoogle Scholar
  15. 15.
    C.D. Poole, J.M. Wiesenfeld, A.R. McCormick and K.T. Nelson, “Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985-987 (1992).CrossRefADSGoogle Scholar
  16. 16.
    S. Golowich and S. Ramachandran, “On the polarisation dependence of microbend fiber gratings: Relation to fiber design,” Opt. Express 13, 6879 (2005).CrossRefADSGoogle Scholar
  17. 17.
    S. Ramachandran, M.F. Yan, S. Golowich, E. Monberg, F.V. Dimarcello, J. Fleming, S. Ghalmi and P. Wisk, “A novel fiber design for polarisation insensitive microbend gratings,” Proc. European Conf. Opt. Commun. - 2004, paper No. Th2.3.2.Google Scholar
  18. 18.
    C.D. Poole and S.-C. Wang, “Bend-induced loss for the higher-order spatial mode in a dual-mode fiber,” Opt. Lett., 18, 1712-1714 (1993).CrossRefADSGoogle Scholar
  19. 19.
    C.D. Poole, J.M.Weisenfeld and D.J. DiGiovanni, “Elliptical-core dual mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194-196 (1993).CrossRefADSGoogle Scholar
  20. 20.
    Fiber Optic Test and Measurement, edited by Dennis Derickson (Prentice Hall PTR, 1998).Google Scholar
  21. 21.
    M. Froggatt, “Interferometric measurement of dispersion in optical components,” Proc. Opt. Fiber Commun. - 2002, paper No. WK1.Google Scholar
  22. 22.
    D. Menashe, M. Tur and Y. Danziger, “Interferometric technique for measuring dispersion of higher order modes in optical fibers,” Electron. Lett. 37, 1439-1440 (2001).CrossRefGoogle Scholar
  23. 23.
    R.W. Tkach and A.R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwave Technol. 4, 1711-1716 (1986).CrossRefADSGoogle Scholar
  24. 24.
    J.W. Nicholson, S. Ramachandran, S. Ghalmi, E. Monberg, F. DiMarcello, M. Yan, P. Wisk and J. Fleming, “Characterization of dispersion in higher order mode fibers using electrical spectrum measurements,” Proc. Opt. Fibers Commun. - 2003, Paper No. FK8.Google Scholar
  25. 25.
    J.W. Nicholson, S. Ramachandran, S. Ghalmi, E. Monberg, F. DiMarcello, M. Yan, P. Wisk and J. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 831 (May 2003).CrossRefADSGoogle Scholar
  26. 26.
    C. Dorrer, “Chromatic dispersion characterization by direct instantaneous frequency mea- surement,” Opt. Lett. 29, 204-206 (2004).CrossRefADSGoogle Scholar
  27. 27.
    C. Dorrer and S. Ramachandran, “Self-referencing dispersion characterization of multimode structures using direct instantaneous frequency measurement,” IEEE Photon. Technol. Lett. 16,1700-1702 (2004).CrossRefADSGoogle Scholar
  28. 28.
    W.V. Sorin, B.Y. Kim and H.J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett., 581-583 (1986).Google Scholar
  29. 29.
    A.M. Vengsarkar, P.L. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan and J.E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).CrossRefADSGoogle Scholar
  30. 30.
    T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).CrossRefADSGoogle Scholar
  31. 31.
    C.D. Pool, C.D. Townsend and K.T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598-604 (1991).CrossRefADSGoogle Scholar
  32. 32.
    S. Ramachandran, Z. Wang and M.F. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27, 698-700 (2002).CrossRefADSGoogle Scholar
  33. 33.
    S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk and S. Ghalmi, “Record bandwidth microbend gratings for spectrally flat variable optical attenuators,” IEEE Photon. Technol. Lett. 15, 1561-1563 (2003).CrossRefADSGoogle Scholar
  34. 34.
    A. Abramov, A. Hale, R.S. Windeler and T.A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35, 81-82 (1999).CrossRefGoogle Scholar
  35. 35.
    S. Ramachandran, S. Ghalmi, Z. Wang and M. Yan, “Band-Selection Filters using Concate-nated Long-Period Gratings in Few-mode Fibers,” Opt. Lett. 27, 1678-1680 (2002).CrossRefADSGoogle Scholar
  36. 36.
    Z. Wang and S. Ramachandran, “Ultrasensitive long-period fiber gratings for broadband modulators and sensors,” Opt. Lett. 28, 2458-2460 (2003).CrossRefADSGoogle Scholar
  37. 37.
    S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M.F. Yan, F. Dimarcello, W. Reed and P. Wisk, “Wavelength-continuous broadband adjustable dispersion compensator using higher order mode fibers and switchable fiber-gratings,” Proc. European Conf. Opt. Commun., paper No. PD-2.6.Google Scholar
  38. 38.
    S. Ramachandran, M. Yan, L. Cowsar, A. Carra, P. Wisk, R. Huff and D. Peckham, “Large bandwidth, highly efficient mode coupling using long-period gratings in dispersion tailored fibers,” Proc. Opt. Fiber Commun. - 2001, MC2.Google Scholar
  39. 39.
    W.W. Morey and W.L. Glomb, “Incorporated Bragg filter temperature compensated optical wavelength device,” U.S. Patent 5,042,898, 1991.Google Scholar
  40. 40.
    L. Raddatz, I.H. White, D.G. Cunningham, and M.C. Nowell, “Increasing the bandwidth-distance product of multimode fiber using offset launch,” Electron. Lett 33, 232-233 (1997).CrossRefGoogle Scholar
  41. 41.
    J. Bromage, P.J. Winzer and R.-J. Essiambre, “Multiple Path Interference and its Impact on System Design,” in Raman Amplifiers for Telecommunications, edited by M.N. Islam (Springer-Verlag, New York, 2004).Google Scholar
  42. 42.
    C.R.S. Fludger and R.J. Mears, “Electrical measurements of multipath interference in dis-tributed Raman amplifiers,” J. Lightwave Technol. 19, 536 (2001).CrossRefADSGoogle Scholar
  43. 43.
    J.L. Gimlett and N.K. Cheung, “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems,” J. Lightwave Technol. 7,888 (1989).CrossRefADSGoogle Scholar
  44. 44.
    C.X. Yu, W-k Wang and S.D. Brorson, “System degradation due to multipath coherent crosstalk in WDM network nodes,” J. Lightwave Technol. 16, 1380 (1998).CrossRefADSGoogle Scholar
  45. 45.
    M.G. Taylor, D. Craig, H.P. Sardesai, A. Khot, W. Zheng, “Measurement of system penalty due to multipath interference,” Proc. ECOC-2002, paper No. 3.1.7.Google Scholar
  46. 46.
    J.L. Gimlett and N.K. Cheung, “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems,” J. Lightwave Technol. 7,888 (1989).CrossRefADSGoogle Scholar
  47. 47.
    S. Ramachandran, J.W. Nicholson, P. Kristensen, S. Ghalmi and M.F. Yan, “Measurement of multi-path interference in the coherent cross-talk regime,” Proc. Opt. Fibers Commun. 2003, Paper No. TuK6.Google Scholar
  48. 48.
    S. Ramachandran, J.W. Nicholson, S. Ghalmi and M.F. Yan, “Measurement of Multipath Interference in the Coherent Crosstalk Regime,” IEEE Photon. Technol. Lett. 15, 1171-1173 (2003).ADSGoogle Scholar
  49. 49.
    W. Zheng, H.P. Sardesai, M.G. Taylor, D.L. Craig, J. Fowlkes and J.R. Simpson, “Measure-ment and system impact of multipath interference from dispersion compensating modules,” IEEE Trans. Instr. Meas. 53, 15-22 (2004).CrossRefGoogle Scholar
  50. 50.
    S. Ramachandran, S. Ghalmi, S. Chandrasekhar and L.L. Buhl, “Evolution and systems impact of MPI in HOM fiber devices,” Proc. European Conf. Opt. Commun. - 2003, Paper No. 4.7.5.Google Scholar
  51. 51.
    F. Liu, C.J. Rasmussen and R.J.S. Pedersen, “Experimental Verification of a New Model De-scribing the Influence of Incomplete Signal Extinction Ratio on the Sensitivity Degradation Due to Multiple Interferometric Crosstalk,” IEEE Photon. Technol. Lett., 137-139 (1999).Google Scholar
  52. 52.
    S. Ramachandran, S. Ghalmi, J. Bromage, S. Chandrasekhar and L.L. Buhl, “Evolution and systems impact of coherent distributed multi-path interference,” IEEE Photon. Technol. Lett. 17,238-240 (2005).CrossRefADSGoogle Scholar
  53. 53.
    Siddharth Ramachandran, “Higher-Order-Mode Dispersion Compensation for Broadband Dispersion and Non-linearity Management in Transmission Systems,” Proc. Opt. Fiber Com-mun. - 2002, Paper No. WU-5.Google Scholar
  54. 54.
    O. Raz, R. Rotman, Y. Danziger and M. Tur, “Implementation of Photonic True Time Delay Using High-Order-Mode Dispersion Compensating Fibers,” IEEE Photon. Technol. Lett. 16, 1367-1369 (2004).CrossRefADSGoogle Scholar
  55. 55.
    M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le and L. Gruner-Nielsen, “Dispersion compensating fibers for non-zero dispersion fibers,” Proc. OFC-2002, paper No. WU1 2002.Google Scholar
  56. 56.
    L.V. Jørgensen, J.S. Andersen, S. Primdahl, M.N. Andersen and B. Edvold, “Next generation dispersion compensating modules for 40 Gbit/s systems,” Proc. NFOEC-2002, pp.1171-1182(2002).Google Scholar
  57. 57.
    M. Wandel, T. Veng, N.T. Quang Le, L. Gruner-Nielsen, “Dispersion compensating fibre with a high figure of merti,” Proc. European Conf. Opt. Commun., PD-2.5.Google Scholar
  58. 58.
    Siddharth Ramachandran, “Dispersion management with few mode fibers,” Proc. Optoelec-tronics & Commun. Conf. - 2003, Shanghai, China.Google Scholar
  59. 59.
    F. Forghieri, R.W. Tkach and A.R. Chraplyvy, “Dispersion Compensating Fiber: Is There Merit in the Figure of Merit?,” IEEE Photon. Technol. Lett. 9, 970-972 (1997).CrossRefADSGoogle Scholar
  60. 60.
    L.D. Garrett, M. Eiselt, J. Wiesenfeld, R. Tkach, D. Menashe, U. Levy, Y. Danziger and M. Tur, “ULH DWDM transmission with HOM-based dispersion compensation,” Proc. ECOC-2003, Paper No. We 4.P.98.Google Scholar
  61. 61.
    A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher order mode fibre,” Elec-tron. Lett. 36, 1946-1947 (2000).CrossRefGoogle Scholar
  62. 62.
    P.B. Hansen, G. Jacobovitz-Veselka, L. Gr üner-Nielsen and A.J. Stentz, “Raman amplifica-tion for loss compensation in dispersion compensating fibre modules,” Electron. Lett. 34, 1136-1137 (1998).CrossRefGoogle Scholar
  63. 63.
    M. Tur, E. Herman, A. Kozhekin and Y. Danziger, “Stimulated Brillouin scattering in high-order-mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282-1284 (2002).CrossRefADSGoogle Scholar
  64. 64.
    M. Tur, E. Herman andY. Danziger, “ Nonlinear properties of dispersion management mod-ules employing high-order mode fibers,” Proc. Opt. Fiber Commun. - 2001, paper No. TuS5.Google Scholar
  65. 65.
    S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F.Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, R.G. Huff and L. Gruner-Nielsen, “All-fiber, grating-based, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40 Gb/s”, Proc. European Conf. Opt. Commun. - 2000, PD-2.5.Google Scholar
  66. 66.
    S. Ramachandran, G. Raybon, B. Mikkelsen, M.F. Yan, L.C. Cowsar and R-J. Essiambre “1700-km Transmission at 40-Gb/s with 100 km Amplifier-Spacing Enabled by Higher-Order-Mode Dispersion-Compensation,” Proc. European Conf. Opt. Commun., WeF-2.2, 2001.Google Scholar
  67. 67.
    S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, R.G. Huff and L. Gruner-Nielsen, “All-fiber, gratingbased, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40 Gb/s”, IEEE Photon. Technol. Lett. 13, 632-634 (2001).CrossRefADSGoogle Scholar
  68. 68.
    S. Ramachandran, G. Raybon, B. Mikkelsen, M.F. Yan, L. Cowsar and R-J. Essiambre, “1700-km Transmission at 40-Gb/s with 100-km Amplifier-Spacing Enabled by Higher-Order-Mode Dispersion-Compensation,” Electron. Lett. 37, 1352-1354 (2001).CrossRefGoogle Scholar
  69. 69.
    B. Konrad, A. Hodzic and K. Petermann, “Dispersion Compensation Schemes For 160 Gb/S Tdm-Transmission Over SSMF And NZDSF,” Proc. ECOC-2002, paper No. Tu.L.2.4.Google Scholar
  70. 70.
    S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. Yan, F. Dimarcello, W. Reed and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).CrossRefADSGoogle Scholar
  71. 71.
    S. Ghalmi, S. Ramachandran, I. Ryazansky, M.F.Yan and F.V. Dimarcello, “On the Scalability ofAdjustable High-Order Mode Fiber Dispersion Compensators,” Proc. Opt. Fiber Commun. Conference - 2003, paper No. FK7.Google Scholar
  72. 72.
    S. Ramachandran, J.W. Nicholson, S. Ghalmi, M.F. Yan, P. Wisk, E. Monberg and F.V. Dimarcello, “Light propagation with ultra-large modal areas in optical fibers,” Opt. Lett. 31,1797 (2006).CrossRefADSGoogle Scholar
  73. 73.
    S. Ramachandran, S. Ghalmi, J.W. Nicholson, M.F. Yan, P. Wisk, E. Monberg and F.V. Dimarcello, “Anomalous Dispersion in a Solid, Silica-based Fiber,” Opt. Lett. 31, 2532 (2006).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Siddharth Ramachandran
    • 1
  • Man F. Yan
    • 1
  1. 1.OFS LaboratoriesMurray HillUSA

Personalised recommendations